Table of Contents

1.	General Information	S2
2.	Experimental Procedure and Characterization Data	S3–S22
3.	Synthesis of the Ir–H Complex 7 and the X-Ray Data of 7	S22–S23
4.	Deuterium experiments	S24
5.	Enantioselective reaction	S25-S26
6.	NMR Spectra	S27–S58
7.	Density Functional Theory (DFT) Study	S59–S144
8.	References	S145

1. General Information

Unless otherwise noted, all solvents were dried by filtration through a Pure-Solv MD-5 Solvent Purification System (Innovative Technology). Toluene and 2-methyltetrahydrofuran (MeTHF) used for the key reactions were distilled freshly over sodium and carefully freeze-pump-thawed. Cyclopentanone used for the key reactions was fractionally distilled and carefully freeze-pump-thawed. 1-octene used for the key reactions was distilled freshly over calcium hydride and carefully freeze-pump-thawed. All the key reactions were carried out under nitrogen atmosphere with a stir bar in a sealed vial. Reaction temperatures were reported as the temperatures of the bather surrounding the vials. Sensitive ligands and metal catalysts and solvents were transferred under nitrogen into a nitrogen-filled glovebox with standard techniques. Analytical thin-layer chromatography (TLC) was carried out using 0.2 mm commercial silica gel plates (silica gel 60, F254, EMD chemical). Vials [15 x 45 mm 1 dram (4 mL) with PTFE lined cap attached] were purchased from Qorpak and flame-dried and cooled in a desiccator before use. High-resolution mass spectra were recorded on an Agilent 6530 LC Q-TOF mass spectrometer using electrospray ionization with fragmentation voltage set at 115 V and processed with an Agilent MassHunter Operating System. Infrared spectra were recorded on a Nicolet 380 FTIR using neat thin film technique. Nuclear magnetic resonance spectra (¹ H NMR and ¹³C NMR) were recorded with Bruker Model DMX 500 (500 MHz, ¹ H at 500 MHz, ¹³C at 126 MHz) or Bruker Model DMX 400 (400 MHz, ¹ H at 400 MHz, ¹³C at 101 MHz). Unless otherwise noted, all spectrums were acquired in CDCl₃. Chemical shifts are reported in parts per million (ppm, δ), downfield from tetramethylsilane (TMS, $\delta = 0.00$ ppm) and are referenced to residual solvent (CDCl₃, $\delta = 7.26$ ppm (¹H) and 77.00 ppm (¹³C)). Coupling constants were reported in Hertz (Hz). Data for ¹H NMR spectra were reported as follows: chemical shift (ppm, referenced to protium, s = singlet, d = doublet, t = triplet, q = quartet, quin = quintet, dd = doublet of doublets, td = triplet of doublets, ddd = doublet of doublet of doublets, m = multiplet, coupling constant (Hz), and integration). 2,2-Dimethyl-2,3-dihydro-1H-pyrrolo[2,3-b]pyridine (L4), ¹ 3,4-dihydro-2H-pyrido[3,2-b][1,4]oxazine (L7), ² Hex-5-en-1-ylbenzene $(2g)^3$ and 8-methylnona-1.7-diene $(2h)^4$ were synthesized by following literature procedures. 10-Methoxydec-1-ene $(2i)^5$ (dec-9en-1-yloxy)triisopropylsilane (2j),⁶ dec-9-en-1-yl acetate (2k)⁷ and 2-(dec-9-en-1-yl)isoindoline-1,3dione (2m)⁸ were synthesized from dec-9-en-1-ol by following literature procedures. 3,3-Dimethylcyclopentan-1-one was synthesized from 3-methylcyclopent-2-en-1-one by following literature procedure.⁹ 1-(1H-inden-2-yl)-2,3-dihydro-1H-pyrrolo[2,3-b]pyridine (5) was synthesized from 2indanone and 7-azaindoline by following literature procedure.¹ All other materials were obtained from commercial sources and were used as received.

2. Experimental Procedure and Characterization Data

Et

Table S1: Optimization study for the Ir(I)-catalyzed direct α -alkylation of cyclopentanone with 1-octene^[a]

[a] Run with 0.2 mmol of L1, 0.5 mL of cyclopentanone and 0.5 mL of 1-octene. [b] Based on L1. [c] TON determined by GC using dodecane as the internal standard; value in parentheses is based on isolated products. [d] Determined by GC. d.r.= diastereometric ratio. [e] Branched/linear > 20:1.

General procedure A: Ir(I)-catalyzed α -alkylation of cyclopentanone using 1-octene:

A 4-mL vial charged with a stir bar and *rac*-BINAP (2.5 mg, 0.004 mmol) was loosely capped and was transferred into a glove box. To this vial was added $[Ir(COD)_2]BArF$ (5.1 mg, 0.004 mmol) and 0.1 mL of cyclopentanone (**1a**). This mixture was stirred for 5 min before it was transferred to another vial containing 7-azaindoline (**L1**) (24 mg, 0.2 mmol) and 2-mesitylenesulfonic acid dihydrate (MSA·2H₂O) (2.4 mg, 0.005 mmol) in 0.1 mL of cyclopentanone (**1a**). Another 0.3 mL of cyclopentanone (**1a**) was added to the first vial and was further transferred to the vial containing **L1**. *t*BuNH*i*Pr (4.6 mg, 0.04 mmol) was then added followed by the addition of 0.5 mL of 1-octene (**2a**). The vial was tightly capped, removed from glove box and heated at 130 °C for 96 h. After the completion of the reaction, the mixture was cooled to room temperature, diluted with ethyl acetate and passed through a short pad of silica gel. After concentration in vacuum, the crude mixture was subjected to flash chromatography (silica gel, Hexane/Et₂O=40:1 to 30:1) to give the desired product **3a** (31 mg, TON [based on iridium] = 40) as a colorless oil.

General procedure B: Ir(I)-catalyzed α -alkylation of 1-indanone using 1-octene:

A 4-mL vial charged with a stir bar, 1-indanone (1c) (264 mg, 2 mmol), 7-azaindoline (L1) (24 mg, 0.2 mmol) and 2-mesitylenesulfonic acid dihydrate (MSA·2H₂O) (2.4 mg, 0.005 mmol) was loosely capped and was transferred into a glove box. To this vial was added 0.2 mL of toluene and the resulted mixture was well stirred. Another 4-mL vial charged with a stir bar and *rac*-BINAP (2.5 mg, 0.004 mmol) was loosely capped and was transferred into the glove box. To this vial was added [Ir(COD)₂]BArF (5.1 mg, 0.004 mmol) and 0.1 mL of toluene. This mixture was stirred for 10 min before it was transferred to the first vial containing 1-indanone (1c). *t*-Octylamine (10.3 mg, 0.08 mmol) was then added to the same vial followed by the addition of 0.5 mL of 1-octene. The vial was tightly capped, removed from the glove box and heated at 150 °C for 48 h. After completion of the reaction, the mixture was cooled to room temperature. To this vial was further added 0.4 mL of HCl (6 M) and then was tightly capped and heated at 110 °C for 1 h. After cooling to room temperature, the reaction mixture was diluted with ethyl acetate and the organic layer was passed through a short pad of silica gel and K₂CO₃. After concentration in vacuum, the crude mixture was subjected to flash chromatography (silica gel, Hexane/Et₂O=25:1 to 10:1) to give the desired product 4b (31 mg, TON [based on iridium] = 32) as a colorless oil and to recover the remaining 1-indanone 1c (209 mg, recovering yield = 80%).

Table S2: Condition optimizations when cyclopentanone was used as the limiting reagent^[a]

0.2	0 1a mmol	+ /	Γ C ₆ H ₁₃ 2a 400 μL	Ir(COD) ₂]BArF (5 rac-BINAP (5 m MSA•2H ₂ O (5 m <i>t</i> -BuNH <i>i</i> -Pr (20 m additive (40 mo solvent, 130 °C,	-1 nol%) ol%) nol%) nol%) nol%) √l%) 48 h	C_6H_{13}	SO₃⊢ MSA	→ ^N ↓ <i>t-</i> BuNH <i>i-</i> Pr
e	entry	х	additive		solvent	yield of 5a (%) ^[b]	d.r. of 5a ^[c]	branched/linear ^[c]
	1	1			toluene	23	1.3:1	> 20:1
	2	0.8			toluene	40	1.3:1	
	3	0.6			toluene	43	1.2:1	
	4	0.4			toluene	38	1.2:1	> 20:1
	5	0.2			toluene	29	1.1:1	> 20:1
	6	0.6		1	1,4-dioxan	e 41	1.3:1	> 20:1
	7	0.6			THF	21	1.3:1	> 20:1
	8	0.6			MeTHF	33	1.3:1	> 20:1
	9	0.6	H ₂ O		toluene	23	1.3:1	>20:1
	10	0.6	PhCO ₂ H	I	toluene	21	1.3:1	> 20:1
	11	0.6	4-Me-2-a	amino-PhCO ₂ H	toluene	26	1.2:1	> 20:1
	12	0.6	2,6-lutidi	ne	toluene	48	1.4:1	> 20:1
	13	0.6	2,6-bi- <i>t</i> B	u-4-Me-pyridine	toluene	56	1.3:1	> 20:1
	14	0.6	1,2,2,6,6	8-Me ₅ -piperidine	toluene	53	1.3:1	> 20:1
	15 ^d	0.6	2,6-bi <i>-t</i> E	Bu-4-Me-pyridine	toluene	72	1.3:1	> 20:1

[a] Unless otherwise noted, all reactions were conducted with 0.2 mmol of **1a**, 400 μ L of octene (13 equiv) in 0.1 mL of toluene; [b] GC yield by using dodecane as an internal standard. [c] Selectivities were determined by GC of the crude products. [d] Reaction time = 96 h.

General procedure C: Ir(I)-catalyzed α -alkylation with cyclopentanone as the limiting reagent:

A 4-mL vial charged with a stir bar and *rac*-BINAP (12.4 mg, 0.02 mmol) was loosely capped and was transferred into a glove box. To this vial was added $[Ir(COD)_2]BArF$ (25.4 mg, 0.02 mmol) and 0.1 mL of toluene. This mixture was stirred for 5 min before it was transferred to another vial containing cyclopentanone (**1a**) (16.8 mg, 0.2 mmol), 7-azaindoline (**L1**) (14.4 mg, 0.12 mmol) and 2-mesitylenesulfonic acid dihydrate (MSA·2H₂O) (2.4 mg, 0.005 mmol). 2,6-di-*t*-Bu-4-methylpyridine (16.4 mg, 0.08 mmol) and *t*BuNH*i*Pr (4.6 mg, 0.04 mmol) was then added followed by the addition of 0.4 mL of 1-octene (**2a**) (2.6 mmol, 13 equiv). The vial was tightly capped, removed from glove box and heated at 130 °C for 96 h. After completion of the reaction, the mixture was cooled to room temperature, diluted with ethyl acetate and passed through a short pad of silica gel. After concentration in vacuum, the crude mixture was subjected to flash chromatography (silica gel, Hexane/Et₂O=40:1 to 30:1) to give the desired product **3a** (27 mg, 68% yield) as a colorless oil.

General procedure D: Ir(I)-catalyzed α -alkylation of 1-indanone with 1-indanone as the limiting reagent:

A 4-mL vial charged with a stir bar and *rac*-BINAP (12.4 mg, 0.02 mmol) was loosely capped and was transferred into a glove box. To this vial was added $[Ir(COD)_2]BArF$ (25.4 mg, 0.02 mmol) and 0.1 mL of toluene. This mixture was stirred for 5 min before it was transferred to another vial containing 1-indanone (**1c**) (26.4 mg, 0.2 mmol), 7-azaindoline (**L1**) (14.4 mg, 0.12 mmol) and 2-mesitylenesulfonic acid dihydrate (MSA·2H₂O) (2.4 mg, 0.005 mmol). 2,6-Di-*t*-Bu-4-methylpyridine (16.4 mg, 0.08 mmol) and *t*BuNH*i*Pr (4.6 mg, 0.04 mmol) was then added followed by the addition of 1-octene (**2a**) (400 µL mg, 2.6 mmol, 13 equiv). The vial was tightly capped, removed from glove box and heated at 130 °C for 96 h. After completion of the reaction, the mixture was cooled to room temperature. To this vial was further added 0.2 mL of HCl (6 M). The vial was tightly capped and was heated at 110 °C for 1 h. The

mixture was then cooled to room temperature, diluted with ethyl acetate and passed through a short pad of silica gel. After concentration in vacuum, the crude mixture was subjected to flash chromatography (silica gel, Hexane/Et₂O=25:1 to 10:1) to give the desired product **4b** (21 mg, 43% yield) as a colorless oil.

Example of increasing dr for product 3a:

To a solution of **3a** (180 mg, 0.92 mmol) and triethylamine (2.2 mmol) in DMF (2 mL) was added TBSCl (1.1 mmol) dropwise with stirring. The mixture was heated at 130 °C for 90 h. After cooling, the mixture was diluted with Et₂O (10 mL) and washed with ice-cold aqueous NaHCO₃ solution (10 mL). The aqueous phase was re-extracted with Et₂O (3×10 mL). After drying over MgSO₄ and concentration in vacuo, the crude mixture wad directly used for the next step.

To a flame-dried 25 mL Schlenk tube containing *rac*-BINOL (1 mmol) and toluene (20 mL) was added a solution of SnCl₄ (1.0 mL, 1 mmol, 1.0 M solution in CH₂Cl₂) dropwise at room temperature. After being stirred for 5 min, the reaction mixture was cooled to -78 °C. The crude silyl ether obtained above (considered as 0.9 mmol, dissolved in 1 mL of toluene) was added dropwise. After being stirred at -78°C for 6 h, the mixture was poured into saturated NH₄Cl, extracted with Et₂O twice, dried over MgSO₄, filtered, and concentrated in vacuo. Purification of the crude product by flash chromatography (eluent, 40:1 to 30:1 PE/Et₂O) gave **3a** (168 mg) with a 6.5:1 dr.

Characterization data of products

2-(octan-2-yl)cyclopentan-1-one 3a:¹¹ Synthesized from cyclopentanone and 1-octene by following general procedure A on a 0.2 mmol scale of **L1**. 31 mg obtained. TON (based on iridium) = 40. Or synthesized from cyclopentanone and 1-octene by following general procedure C on a 0.2 mmol scale of cyclopentanone. Yield = 68%. Isolated as a mixture with dr: 1.5:1. Colorless liquid. $R_f = 0.4$ (Hex:Et₂O=20:1). ¹H NMR (500 MHz, CDCl₃) δ 2.34 – 2.24 (m, 1H), 2.15 – 1.89 (m, 5H), 1.77 – 1.59 (m, 2H), 1.33 – 1.09 (m, 10H), 0.94 (d, *J* = 6.8 Hz, 1.2H), 0.90 – 0.83 (m, 3H), 0.74 (d, *J* = 6.7 Hz, 1.8H). ¹³C NMR (101 MHz, CDCl₃) δ 221.70, 221.10, 54.94, 53.49, 39.37, 39.35, 35.40, 33.26, 32.49, 31.84, 31.72, 29.49, 29.37, 27.57, 27.29, 25.24, 23.63, 22.63, 20.72, 20.68, 18.05, 15.57, 14.07.

2-(dodecan-2-yl)cyclopentan-1-one 3b:¹¹ Synthesized from cyclopentanone and 1-dodecene by following general procedure A on a 0.2 mmol scale of **L1**. 38 mg obtained. TON (based on iridium) = 38. Isolated as a mixture with dr: 2.5:1. Colorless liquid. $R_f = 0.45$ (Hex:Et₂O=10:1). ¹H NMR (500 MHz, CDCl₃) δ 2.38 – 2.24 (m, 1H), 2.18 – 1.91 (m, 5H), 1.82 – 1.62 (m, 2H), 1.37 – 1.11 (m, 18H), 0.95 (d, J = 6.9 Hz, 0.85H), 0.87 (t, J = 6.9 Hz, 3H), 0.74 (d, J = 6.8 Hz, 2.15H). ¹³C NMR (101 MHz, CDCl₃) δ 221.78, 221.18, 54.95, 53.50, 39.37, 35.41, 33.28, 32.50, 31.90, 31.73, 29.85, 29.72, 29.64, 29.62, 29.33, 27.63, 27.34, 25.25, 23.62, 22.68, 20.73, 20.70, 18.07, 15.58, 14.11.

2-(hexan-2-yl)cyclopentan-1-one 3c:¹¹ Synthesized from cyclopentanone and 1-hexene by following general procedure A on a 0.2 mmol scale of **L1**. 24 mg obtained. TON (based on iridium) = 36. Or synthesized from cyclopentanone and 1-hexene by following general procedure C on a 0.2 mmol scale of cyclopentanone. Yield = 59%. Isolated as a mixture with dr: 1.5:1. Colorless liquid. $R_f = 0.4$ (pentane:Et₂O=20:1). ¹H NMR (500 MHz, CDCl₃) δ 2.34 – 2.25 (m, 1H), 2.19 – 1.89 (m, 5H), 1.78 – 1.63 (m, 2H), 1.35 – 1.08 (m, 6H), 0.95 (d, *J* = 6.9 Hz, 1.2H), 0.92 – 0.83 (m, 3H), 0.74 (d, *J* = 6.8 Hz, 1.8H). ¹³C NMR (101 MHz, CDCl₃) δ 221.76, 221.18, 54.96, 53.51, 39.39, 39.37, 35.09, 32.94, 32.44, 31.71, 29.82, 29.56, 25.24, 23.63, 22.86, 22.76, 20.73, 20.69, 18.07, 15.59, 14.08.

2-(4-methylpentan-2-yl)cyclopentan-1-one 3d:¹¹ Synthesized from cyclopentanone and 4-methylpent-1-ene by following general procedure A on a 0.2 mmol scale of **L1**. 22 mg obtained. TON (based on iridium) = 32. Isolated as a mixture with dr: 1:1. Colorless liquid. $R_f = 0.4$ (pentane:Et₂O=20:1). ¹H NMR (500 MHz, CDCl₃) δ 2.35 – 2.27 (m, 1H), 2.23 – 1.94 (m, 5H), 1.79 – 1.51 (m, 3.6H), 1.18 – 1.08 (m, 2H), 0.93 (d, J = 6.6 Hz, 1.5H), 0.90 – 0.83 (m, 5.4H), 0.73 (d, J = 6.7 Hz, 1.5H). ¹³C NMR (101 MHz, CDCl₃) δ 221.68, 221.00, 55.00, 53.63, 44.71, 42.51, 39.49, 39.41, 30.02, 29.22, 25.33, 25.25, 25.16, 23.92, 23.55, 22.97, 22.42, 21.46, 20.76, 20.71, 18.00, 15.49.

2-isopropylcyclopentan-1-one 3e:^{11,12} Synthesized from cyclopentanone and pre-condensed propene by following general procedure A on a 0.8 mmol scale of **L1**. 85 mg obtained. C TON (based on iridium) = 42. olorless liquid. $R_f = 0.45$ (pentane:Et₂O=20:1). ¹H NMR (500 MHz, CDCl₃) δ 2.32 – 2.25 (m, 1H), 2.18 – 2.10 (m, 1H), 2.08 – 1.95 (m, 4H), 1.78 – 1.62 (m, 2H), 0.98 (d, *J* = 6.9 Hz, 3H), 0.81 (d, *J* = 6.7 Hz, 3H). ¹³C NMR (101 MHz, CDCl₃) δ 221.12, 55.07, 39.20, 27.37, 24.62, 21.12, 20.61, 18.40.

2-(1-cyclohexylethyl)cyclopentan-1-one 3f: Synthesized from cyclopentanone and vinylcyclohexane by following general procedure A on a 0.2 mmol scale of **L1**. 8.5 mg obtained. TON (based on iridium) = 11. Isolated as a mixture with dr: 1.7:1. Colorless liquid. $R_f = 0.42$ (Hex:Et₂O=20:1). ¹H NMR (500 MHz, CDCl₃) δ 2.39 – 2.16 (m, 2H), 2.13 – 1.86 (m, 3H), 1.81 – 1.46 (m, 7H), 1.29 – 1.08 (m, 6H), 0.98 – 0.82 (m, 2.2H), 0.72 (d, J = 6.9 Hz, 1.9H). ¹³C NMR (101 MHz, CDCl₃) δ 222.50, 221.69, 51.81, 49.38, 41.44, 39.26, 38.22, 37.71, 37.02, 35.27, 33.42, 33.16, 31.01, 30.53, 29.60, 27.08, 26.67, 26.62, 26.52, 26.49, 26.37, 26.34, 24.04, 20.77, 20.74, 13.21. IR(KBr) 2958, 2924, 2853, 1738, 1465, 1406, 1378, 1268 cm⁻¹. HRMS: calcd. C₁₃H₂₂O [M]⁺: 194.1671. Found: 194.1704.

2-(6-phenylhexan-2-yl)cyclopentan-1-one 3g: Synthesized from cyclopentanone and hex-5-en-1-ylbenzene by following general procedure A on a 0.2 mmol scale of **L1**. 37 mg obtained. TON (based on iridium) = 38. Or synthesized from cyclopentanone and hex-5-en-1-ylbenzene by following general procedure C on a 0.2 mmol scale of cyclopentanone. Yield = 62%. Isolated as a mixture with dr: 1.3:1. Colorless liquid. $R_f = 0.45$ (Hex:Et₂O=20:1). ¹H NMR (500 MHz, CDCl₃) δ 7.30 – 7.24 (m, 2H), 7.19 – 7.14 (m, 3H), 2.68 – 2.52 (m, 2H), 2.39 – 2.24 (m, 1H), 2.16 – 1.92 (m, 5H), 1.78 – 1.51 (m, 4H), 1.41 – 1.11 (m, 4H), 0.95 (d, J = 6.8 Hz, 1.7H), 0.75 (d, J = 6.7 Hz, 1.3H). ¹³C NMR (101 MHz, CDCl3) δ 221.61, 221.07, 142.72, 142.65, 128.37, 128.36, 128.22, 128.19, 125.59, 125.54, 54.90, 53.47, 39.36, 39.33, 35.89, 35.86, 35.20, 33.04, 32.38, 31.72, 31.56, 31.50, 27.23, 26.96, 25.22, 23.68, 20.71, 20.67, 18.05, 15.61. IR(KBr) 2957, 2930, 2856, 1735, 1496, 1453, 1153 cm⁻¹. HRMS: calcd. C₁₇H₂₅O [M+H]⁺: 245.1900. Found: 245.1894.

2-(8-methylnon-7-en-2-yl)cyclopentan-1-one 3h: Synthesized from cyclopentanone and hex-5-en-1-ylbenzene 8-methylnona-1,7-diene by following general procedure A on a 0.2 mmol scale of **L1**. 22 mg obtained. TON (based on iridium) = 25. Or synthesized from cyclopentanone and hex-5-en-1-ylbenzene 8-methylnona-1,7-diene by following general procedure C on a 0.2 mmol scale of cyclopentanone. Yield = 43%. Isolated as a mixture with dr: 1.3:1. Colorless liquid. $R_f = 0.3$ (Hex:Et₂O=20:1). ¹H NMR (500 MHz, CDCl₃) δ 5.13 – 5.06 (m, 1H), 2.38 – 2.22 (m, 1H), 2.16 – 1.90 (m, 7H), 1.78 – 1.62 (m, 5H), 1.59 (s, 3H), 1.35 – 1.10 (m, 6H), 0.95 (d, *J* = 6.9 Hz, 1.3H), 0.75 (d, *J* = 6.8 Hz, 1.7H). ¹³C NMR (101 MHz, CDCl₃) δ 221.70, 221.11, 131.28, 131.21, 124.76, 124.70, 54.94, 53.50, 39.38, 39.37, 35.32, 33.17, 32.48, 31.77, 30.01, 29.92, 27.97, 27.26, 27.00, 25.71, 25.26, 23.65, 20.74, 20.70, 18.08, 17.67, 17.66, 15.61. IR(KBr) 2962, 2929, 2876, 1734, 1457, 1378, 1155 cm⁻¹. HRMS: calcd. C₁₅H₂₇O [M+H]⁺: 223.2056. Found: 223.2059.

2-(10-methoxydecan-2-yl)cyclopentan-1-one 3i:¹¹ Synthesized from cyclopentanone and 10methoxydec-1-ene by following general procedure A on a 0.2 mmol scale of **L1**. 24 mg obtained. TON (based on iridium) = 24. Isolated as a mixture with dr: 1.1:1. Colorless liquid. $R_f = 0.25$ (Hex:Et₂O=5:1). ¹H NMR (500 MHz, CDCl₃) δ 3.39 – 3.31 (m, 5H), 2.35 – 2.27 (m, 1H), 2.15 – 1.91 (m, 5H), 1.78 – 1.62 (m, 2H), 1.61 – 1.51 (m, 2H), 1.36 – 1.12 (m, 12H), 0.95 (d, J = 6.9 Hz, 1.4H), 0.74 (d, J = 6.7 Hz, 1.6H). ¹³C NMR (101 MHz, CDCl₃) δ 221.75, 221.15, 72.95, 58.53, 54.95, 53.51, 39.39, 39.37, 35.39, 33.25, 32.49, 31.73, 29.75, 29.63, 29.55, 29.46, 27.59, 27.31, 26.13, 26.11, 25.26, 23.65, 20.73, 20.70, 18.07, 15.59.

2-(10-((triisopropylsilyl)oxy)decan-2-yl)cyclopentan-1-one 3j:¹¹ Synthesized from cyclopentanone and (dec-9-en-1-yloxy)triisopropylsilane by following general procedure A on a 0.2 mmol scale of **L1**. 52 mg obtained. TON (based on iridium) = 33. Isolated as a mixture with dr: 1.5:1. Colorless liquid. R_f = 0.35 (Hex:Et₂O=20:1). ¹H NMR (400 MHz, CDCl₃) δ 3.66 (td, J = 6.7, 1.7 Hz, 2H), 2.36 – 2.25 (m, 1H), 2.18 – 1.91 (m, 5H), 1.80 – 1.62 (m, 2H), 1.56 – 1.48 (m, 2H), 1.39 – 1.13 (m, 12H), 1.13 – 1.01 (m, 21H), 0.95 (d, J = 6.9 Hz, 1.2H), 0.75 (d, J = 6.8 Hz, 1.8H). ¹³C NMR (101 MHz, CDCl₃) δ 221.73, 221.13, 63.51, 54.94, 53.51, 39.39, 39.37, 35.41, 33.29, 33.04, 32.52, 31.75, 29.80, 29.68, 29.62, 29.45, 27.61, 27.34, 25.81, 25.29, 23.64, 20.74, 20.70, 18.06, 18.03, 15.59, 12.03.

9-(2-oxocyclopentyl)decyl acetate 3k:¹¹ Synthesized from cyclopentanone and dec-9-en-1-yl acetate by following general procedure A on a 0.2 mmol scale of **L1**. 27 mg obtained. TON (based on iridium) = 24. Isolated as a mixture with dr: 1.1:1. Colorless liquid. $R_f = 0.45$ (CH₂Cl₂:Et₂O=10:1). ¹H NMR (500 MHz, CDCl₃) δ 4.04 (td, J = 6.8, 2.0 Hz, 2H), 2.35 – 2.23 (m, 1H), 2.15 – 1.91 (m, 8H), 1.80 – 1.55 (m, 4H), 1.37 – 1.09 (m, 12H), 0.95 (d, J = 6.9 Hz, 1.6H), 0.74 (d, J = 6.8 Hz, 1.4H). ¹³C NMR (101 MHz, CDCl₃) δ 221.69, 221.12, 171.22, 64.64, 64.63, 54.95, 53.51, 39.39, 39.36, 35.37, 33.22, 32.46, 31.73,

29.71, 29.61, 29.49, 29.47, 29.22, 28.59, 27.58, 27.30, 25.89, 25.25, 23.67, 21.02, 20.73, 20.69, 18.05, 15.60.

methyl 10-(2-oxocyclopentyl)undecanoate 31: Synthesized from cyclopentanone and methyl undec-10enoate by following general procedure A on a 0.2 mmol scale of **L1**. 34 mg obtained. TON (based on iridium) = 30. Isolated as a mixture with dr: 1.3:1. Colorless liquid. $R_f = 0.4$ (CH₂Cl₂:Et₂O=20:1). ¹H NMR (500 MHz, CDCl₃) δ 3.65 (s, 3H), 2.34 – 2.25 (m, 3H), 2.16 – 1.89 (m, 5H), 1.77 – 1.53 (m, 4H), 1.33 – 1.07 (m, 12H), 0.93 (d, *J* = 6.9 Hz, 1.3H), 0.73 (d, *J* = 6.8 Hz, 1.7H). ¹³C NMR (101 MHz, CDCl₃) δ 221.64, 221.06, 174.27, 174.26, 54.91, 53.47, 51.38, 39.35, 39.33, 35.35, 34.07, 33.21, 32.45, 31.70, 29.70, 29.59, 29.38, 29.36, 29.19, 29.09, 27.54, 27.26, 25.24, 24.91, 23.63, 20.70, 20.67, 18.02, 15.56. IR(KBr) 2927, 2854, 1738, 1458, 1436, 1197, 1166 cm⁻¹. HRMS: calcd. C₁₇H₃₀O₃ [M]⁺: 282.2195. Found: 282.2212.

2-(9-(2-oxocyclopentyl)decyl)isoindoline-1,3-dione 3m: Synthesized from cyclopentanone and 2-(dec-9-en-1-yl)isoindoline-1,3-dione by following general procedure A on a 0.2 mmol scale of **L1**. 55 mg obtained. TON (based on iridium) = 37. Or synthesized from cyclopentanone and 2-(dec-9-en-1-yl)isoindoline-1,3-dione by following general procedure C on a 0.2 mmol scale of cyclopentanone. Yield = 39%. Isolated as a mixture with dr: 1.5:1. Colorless liquid. $R_f = 0.42$ (CH₂Cl₂:Et₂O=50:1). ¹H NMR (500 MHz, CDCl₃) δ 7.83 (dd, J = 5.4, 3.1 Hz, 2H), 7.70 (dd, J = 5.5, 3.1 Hz, 2H), 3.66 (td, J = 7.4, 1.9 Hz, 2H), 2.35 – 2.24 (m, 1H), 2.16 – 1.89 (m, 5H), 1.75 – 1.61 (m, 4H), 1.35 – 1.09 (m, 12H), 0.94 (d, J = 6.9 Hz, 1.2H), 0.73 (d, J = 6.8 Hz, 1.8H). ¹³C NMR (101 MHz, CDCl₃) δ 221.67, 221.08, 168.42, 133.79, 133.78, 132.17, 123.11, 54.90, 53.47, 39.36, 39.34, 38.04, 35.35, 33.22, 32.48, 31.73, 29.70, 29.60, 29.42, 29.14, 28.57, 27.53, 27.28, 26.83, 25.28, 23.63, 20.71, 20.67, 18.03, 15.57. IR(KBr) 2927, 2854, 1772, 1733, 1713, 1466, 1396, 1369 cm⁻¹. HRMS: calcd. C₂₃H₃₂NO₃ [M+H]⁺: 370.2377. Found: 370.2375.

2-(11-hydroxy-11-methyldodecan-2-yl)cyclopentan-1-one 3n: Synthesized from cyclopentanone and 2-methyldodecan-2-ol by following general procedure A on a 0.2 mmol scale of **L1**. 24 mg obtained. TON (based on iridium) = 21. Isolated as a mixture with dr: 1.4:1. Colorless liquid. $R_f = 0.4$ (CH₂Cl₂:Et₂O=10:1). ¹H NMR (500 MHz, CDCl₃) δ 2.34 – 2.25 (m, 1H), 2.15 – 1.90 (m, 5H), 1.77 – 1.61 (m, 2H), 1.49 – 1.41 (m, 2H), 1.37 – 1.12 (m, 21H), 0.95 (d, *J* = 6.8 Hz, 1.25H), 0.74 (d, *J* = 6.8 Hz, 1.75H). ¹³C NMR (101 MHz, CDCl₃) δ 221.75, 221.18, 71.03, 54.96, 53.50, 43.98, 39.39, 39.36, 35.38, 33.19, 32.44, 31.72, 30.16, 30.12, 29.75, 29.68, 29.59, 29.56, 29.49, 29.22, 29.19, 27.56, 27.30, 25.23, 24.32, 24.29, 23.66, 20.73, 20.69, 18.06, 15.60. IR(KBr) 3439, 2964, 2927, 2854, 1735, 1466, 1377, 1153 cm⁻¹. HRMS: calcd. C₁₈H₃₄O₂ [M]⁺: 282.2559. Found: 282.2549.

2-(1-phenylethyl)cyclopentan-1-one 3o:^{11,13} Synthesized from cyclopentanone and styrene by following general procedure A on a 0.2 mmol scale of **L1**. 7.5 mg obtained. TON (based on iridium) = 10. Isolated as a mixture with dr: 1.3:1. Colorless liquid. $R_f = 0.35$ (Hex:Et₂O=10:1). ¹H NMR (500 MHz, CDCl₃) δ 7.32 – 7.14 (m, 5H), 3.42 (qd, J = 7.2, 3.9 Hz, 0.43H), 3.22 (p, J = 7.0 Hz, 0.57H), 2.40 – 2.18 (m, 2H), 2.10 – 1.43 (m, 5H), 1.42 (d, J = 7.1 Hz, 1.7H), 1.20 (d, J = 7.2 Hz, 1.3H). ¹³C NMR (101 MHz, CDCl₃) δ 220.26, 219.89, 145.38, 144.10, 128.36, 128.19, 127.96, 127.31, 126.29, 126.18, 55.88, 55.26, 39.12, 39.10, 38.88, 37.92, 26.60, 24.58, 20.44, 20.37, 20.01, 15.47.

2-bicyclo[2.2.1]heptan-2-yl)cyclopentan-1-one 3p: Synthesized from cyclopentanone and norbornene by following general procedure A on a 0.2 mmol scale of **L1**. 25 mg obtained. TON (based on iridium) = 35. Or synthesized from cyclopentanone and norbornene by following general procedure C on a 0.2 mmol scale of cyclopentanone. Yield = 53%. Isolated as a mixture with dr: 1.1:1 (determined by ¹³C)

NMR). Colorless liquid. $R_f = 0.45$ (Hex:Et₂O=10:1). ¹H NMR (500 MHz, CDCl₃) δ 2.51 – 2.47 (m, 0.4H), 2.29 – 1.82 (m, 6.6H), 1.80 – 1.67 (m, 1H), 1.66 – 1.54 (m, 2H), 1.54 – 1.36 (m, 3.5H), 1.32 – 1.24 (m, 1H), 1.21 – 1.05 (m, 3.5H). ¹³C NMR (126 MHz, CDCl₃) δ 221.09, 220.73, 54.17, 53.38, 42.74, 42.31, 39.72, 39.23, 38.61, 38.37, 37.03, 36.86, 36.72, 35.97, 35.67, 35.50, 30.41, 30.27, 28.93, 28.64, 28.62, 27.46, 20.41. IR(KBr) 2922, 2360, 2341, 1734, 1653, 1559, 1457, 1260 cm⁻¹. HRMS: calcd. C₁₂H₁₉O [M+H]⁺: 179.1430. Found: 179.1424.

4,4-dimethyl-2-(octan-2-yl)cyclopentan-1-one 4a:¹¹ Synthesized from 3,3-dimethylcyclopentanone and 1-octene by following general procedure A and further treated with 0.5 mL of HCl (6 M) and 0.5 mL of toluene at 110 °C for 1 h on a 0.2 mmol scale of **L1**. 18 mg obtained. TON (based on iridium) = 20. Isolated as a mixture with dr: 1.3:1. Colorless liquid. $R_f = 0.4$ (Hex:Et₂O=20:1). ¹H NMR (500 MHz, CDCl₃) δ 2.48 – 2.40 (m, 0.56H), 2.35 – 2.29 (m, 0.44H), 2.17 – 1.87 (m, 3H), 1.85 – 1.68 (m, 1H), 1.62 – 1.56 (m, 1H), 1.35 – 1.13 (m, 13H), 1.05 – 1.00 (m, 3H), 0.93 (d, *J* = 6.9 Hz, 1.3H), 0.91 – 0.84 (m, 3H), 0.74 (d, *J* = 6.8 Hz, 1.7H). ¹³C NMR (101 MHz, CDCl₃) δ 221.87, 221.23, 54.59, 54.55, 53.80, 52.39, 39.47, 37.67, 35.24, 33.64, 33.63, 33.21, 33.04, 32.09, 31.85, 29.85, 29.83, 29.51, 29.40, 27.73, 27.64, 27.54, 27.26, 22.66, 22.64, 17.84, 15.38, 14.09.

2-(octan-2-yl)-2,3-dihydro-1H-inden-1-one 4b: Synthesized from 1-indanone and 1-octene by following general procedure B on a 0.2 mmol scale of **L1**. 31 mg obtained. TON (based on iridium) = 32. Or synthesized from 1-indanone and 1-octene by following general procedure D on a 0.2 mmol scale of 1-indanone. Yield = 43%. Isolated as a mixture with dr: 2.1:1. Colorless liquid. $R_f = 0.5$ (Hex:Et₂O=10:1). ¹H NMR (500 MHz, CDCl₃) δ 7.77 – 7.72 (m, 1H), 7.57 (t, J = 7.4 Hz, 1H), 7.49 – 7.44 (m, 1H), 7.35 (t, J = 7.4 Hz, 1H), 3.18 (dd, J = 17.4, 8.1 Hz, 0.38H), 3.09 (dd, J = 17.4, 8.1 Hz, 0.62H), 2.96 – 2.89 (m, 1H), 2.78 (dt, J = 8.1, 4.0 Hz, 0.62H), 2.70 (dt, J = 8.2, 4.1 Hz, 0.38H), 2.37 – 2.29 (m, 0.62H), 2.23 – 2.15 (m, 0.38H), 1.42 – 1.11 (m, 10H), 1.00 (d, J = 6.9 Hz, 1.14H), 0.93 – 0.81

(m, 3H), 0.70 (d, J = 6.8 Hz, 1.86H). ¹³C NMR (101 MHz,CDCl₃) δ 209.42, 208.84, 154.37, 154.14, 137.77, 137.72, 134.49, 134.45, 127.17, 126.49, 126.45, 123.58, 123.55, 52.89, 51.51, 35.39, 34.37, 33.46, 32.22, 31.86, 31.81, 29.42, 29.15, 27.59, 27.52, 27.35, 22.65, 22.59, 17.74, 14.58, 14.10, 14.06. IR(KBr) 2956, 2925, 2854, 1712, 1609, 1464, 1281 cm⁻¹. HRMS: calcd. C₁₇H₂₅O [M+H]⁺: 245.1900. Found: 245.1905.

6-methyl-2-(octan-2-yl)-2,3-dihydro-1H-inden-1-one 4c: Synthesized from 6-methyl-1-indanone and 1-octene by following general procedure B on a 0.2 mmol scale of **L1**. 30 mg obtained. TON (based on iridium) = 29. Or synthesized from 6-methyl-1-indanone and 1-octene by following general procedure D on a 0.2 mmol scale of 6-methyl-1-indanone. Yield = 41%. Isolated as a mixture with dr: 1.5:1. Colorless liquid. $R_f = 0.5$ (Hex:EtOAc=10:1). ¹H NMR (500 MHz, CDCl₃) δ 7.57 – 7.51 (m, 1H), 7.41 – 7.38 (m, 1H), 7.37 – 7.33 (m, 1H), 3.12 (dd, J = 17.2, 8.1 Hz, 0.4H), 3.04 (dd, J = 17.2, 8.0 Hz, 0.6H), 2.89 (t, J = 3.3 Hz, 0.6H), 2.85 (t, J = 3.4 Hz, 0.4H), 2.77 (dt, J = 8.0, 4.0 Hz, 0.6H), 2.69 (dt, J = 8.0, 4.0 Hz, 0.4H), 2.40 (s, 3H), 2.35 – 2.28 (m, 0.6H), 2.24 – 2.14 (m, 0.4H), 1.41 – 1.13 (m, 11H), 0.99 (d, J = 6.9 Hz, 1.2H), 0.88 (t, J = 7.0 Hz, 1.8H), 0.84 (t, J = 7.0 Hz, 1.2H), 0.69 (d, J = 6.8 Hz, 1.8H). ¹³C NMR (101 MHz, CDCl₃) δ 209.52, 208.94, 151.74, 151.50, 137.94, 137.89, 137.06, 135.76, 135.71, 126.15, 126.11, 123.51, 123.49, 53.24, 51.84, 35.40, 34.40, 33.49, 32.18, 31.87, 31.81, 29.43, 28.76, 27.61, 27.36, 27.13, 22.65, 22.60, 21.06, 17.74, 14.55, 14.10, 14.06. IR(KBr) 2956, 2926, 2855, 1710, 1617, 1492, 1458, 1282, 1156 cm⁻¹. HRMS: calcd. C₁₈H₂₆O [M]⁺: 258.1984. Found: 258.1985.

6-methoxy-2-(octan-2-yl)-2,3-dihydro-1H-inden-1-one 4d: Synthesized from 6-methoxyl-1-indanone and 1-octene by following general procedure B on a 0.2 mmol scale of **L1**. 30 mg obtained. TON (based on iridium) = 27. Isolated as a mixture with dr: 1.3:1. Colorless liquid. $R_f = 0.25$ (Hex:Et₂O=20:1). ¹H NMR (500 MHz, CDCl₃) δ 7.38 – 7.33 (m, 1H), 7.19 – 7.15 (m, 2H), 3.83 (s, 3H), 3.09 (dd, J = 17.0, 7.9 Hz, 0.4H), 3.01 (dd, J = 16.8, 7.7 Hz, 0.6H), 2.89 – 2.68 (m, 2H), 2.34 – 2.28 (m, 0.6H), 2.23 – 2.16

(m, 0.4H), 1.38 - 1.12 (m, 10H), 0.99 (d, J = 7.0 Hz, 1.2H), 0.88 (t, J = 6.7 Hz, 1.8H), 0.84 (t, J = 6.9 Hz, 1.2H), 0.69 (d, J = 6.7 Hz, 1.8H). ¹³C NMR (101 MHz, CDCl₃) δ 209.40, 208.82, 159.26, 147.21, 146.96, 138.88, 138.83, 127.17, 127.14, 123.95, 123.88, 104.70, 55.56, 53.73, 52.34, 35.38, 34.45, 33.56, 32.16, 31.86, 31.81, 29.42, 28.42, 27.60, 27.36, 26.81, 22.65, 22.59, 17.74, 14.54, 14.09, 14.05. IR(KBr) 2956, 2926, 2854, 1708, 1492, 1465, 1299, 1276, 1029 cm⁻¹. HRMS: calcd. C₁₈H₂₆O₂ [M]⁺: 274.1933. Found: 274.1944.

6-fluoro-2-(octan-2-yl)-2,3-dihydro-1H-inden-1-one 4e: Synthesized from 6-fluoro-1-indanone and 1-octene by following general procedure B on a 0.2 mmol scale of **L1**. 23 mg obtained. TON (based on iridium) = 22. Or synthesized from 6-fluoro-1-indanone and 1-octene by following general procedure D on a 0.2 mmol scale of 6-fluoro-1-indanone. Yield = 32%. Isolated as a mixture with dr: 2:1. Colorless liquid. $R_f = 0.5$ (Hex:Et₂O=10:1). ¹H NMR (500 MHz, CDCl₃) δ 7.46 – 7.40 (m, 1H), 7.41 – 7.34 (m, 1H), 7.34 – 7.26 (m, 1H), 3.14 (dd, *J* = 17.2, 8.0 Hz, 0.35H), 3.06 (dd, *J* = 17.1, 8.0 Hz, 0.65H), 2.92 – 2.85 (m, 1H), 2.82 (dt, *J* = 8.0, 4.0 Hz, 0.63H), 2.75 (dt, *J* = 8.1, 4.0 Hz, 0.34H), 2.35 – 2.27 (m, 0.66H), 2.23 – 2.15 (m, 0.33H), 1.40 – 1.13 (m, 10H), 0.99 (d, *J* = 7.0 Hz, 1H), 0.92 – 0.82 (m, 3H), 0.70 (d, *J* = 6.8 Hz, 2H). ¹³C NMR (101 MHz, CDCl₃) δ 208.39, 208.36, 207.80, 207.78, 163.45, 161.00, 160.99, 149.68, 149.66, 149.44, 149.42, 139.48, 139.42, 139.41, 139.35, 127.85, 127.81, 127.77, 127.73, 122.28, 122.24, 122.05, 122.00, 109.45, 109.43, 109.24, 109.22, 53.77, 52.46, 35.28, 34.47, 33.56, 32.29, 31.85, 31.79, 29.39, 28.67, 27.56, 27.33, 27.03, 22.64, 22.59, 17.64, 14.61, 14.09, 14.05. IR(KBr) 2957, 2927, 2855, 1714, 1486, 1466, 1290, 1264 cm⁻¹. HRMS: calcd. C₁₇H₂₄FO [M+H]⁺: 263.1806. Found: 263.1802.

6-chloro-2-(octan-2-yl)-2,3-dihydro-1H-inden-1-one 4f: Synthesized from 6-chloro-1-indanone and 1-octene by following general procedure B on a 0.2 mmol scale of **L1**. 31 mg obtained. TON (based on iridium) = 28. Isolated as a mixture with dr: 1.5:1. Colorless liquid. $R_f = 0.4$ (Hex:Et₂O=10:1). ¹H NMR

(500 MHz, CDCl₃) δ 7.66 – 7.63 (m, 1H), 7.58 – 7.56 (m, 1H), 7.33 (t, *J* = 7.7 Hz, 1H), 3.18 (dd, *J* = 17.9, 8.2 Hz, 0.4H), 3.09 (dd, *J* = 17.9, 8.1 Hz, 0.6H), 2.92 – 2.85 (m, 1H), 2.81 (dt, *J* = 8.1, 4.0 Hz, 0.6H), 2.73 (dt, *J* = 8.2, 4.1 Hz, 0.4H), 2.39 – 2.29 (m, 0.6H), 2.25 – 2.18 (m, 0.4H), 1.42 – 1.16 (m, 10H), 1.02 (d, *J* = 6.9 Hz, 1.2H), 0.93 – 0.80 (m, 3H), 0.71 (d, *J* = 6.8 Hz, 1.8H). ¹³C NMR (101 MHz, CDCl₃) δ 208.39, 207.80, 151.88, 151.66, 139.65, 139.60, 134.15, 134.12, 132.82, 132.77, 128.80, 121.85, 121.83, 52.88, 51.53, 35.28, 34.42, 33.54, 32.25, 31.86, 31.79, 29.39, 28.28, 27.56, 27.35, 26.69, 22.65, 22.59, 17.66, 14.61, 14.09, 14.05. IR(KBr) 2957, 2926, 2855, 1718, 1599, 1460, 1260, 1130 cm⁻¹. HRMS: calcd. C₁₇H₂₄ClO [M+H]⁺: 279.1510. Found: 279.1505.

5-methyl-2-(octan-2-yl)-2,3-dihydro-1H-inden-1-one 4g: Synthesized from 5-methyl-1-indanone and 1-octene by following general procedure B on a 0.2 mmol scale of **L1**. 25 mg obtained. TON (based on iridium) = 24. Or synthesized from 5-methyl-1-indanone and 1-octene by following general procedure D on a 0.2 mmol scale of 5-methyl-1-indanone. Yield = 36%. Isolated as a mixture with dr: 1.5:1. Colorless liquid. $R_f = 0.3$ (Hex:Et₂O=10:1). ¹H NMR (500 MHz, CDCl₃) δ 7.66 – 7.60 (m, 1H), 7.27 – 7.25 (m, 1H), 7.16 (d, J = 7.8 Hz, 1H), 3.11 (dd, J = 17.4, 8.1 Hz, 0.4H), 3.03 (dd, J = 17.3, 8.1 Hz, 0.6H), 2.92 – 2.83 (m, 1H), 2.76 (dt, J = 8.0, 4.0 Hz, 0.6H), 2.68 (dt, J = 8.1, 4.0 Hz, 0.4H), 2.43 (s, 3H), 2.35 – 2.26 (m, 0.6H), 2.24 – 2.15 (m, 0.4H), 1.41 – 1.10 (m, 10H), 0.99 (d, J = 6.9 Hz, 1.2H), 0.92 – 0.81 (m, 3H), 0.69 (d, J = 6.8 Hz, 1.8H). ¹³C NMR (101 MHz, CDCl₃) δ 208.90, 208.33, 154.90, 154.66, 145.61, 145.55, 135.57, 135.52, 128.46, 126.82, 126.78, 123.41, 123.39, 53.02, 51.62, 35.42, 34.38, 33.47, 32.14, 31.87, 31.82, 29.44, 28.94, 27.61, 27.37, 27.34, 22.66, 22.60, 22.05, 17.76, 14.51, 14.10, 14.06. IR(KBr) 2956, 2925, 2855, 1709, 1611, 1460, 1325, 1278 cm⁻¹. HRMS: calcd. C₁₈H₂₇O [M+H]⁺: 259.2056. Found: 259.2059.

2-(octan-2-yl)cyclohexan-1-one 4h:¹¹ Synthesized from cyclohexanone and 1-octene by following general procedure A on a 0.2 mmol scale of **L1**, and followed with hydrolysis with 0.5 mL of toluene

and 0.5 mL of HCl (6 M) at 110 °C for 1 h. 12 mg obtained. TON (based on iridium) = 14. Isolated as a mixture with dr: 1.3:1. Colorless liquid. $R_f = 0.32$ (Hex:Et₂O=20:1). ¹H NMR (500 MHz, CDCl₃) δ 2.41 – 2.33 (m, 1H), 2.30 – 2.10 (m, 2H), 2.08 – 1.82 (m, 4H), 1.78 – 1.60 (m, 2H), 1.58 – 1.48 (m, 1H), 1.42 – 1.00 (m, 10H), 0.90 – 0.80 (m, 6H). ¹³C NMR (101 MHz, CDCl₃) δ 213.40, 213.34, 56.41, 55.28, 42.07, 42.02, 34.83, 33.13, 31.90, 31.87, 31.36, 30.73, 29.63, 29.49, 29.18, 27.94, 27.75, 27.57, 27.34, 27.17, 24.50, 24.30, 22.68, 22.66, 17.47, 16.02, 14.10.

1-(1,3-di(octan-2-yl)-1H-inden-2-yl)-2,3-dihydro-1H-pyrrolo[2,3-b]pyridine 6: Synthesized from 1-(1H-inden-2-yl)-2,3-dihydro-1H-pyrrolo[2,3-b]pyridine 5 and 1-octene with the following procedure: A 4-mL vial charged with a stir bar and 5 (46.8 mg, 0.2 mmol) was loosely capped and was transferred into a glove box. Another 4-mL vial charged with a stir bar and rac-BINAP (6.2 mg, 0.01 mmol) was loosely capped and was transferred into the glove box. To this vial was added [Ir(COD)₂]BArF (12.7 mg, 0.01 mmol) and 0.2 mL of toluene. This mixture was stirred for 10 min at 50 °C before it was transferred to the first vial. The vial was tightly capped, removed from the glove box and heated at 130 °C for 48 h. After the completion of the reaction, the mixture was cooled to room temperature, diluted with ethyl acetate and passed through a short pad of silica gel. After concentration in vacuum, the crude mixture was subjected to ¹H NMR to determine the dr ratio and the NMR yield by using tetrachloroethane as internal standard. The crude mixture was then subjected to flash chromatography (silica gel, Hexane/Et₂O=25:1 to 10:1) to give the desired products. Three major diastereomers were observed with a 1.2:1.1:1 ratio. Two of them were isolated and characterized. diastereomer 1: Light yellow liquid. 21 mg, $R_f = 0.40$ (Hex:Et₂O=20:1). ¹H NMR (500 MHz, CDCl₃) δ 7.84 (d, J = 5.2 Hz, 1H), 7.41 (d, J = 7.6Hz, 1H), 7.31 (d, J = 7.4 Hz, 1H), 7.24 (d, J = 7.0 Hz, 1H), 7.19 (t, J = 7.5 Hz, 1H), 7.07 (t, J = 7.4 Hz, 1H), 6.51 - 6.45 (m, 1H), 4.43 (d, J = 2.6 Hz, 1H), 4.17 (td, J = 9.9, 6.8 Hz, 1H), 3.74 (q, J = 9.0 Hz, 1H), 3.22 – 3.06 (m, 2H), 2.98 – 2.88 (m, 1H), 1.94 – 1.71 (m, 3H), 1.69 – 1.60 (m, 1H), 1.50 – 1.15 (m, 20H), 0.90 - 0.83 (m, 6H), 0.43 (d, J = 6.7 Hz, 3H). ¹³C NMR (101 MHz, CDCl₃) δ 161.92, 146.27, 144.08, 143.39, 143.35, 138.50, 131.06, 125.61, 123.94, 123.42, 122.42, 120.60, 112.92, 51.55, 50.29,

36.13, 34.92, 33.27, 32.56, 31.88, 31.87, 29.70, 29.30, 28.67, 27.71, 26.50, 22.67, 22.66, 19.05, 14.60, 14.11, 14.09. IR(KBr) 2956, 2927, 2855, 1605, 1486, 1461, 1433, 1378, 1325, 1248 cm⁻¹. HRMS: calcd. $C_{32}H_{47}N_2$ [M+H]⁺: 459.3734. Found: 459.3732. **diastereomer 2**: Light yellow liquid. 14 mg obtained. ¹H NMR (500 MHz, CDCl₃) δ 7.83 (dd, *J* = 5.3, 1.5 Hz, 1H), 7.42 (d, *J* = 7.6 Hz, 1H), 7.35 (d, *J* = 7.4 Hz, 1H), 7.24 (d, *J* = 7.1 Hz, 1H), 7.18 (t, *J* = 7.4 Hz, 1H), 7.09 (t, *J* = 7.4 Hz, 1H), 6.48 (dd, *J* = 7.0, 5.3 Hz, 1H), 4.30 (d, *J* = 2.7 Hz, 1H), 4.16 (td, *J* = 9.8, 7.3 Hz, 1H), 3.73 (td, *J* = 9.8, 6.9 Hz, 1H), 3.15 (qt, *J* = 15.6, 8.3 Hz, 2H), 2.92 (q, *J* = 7.3 Hz, 1H), 1.94 – 1.84 (m, 2H), 1.78 – 1.69 (m, 1H), 1.48 – 1.38 (m, 1H), 1.33 – 1.17 (m, 14H), 1.14 – 0.99 (m, 9H), 0.87 – 0.79 (m, 6H). ¹³C NMR (101 MHz, CDCl₃) δ 162.06, 146.30, 144.52, 143.62, 142.81, 139.43, 131.01, 125.55, 123.64, 123.62, 122.33, 120.66, 112.73, 52.32, 51.44, 34.96, 34.57, 32.55, 31.91, 31.82, 31.31, 29.75, 29.52, 28.71, 28.04, 26.48, 22.68, 22.61, 19.17, 18.58, 14.09, 14.04. IR(KBr) 2957, 2927, 2855, 1605, 1461, 1433, 1377, 1325 cm⁻¹. HRMS: calcd. $C_{32}H_4_7N_2$ [M+H]⁺: 459.3734. Found: 459.3732.

Synthesis of 5-ethyl-2,3-dihydro-1H-pyrrolo[2,3-b]pyridine L5:

To a 20 mL vial with a stir bar was added $Pd(OAc)_2$ (33.6 mg, 0.15 mmol), SPhos (123 mg, 0.3 mmol), K_2CO_3 (1.38 g, 10 mmol), 5-bromo-2,3-dihydro-1H-pyrrolo[2,3-b]pyridine (S-L5) (1.0 g, 5 mmol), potassium vinyltrifluoroborate (1.0 g, 7.5 mmol), dioxane (6 mL) and H₂O (2 mL). The reaction mixture was heated at 100 °C for 3 h. The mixture was cooled to room temperature, passed through a short pad of Celite and further washed with EtOAc. The water layer of the filtrate was removed. The organic layer was dried and concentrated in vacuum. The obtained crude product P-L5 was directly used for the next step.

The crude product **P-L5** obtained above was dissolved in 10 mL of EtOH and Pd/C (180 mg) was then added. The reaction mixture was stirred under 1 atm of H_2 (balloon) for 2 h. After completion, the reaction mixture as passed through a short pad of Celite and further washed with EtOH. After concentrated in vacuum, the crude mixture was subject to column chromatography (Hexane:EtOAc=1:1

to 0:1) to obtain the desired pure product (**L5**) as a light yellow solid. Yield for 2 steps: 68%. M.p. 114–116 °C. ¹H NMR (500 MHz, CDCl₃) δ 7.64 (s, 1H), 7.12 (s, 1H), 4.42 (br, 1H), 3.57 (t, *J* = 8.3 Hz, 2H), 3.01 (tt, *J* = 8.4, 1.2 Hz, 2H), 2.46 (q, *J* = 7.6 Hz, 2H), 1.16 (t, *J* = 7.6 Hz, 3H). ¹³C NMR (101 MHz, CDCl₃) δ 163.20, 144.39, 131.68, 128.90, 121.80, 44.63, 27.79, 25.56, 15.98. IR(KBr) 3201, 3166, 2958, 2926, 2360, 2341, 1592, 1512, 1436, 1408, 1263 cm⁻¹. HRMS: calcd. C₉H₁₃N₂ [M+H]⁺: 149.1073. Found: 149.1074.

Synthesis of 2,3-dihydro-1H-pyrrolo[2,3-c]isoquinoline L6:

1,3-dihydro-2H-pyrrolo[2,3-c]isoquinolin-2-one (**S-L6**) was synthesized by following the literature procedure.¹⁴ To a solution of 1,3-dihydro-2H-pyrrolo[2,3-c]isoquinolin-2-one (**S-L6**) (920 mg, 5.0 mmol) in 25 mL of THF at 0 °C was added a solution of BH₃/THF (1.0 M) (20 mL, 20 mmol). The reaction mixture was then warmed to room temperature and stirred for 2 h before 30 mL of 6 M HCl solution was added slowly. The resulted mixture was then stirred at 110 °C for another 2 h. After cooled to room temperature, aqueous NaOH solution (10%) was added till pH = 9. The resulting solution was extracted with EtOAc (50 mL × 3) and then dried over MgSO₄. The mixture was concentrated in vacuum and the crude product was purified by column chromatography (EtOAc:CH₂Cl₂=1:2 to 1:1) to give **P-L6** as the major product (470 mg, 56% yield) and **L6** as the minor product (85 mg, 10% yield).

To a solution of **P-L6** (340 mg, 2 mmol) in *i*PrOH (10 mL) was added Raney Nickel (3 mL of aqueous solution), PTSA (390 mg, 2.1 mmol) and HCO₂H (1.12 mL, 30 mmol). The reaction mixture was sealed and stirred at 120 °C for 12 h. The mixture was cooled to room temperature, passed through a short pad of Celite and washed with *i*PrOH. The filtrate was concentrated in vacuum and was further purified by column chromatography (EtOAc:CH₂Cl₂=1:2 to 1:1) to give **L6** as a yellow solid (163 mg, 48% yield). M.p. 118–120 °C. ¹H NMR (500 MHz, CDCl₃) δ 8.72 (s, 1H), 7.79 (dd, *J* = 8.3, 1.1 Hz, 1H), 7.53 – 7.45 (m, 2H), 7.20 (ddd, *J* = 8.1, 6.5, 1.4 Hz, 1H), 4.38 (br, 1H), 3.77 (td, *J* = 8.7, 2.0 Hz, 2H), 3.33 (t, *J* = 8.7 Hz, 2H). ¹³C NMR (101 MHz, CDCl₃) δ 160.97, 150.71, 134.59, 130.36, 128.67, 124.09, 122.26, 121.55,

110.75, 45.29, 26.75. IR(KBr) 3205, 2864, 1628, 1582, 1562, 1525, 1372, 1294, 1155 cm⁻¹. HRMS: calcd. $C_{11}H_{11}N_2 [M+H]^+$: 171.0917. Found: 171.0918.

	m pro	m dode	Mole of	Mole of	Mole (dode) /	GC area	GC area	GC area	y = area dode /
	(mg)	(mg)	pro	dode	Mole (pro)	aode	5a (dr 1)	5a (dr 2)	area pro
0	0	0	0	0	0	0	0	0	0
1	10.3	8.5	0.052551	0.05	0.951456311	30240	10518.5	15773	1.150181618
2	10.2	17.6	0.0520408	0.1035294	1.989388697	56179	9573.6	14350.5	2.348217906
3	10.3	25.8	0.052551	0.1517647	2.887949743	73432	8299	12425	3.543331403
4	10.3	34.6	0.052551	0.2035294	3.872986865	83866	6935.5	10393	4.839772629
5	10.4	84.2	0.0530612	0.4952941	9.33438914	213650	7782	11653	10.99305377

GC standard curve of 3a with dodecane as the internal standard:

3. Synthesis of the Ir–H Complex 7 and the X-Ray Data of 7

Synthesis of Ir–H complex 7:

Substrate **5** (12 mg, 0.05 mmol) and $[Ir(coe)_2Cl]_2$ (22.4 mg, 0.025 mmol, 0.5 equiv) were added to a J-Young tube in a glove box, followed by the addition of d₈-toluene (600 µL) and PMe₃ (7.6 mg, 10 µL, 0.1 mmol, 2 equiv). The J-Young tube was sealed and heated at 130 °C for 2 hours. After cooling, the reaction was subjected to ¹H NMR analysis, which showed about half conversion. The reaction mixture

was purified by flash chromatography (silica gel) in the glove box by using Hexane/Et₂O 3:1 to give 9 mg of desired product, yield 32%. Single crystal structure was obtained by dissolving the product in 500 μ L of d₈-toluene in an NMR tube with slow evaporating in the glove box. ¹H NMR (500 MHz, Toluened₈) δ 9.60 (d, *J* = 5.9 Hz, 1H), 7.80 (d, *J* = 7.6 Hz, 1H), 7.38 (td, *J* = 7.5, 1.2 Hz, 1H), 7.25 (d, *J* = 7.1 Hz, 1H), 7.04 – 7.00 (m, 1H), 6.62 (dq, *J* = 6.8, 1.5 Hz, 1H), 6.06 (t, *J* = 6.5 Hz, 1H), 3.34 (t, *J* = 8.7 Hz, 2H), 3.11 (t, *J* = 2.7 Hz, 2H), 2.30 (t, *J* = 8.7 Hz, 2H), 1.11 (t, *J* = 3.5 Hz, 18H), -19.89 (t, *J* = 17.3 Hz, 1H).

X-Ray Data of 7:

Bond precision: C-C = 0.0040 A

Wavelength=0.71073

Cell:	a=12.8120(9)	b=12.1811(8)		c=15.4969(10)	
Temperature:	100 K	beca=107.5	11(1)	gamma=90	
	Calculated		Reported		
Volume	2306.4(3)		2306.4(3)	e e e e e e e e e e e e e e e e e e e	
Space group	P 21/n		P 1 21/n	1	
Hall group	-P 2yn		-P 2yn		
Moiety formula	C22 H32 Cl Ir N2	2 P2	C22 H32 (Cl Ir N2 P2	
Sum formula	C22 H32 Cl Ir N2	2 P2	C22 H32 C	Cl Ir N2 P2	
Mr	614.11		614.08		
Dx,g cm-3	1.769		1.768		
Z	4		4		
Mu (mm-1)	6.054		6.054		
F000	1208.0		1208.0		
F000'	1204.13				
h,k,lmax	18,17,22		18,17,22		
Nref	6972		6424		
Tmin, Tmax	0.551,0.616		0.424,0.7	746	
Tmin'	0.540				

Correction method= # Reported T Limits: Tmin=0.424 Tmax=0.746 AbsCorr = MULTI-SCAN

Data completeness= 0.921 Theta(max) = 30.396 R(reflections) = 0.0241(5793) wR2(reflections) = 0.0539(6424)

S = 1.064 Npar= 271

4. Deuterium experiments:

Deuterium experiment of *d*-1a and 2a:

Side-by-side reactions using 1a and *d*-1a:

	internal				Internal				
Т	standard				standard	d- 3a	<i>d</i> - 3 a		
(h)	(dodecane)	3a (peak 1)	3a (peak 2)	3a /IS	(dodecane)	(peak 1)	(peak 2)	<i>d-</i> 3a /IS	3a/d-3a
1	6644	10.6	20.7	0.004711017	0	0	0	0	0
2	6382	37	71	0.016922595	6619	22	43	0.00982	1.723241
4	7338	340	650	0.134914146	7434	203	385	0.079096	1.7057
6	7644	828	1392	0.290423862	7472	438	834	0.170236	1.706012
8	7747	1210	1924	0.404543694	7886	699	1319	0.255897	1.580888
10	9230	1838	2781	0.500433369	7490	875	1627	0.334045	1.4981
12	7925	1763	2589	0.549148265	7853	1137	2079	0.409525	1.340939
24	6764	2231	2912	0.760348906	6954	1737	2812	0.654156	1.162336

5. Enantioselective reaction [α-alkylation of 1-indanone by using (*S*)-BINAP]:

The enantio excess of compound *ent*-4b obtained by using (*S*)-BINAP as the ligand by following general procedure D was tested by chiral HPLC (Chiralpak IF, hexane:isopropanol = 99:1, 0.50 mL/min, 210 nm), first diastereomer: $t_{minor} = 19.963 \text{ min}, t_{major} = 22.637 \text{ min}.$ at 74 % ee; second diastereomer: : $t_{major} = 23.526 \text{ min}, t_{minor} = 24.588 \text{ min}.$

Racemic 4b:

Signal 1: DAD1 B, Sig=210,4 Ref=360,100

Peak	RetTime	Туре	Width	Area	Height	Area
#	[min]		[min]	[mAU*s]	[mAU]	olo
1	19.986	BB	0.3744	2941.70923	122.37746	17.2767
2	22.701	BV	0.4092	2923.59473	111.02409	17.1703
3	23.575	VV	0.4327	5573.04932	201.51523	32.7305
4	24.641	VB	0.4474	5588.71875	194.37410	32.8225
Total	s:			1.70271e4	629.29087	

Enantiomeric 4b:

Signal 1: DAD1 B, Sig=210,4 Ref=360,100

Peak	RetTime	Туре	Width	Area	Height	Area
#	[min]		[min]	[mAU*s]	[mAU]	olo
1	19.963	BB	0.3697	1093.43811	45.92932	5.3677
2	22.637	BV	0.4171	7422.47461	276.55185	36.4372
3	23.526	VV	0.4425	1.03397e4	364.94901	50.7581
4	24.588	VB	0.4358	1514.93445	54.25545	7.4369

Totals :	2.03706e4	741.68562
----------	-----------	-----------

6. NMR Spectra

f1 (ppm)

S41

S47

S57

7 Density Functional Theory (DFT) Study

7.1 Complete Reference for Gaussian 09

Gaussian 09, Revision D.01, Frisch, M. J.; Trucks, G. W.; Schlegel, H. B.; Scuseria, G. E.; Robb, M. A.;

Cheeseman, J. R.; Scalmani, G.; Barone, V.; Mennucci, B.; Petersson, G. A.; Nakatsuji, H.; Caricato, M.; Li, X.; Hratchian, H. P.; Izmaylov, A. F.; Bloino, J.; Zheng, G.; Sonnenberg, J. L.; Hada, M.; Ehara, M.; Toyota, K.; Fukuda, R.; Hasegawa, J.; Ishida, M.; Nakajima, T.; Honda, Y.; Kitao, O.; Nakai, H.; Vreven, T.; Montgomery, Jr., J. A.; Peralta, J. E.; Ogliaro, F.; Bearpark, M.; Heyd, J. J.; Brothers, E.; Kudin, K. N.; Staroverov, V. N.; Kobayashi, R.; Normand, J.; Raghavachari, K.; Rendell, A.; Burant, J. C.; Iyengar, S. S.; Tomasi, J.; Cossi, M.; Rega, N.; Millam, N. J.; Klene, M.; Knox, J. E.; Cross, J. B.; Bakken, V.; Adamo, C.; Jaramillo, J.; Gomperts, R.; Stratmann, R. E.; Yazyev, O.; Austin, A. J.; Cammi, R.; Pomelli, C.; Ochterski, J. W.; Martin, R. L.; Morokuma, K.; Zakrzewski, V. G.; Voth, G. A.; Salvador, P.; Dannenberg, J. J.; Dapprich, S.; Daniels, A. D.; Farkas, Ö.; Foresman, J. B.; Ortiz, J. V.; Cioslowski, J.; Fox, D. J. Gaussian, Inc., Wallingford CT, **2013**.

7.2 Computational Methods

Geometry optimizations and single-point energy calculations were carried out using Gaussian 09. The geometries of intermediates and transition states were optimized using the B3LYP functional¹⁵ with a mixed basis set of SDD for Ir and 6-31G(d) for other atoms in the gas phase. Vibrational frequency calculations were performed for all the stationary points to confirm if each optimized structure is a local minimum or a transition state structure. Solvation energy corrections were calculated in cyclopentanone solvent with the SMD continuum solvation model¹⁶ based on the gas-phase optimized geometries. The DFT-D3(BJ) method

developed by Grimme and co-workers¹⁷ with a mixed basis set of SDD for Ir and 6-311+G(d,p) for other atoms was used for solvation single-point energy calculations.

7.3 Complete free energy profiles of the reaction pathways shown in Figure 1

Figure S1. Free energy profile of Ir–C migratory insertion pathways to form the branched and linear alkylation products (shown in blue and black, respectively). The (*S*)-BINAP ligand was used in calculation. All energies are in kcal/mol and were performed at the B3LYP-D3(BJ)/6-311+G(d,p)–SDD/SMD(cyclopentanone)//B3LYP/6-31G(d)–SDD level of theory.

Figure S2. Free energy profile of Ir–H migratory insertion pathways to form the branched and linear alkylation products (shown in blue and black, respectively). The (*S*)-BINAP ligand was used in calculation. All energies are in kcal/mol and were performed at the B3LYP-D3(BJ)/6-311+G(d,p)–SDD/SMD(cyclopentanone)//B3LYP/6-31G(d)–SDD level of theory.

7.4 Other possible Ir–H or Ir–C insertion pathways from different configurations of Ir(III)hydride complexes

Figure S3. Free energy profile of Ir–H migratory insertion from complex **10c** to form the branched and linear alkylation products (shown in blue and black, respectively). The (*S*)-BINAP ligand was used in the calculations. All energies are in kcal/mol.

In addition to the free energy profiles shown in Figure 1 and 2, the Ir–H migratory insertion from complex **10c** is also calculated. As shown in Figure S3, the Ir–H migratory insertion occurs through transition state **21-TS** or **21L-TS**. The activation free energies are 26.5 and 27.0 kcal/mol, respectively. The rate-determining steps are the following C–C reductive elimination via transition state **17L-TS** or **23-TS**. The actiavtion free energies are much higher than the alkene insertion tration state **11-TS** (25.2 kcal/mol). The alkene insertion into Ir–C bond from intermediate **10** is also considered. As shown in Figure S4, the alkene lies at the *trans* position of hydride in transition state **25-TS**. The strong *trans*

effect of hydride suppressed the alkene insertion, thus result in the high activation free energy of **25-TS** (42.5 kcal/mol). Therefore, these possible reaction pathways could be ruled out in this reaction. These results are consistent with Huang's work.¹⁸

Figure S4. The Ir–C migratory insertion from intermediate **12**. The biphosphine ligand used in calculation is (*S*)-BINAP.

7.5 Cartesian coordinates and energies of optimized structures

2cB3LYP SCF energy:-235.84430838 a.u.B3LYP enthalpy:-235.669191 a.u.B3LYP free energy:-235.710183 a.u.B3LYP-D3(BJ) SCF energy in solution:-235.94575929 a.u.B3LYP-D3(BJ) enthalpy in solution:-235.770642 a.u.B3LYP-D3(BJ) free energy in solution:-235.811634 a.u.

Cartesian coordinates

ATO	М	Х	Y	Ζ
С	3.088	3717	-0.176480	-0.440044
Н	3.096	6365	0.455824	-1.326095
С	2.045	5666	-0.203765	0.390784
Н	2.083	3984	-0.856003	1.265709
С	0.777	206	0.588104	0.222563
Н	0.862	2902	1.240581	-0.656730
Н	0.643	3176	1.250766	1.092101
С	-0.474	4134	-0.300900	0.088728
Н	-0.53	9141	-0.970111	0.959439
Н	-0.358	8396	-0.952511	-0.788548
С	-1.776	5351	0.501021	-0.033032
Н	-1.883	3026	1.153325	0.845572

8

 B3LYP SCF energy:
 -3058.13057527 a.u.

 B3LYP enthalpy:
 -3057.210058 a.u.

 B3LYP free energy:
 -3057.345829 a.u.

 B3LYP-D3(BJ) SCF energy in solution:
 -3059.23437508 a.u.

 B3LYP-D3(BJ) enthalpy in solution:
 -3058.313858 a.u.

 B3LYP-D3(BJ) free energy in solution:
 -3058.449629 a.u.

Cartesian coordinates

ATON	И Х	Y	Ζ
С	5.303907	-2.884406	-1.175392
С	4.332793	-2.167297	-0.512883
С	3.646935	-1.089951	-1.147180
С	3.994454	-0.791568	-2.504291
С	5.002401	-1.547651	-3.161397
С	5.649326	-2.572489	-2.512125
Н	5.812049	-3.698220	-0.665605
Н	4.086937	-2.428323	0.509110
С	2.629608	-0.314808	-0.480976
С	3.322710	0.266705	-3.158581
Н	5.252437	-1.297048	-4.189149
Н	6.421594	-3.143640	-3.019263
С	2.343728	0.984782	-2.517500
С	1.967833	0.705847	-1.172619
Н	3.594258	0.514059	-4.181885
Η	1.866484	1.793111	-3.053133
С	2.352859	-0.636402	0.959496
С	3.366339	-0.330493	1.935849
С	1.181173	-1.283584	1.358862
С	4.574440	0.347968	1.602918
С	3.173367	-0.716178	3.302522
С	1.015177	-1.660834	2.721236
С	5.530760	0.610742	2.558076
Η	4.742879	0.662072	0.579820
С	4.178895	-0.431234	4.265305
С	1.981118	-1.390749	3.659100
Н	0.121176	-2.187003	3.028899

С	5.337130	0.215838	3.903421
Н	6.444425	1.126608	2.276433
Η	4.014264	-0.738492	5.294964
Н	1.839110	-1.703322	4.690702
Н	6.103073	0.425399	4.644526
Р	0.551211	1.680133	-0.413298
Р	-0.227396	-1.546028	0.173388
С	0.382623	3.102488	-1.589959
C	-0.258789	2.849791	-2.817825
Ċ	0 824189	4 405181	-1 323415
Č	-0.422751	3.861171	-3.762656
H	-0 647120	1 855628	-3 024764
C	0 644518	5 423513	-2 265230
H	1 296459	4 643752	-0 377766
C	0 030488	5 1 5 4 8 6 7	-3 487818
Ĥ	-0.914521	3.642924	-4.706530
Н	0.988245	6.428372	-2.036636
Н	-0.102391	5.947049	-4.218982
C	1.295048	2.376615	1.120090
Č	0.642107	2 198363	2 347138
Č	2.515690	3.072740	1.093785
Č	1 177176	2 732350	3 520355
H	-0 275286	1 620395	2 376824
C	3.042754	3.616556	2.264925
H	3 061337	3 184662	0 161258
C	2.371943	3.452332	3.479274
Н	0.662824	2.582181	4.465504
Н	3.983576	4.158287	2.230645
Н	2.787197	3.872687	4.390693
C	-1.354481	-2.714377	1.071674
C	-2.172378	-2.192491	2.090736
C	-1.436417	-4.084074	0.783264
C	-3.021924	-3.023191	2.820288
Н	-2.146465	-1.127930	2.306476
С	-2.299782	-4.912480	1.506477
Н	-0.834569	-4.516624	-0.007265
С	-3.088059	-4.388752	2.530069
Н	-3.634902	-2.602596	3.613038
Н	-2.349458	-5.970862	1.266356
Н	-3.751998	-5.036546	3.095449
С	0.463209	-2.547462	-1.209975
C	1.288486	-3.660147	-0.977679
С	0.132770	-2.212514	-2.532113
С	1.748003	-4.433518	-2.043748
Н	1.579402	-3.918968	0.036440
С	0.595764	-2.985464	-3.598573

Н	-0.472092	-1.329731	-2.725551
С	1.398610	-4.100863	-3.354813
Η	2.386609	-5.290616	-1.850916
Η	0.335794	-2.711590	-4.617262
Η	1.760115	-4.703509	-4.183028
С	-6.275593	-0.323103	1.155753
С	-5.421271	0.942087	1.464929
Η	-7.292536	-0.059785	0.851131
Η	-6.354621	-0.964275	2.042996
Η	-5.797820	1.810567	0.906559
Η	-5.404960	1.190218	2.527494
С	-5.471781	-1.013668	0.075830
С	-4.198905	-0.432305	0.076649
С	-5.706363	-2.035008	-0.823293
Η	-6.671666	-2.529432	-0.886150
С	-4.650605	-2.417145	-1.678787
Η	-4.786870	-3.210583	-2.404972
С	-3.419821	-1.784919	-1.590762
Η	-2.589273	-2.074244	-2.222409
Ν	-3.176954	-0.783489	-0.705346
Ν	-4.055142	0.589976	0.978251
С	-3.107660	1.611980	0.612091
С	-2.940058	2.108469	-0.704256
Η	-3.521517	1.721748	-1.539219
С	-2.859584	2.701384	1.638037
Η	-3.838306	3.028648	2.020665
Η	-2.282230	2.369732	2.505614
С	-2.201311	3.835898	0.829304
Η	-2.464003	4.826817	1.210886
Η	-1.114083	3.748061	0.881655
С	-2.685668	3.608779	-0.618044
Η	-3.657585	4.104599	-0.771138
Η	-2.007147	4.016658	-1.365597
Ir	-1.417301	0.424263	-0.367948

9-TS

B3LYP SCF energy: -3058.09317076 a.u.
B3LYP enthalpy: -3057.177462 a.u.
B3LYP free energy: -3057.314338 a.u.
B3LYP-D3(BJ) SCF energy in solution: -3059.19826898 a.u.
B3LYP-D3(BJ) enthalpy in solution: -3058.282560 a.u.
B3LYP-D3(BJ) free energy in solution: -3058.419436 a.u.
Imaginary frequency: -846.4266 cm-1

Cartesian coordinates			
ATO	M X	Y	Ζ
С	6.196539	0.925592	1.231702
С	5.018928	0.685790	0.558946
С	4.024472	-0.181929	1.098336
С	4.282556	-0.779682	2.374255
С	5.513386	-0.524919	3.037073
С	6.454263	0.309146	2.480031
Н	6.936653	1.592942	0.799337
Н	4.843739	1.167291	-0.395995
С	2.777865	-0.443703	0.427002
С	3.287264	-1.600699	2.955121
Η	5.692625	-0.996602	3.999894
Н	7.391099	0.501269	2.994919
С	2.086539	-1.808239	2.322818
С	1.808605	-1.236519	1.049031
Н	3.478589	-2.060299	3.921509
Н	1.343920	-2.428408	2.806822
С	2.562115	0.153631	-0.931185
С	3.347536	-0.335496	-2.040033
С	1.625078	1.162098	-1.147286
С	4.307870	-1.377420	-1.901115
С	3.163376	0.230019	-3.343574
С	1.423633	1.671864	-2.466289
С	5.055663	-1.806881	-2.975901
Н	4.455697	-1.838759	-0.932335
С	3.950832	-0.231019	-4.431281
С	2.178644	1.234789	-3.522989
Н	0.660889	2.423970	-2.637569
С	4.884430	-1.226125	-4.253814
Н	5.785039	-2.600402	-2.839806
Н	3.799230	0.217817	-5.409657
Н	2.021836	1.649943	-4.515413
Н	5.485027	-1.570626	-5.090643
Р	0.132086	-1.558173	0.281551
Р	0.347506	1.700334	0.074193
С	-0.606563	-2.788386	1.463819
С	-1.392631	-2.286897	2.514946
С	-0.427089	-4.176697	1.366104
С	-1.967986	-3.144825	3.452487
Н	-1.563263	-1.217819	2.597303
С	-1.011960	-5.036436	2.298772
Н	0.159496	-4.598107	0.557665
С	-1.779578	-4.524363	3.346056
Н	-2.568227	-2.736038	4.260666
Н	-0.863872	-6.108662	2.204755

Н	-2.230487	-5.195078	4.071872
С	0.574787	-2.535361	-1.225932
С	-0.101169	-2.306596	-2.433864
С	1.584008	-3.514010	-1.188264
С	0.202116	-3.059093	-3.570623
Н	-0.850636	-1.521842	-2.482055
С	1.879808	-4.268781	-2.323095
Н	2.152418	-3.677878	-0.277406
С	1.186393	-4.046226	-3.515353
Н	-0.327591	-2.867122	-4.499563
Н	2.660336	-5.023041	-2.278830
Н	1.422391	-4.631898	-4.399249
С	0.243164	3.548489	-0.078379
С	-0.735703	4.193092	0.698913
С	1.188720	4.331147	-0.753813
С	-0.783987	5.582958	0.774702
Н	-1.464583	3.601011	1.246344
С	1.135043	5.727006	-0.680546
Н	1.978929	3.866657	-1.332889
С	0.149917	6.356005	0.078273
Н	-1.548714	6.063333	1.378668
Н	1.873399	6.318013	-1.215148
Н	0.113260	7.440015	0.136150
С	0.960862	1.730748	1.819714
С	2.181219	2.331147	2.163509
С	0.086269	1.336391	2.840748
С	2.530573	2.498023	3.502279
Н	2.859813	2.675067	1.389142
С	0.431287	1.515632	4.182472
Η	-0.878462	0.906507	2.582702
С	1.656972	2.091663	4.515056
Η	3.484309	2.952483	3.754552
Η	-0.259540	1.209666	4.963409
Η	1.928568	2.233209	5.557281
С	-6.676874	-0.716805	0.622212
С	-6.305515	0.660785	0.032685
Η	-7.616320	-1.096718	0.211469
Η	-6.793777	-0.660176	1.711914
Η	-6.793193	0.810219	-0.937101
Н	-6.571262	1.495440	0.684676
С	-5.480139	-1.559032	0.262238
С	-4.406781	-0.700590	-0.070974
С	-5.297816	-2.919866	0.197320
Η	-6.103844	-3.610942	0.426814
С	-4.033508	-3.385706	-0.212324
Η	-3.832536	-4.444718	-0.326300

-3.020144	-2.4/9013	-0.444914
-2.047806	-2.827824	-0.753075
-3.151539	-1.123583	-0.316085
-4.833500	0.606918	-0.156484
-4.138260	1.620233	-0.798515
-2.787952	1.694940	-1.027442
-4.887188	2.849181	-1.286127
-5.873596	2.625697	-1.705324
-5.046335	3.557443	-0.458497
-3.913681	3.416480	-2.332668
-4.111139	2.942051	-3.301473
-4.011807	4.498385	-2.463127
-2.528753	2.994877	-1.806707
-1.799556	2.866890	-2.614516
-2.130366	3.770625	-1.149236
-1.435740	0.259586	-0.233504
-1.931726	0.724245	-1.712766
	-3.020144 -2.047806 -3.151539 -4.833500 -4.138260 -2.787952 -4.887188 -5.873596 -5.046335 -3.913681 -4.111139 -4.011807 -2.528753 -1.799556 -2.130366 -1.435740 -1.931726	-3.020144 -2.479013 -2.047806 -2.827824 -3.151539 -1.123583 -4.833500 0.606918 -4.138260 1.620233 -2.787952 1.694940 -4.887188 2.849181 -5.873596 2.625697 -5.046335 3.557443 -3.913681 3.416480 -4.111139 2.942051 -4.011807 4.498385 -2.528753 2.994877 -1.799556 2.866890 -2.130366 3.770625 -1.435740 0.259586 -1.931726 0.724245

10

 B3LYP SCF energy:
 -3058.11821345 a.u.

 B3LYP enthalpy:
 -3057.200333 a.u.

 B3LYP free energy:
 -3057.338949 a.u.

 B3LYP-D3(BJ) SCF energy in solution:
 -3059.22881556 a.u.

 B3LYP-D3(BJ) enthalpy in solution:
 -3058.310935 a.u.

 B3LYP-D3(BJ) free energy in solution:
 -3058.449551 a.u.

Cartesian coordinates

ATOM	И Х	Y	Ζ
С	6.021895	1.194905	1.621337
С	4.913564	0.896480	0.860161
С	3.932826	-0.031926	1.317134
С	4.131122	-0.632406	2.602389
С	5.291032	-0.313837	3.359000
С	6.220312	0.580363	2.881393
Η	6.753182	1.907443	1.250427
Η	4.784106	1.377978	-0.102147
С	2.755789	-0.354067	0.552937
С	3.149864	-1.525010	3.095072
Η	5.425397	-0.787098	4.328309
Η	7.103067	0.820015	3.467013
С	2.016266	-1.797780	2.370084
С	1.795422	-1.217968	1.088428
Η	3.298768	-1.991121	4.065807
Н	1.282938	-2.476491	2.785393

С	2.616815	0.248665	-0.814146
С	3.496977	-0.209553	-1.863626
С	1.678707	1.240062	-1.094296
С	4.474286	-1.223692	-1.656593
С	3.395560	0.360135	-3.174509
Ċ	1.566305	1.760623	-2.420002
C	5.310641	-1.626942	-2.674619
H	4 564384	-1 683371	-0 680040
C	4 272241	-0 074899	-4 203175
C	2 405416	1 345055	-3 420804
н	0.804035	2 499843	-2 642288
C	5 216480	-1 045775	-3 960438
н	6.051246	-2 309268	-2 487237
н	1 181/6/	0 375253	-5.188374
н Ц	4.101404	1 765166	-3.188374
н Ц	2.314211	1 260082	-4.419240
D	0.106972	-1.309982	-4./31901
Г D	0.1906/2	-1.011460	0.190308
P C	0.293332	1./2400/	0.025094
C	-0.596455	-2.851562	1.328011
C	-1.390126	-2.366968	2.381961
C	-0.454065	-4.23946/	1.181594
C	-2.013/24	-3.241921	3.270918
H	-1.519337	-1.296851	2.513662
C	-1.086610	-5.116248	2.066584
Н	0.144934	-4.645931	0.374333
С	-1.865283	-4.621926	3.113562
Н	-2.617598	-2.846529	4.083060
Н	-0.965882	-6.188014	1.935618
Η	-2.353394	-5.305762	3.802110
С	0.776814	-2.615025	-1.244885
С	0.133585	-2.519710	-2.488914
С	1.850462	-3.512868	-1.108546
С	0.541777	-3.312498	-3.564232
Η	-0.681263	-1.815929	-2.627116
С	2.253465	-4.306770	-2.181890
Н	2.378143	-3.587525	-0.162257
С	1.598205	-4.210472	-3.411831
Н	0.034595	-3.222076	-4.520657
Н	3.084191	-4.995840	-2.058815
Н	1.915737	-4.826714	-4.248045
С	0.086451	3.555273	-0.168575
С	-1.043280	4.144715	0.424347
С	1.082119	4.386462	-0.700873
С	-1.185052	5.530264	0.458810
Н	-1.820158	3.515071	0.849036
С	0.934460	5.776166	-0.668824
	-	-	

Η	1.979069	3.963171	-1.139686
С	-0.197451	6.351101	-0.092934
Η	-2.067197	5.969662	0.915874
Н	1.711998	6.405783	-1.092108
Н	-0.308748	7.431244	-0.067914
С	0.768361	1.783032	1.809238
С	1.938565	2.425176	2.240330
С	-0.165769	1.360893	2.763973
С	2.181250	2.605155	3.600823
Η	2.662563	2.787975	1.517644
С	0.070393	1.554115	4.126901
Н	-1.092579	0.891994	2.439937
С	1.248437	2.171466	4.546991
Η	3.098237	3.090589	3.921843
Η	-0.665802	1.226168	4.855590
Η	1.436674	2.322973	5.605997
С	-6.509362	-0.739129	0.937668
С	-6.153290	0.681326	0.428964
Η	-7.491620	-1.065509	0.584077
Η	-6.532750	-0.768448	2.034014
Η	-6.781733	0.964824	-0.421421
Η	-6.260790	1.448312	1.200586
С	-5.377426	-1.584537	0.407774
С	-4.340710	-0.720951	-0.024764
С	-5.223762	-2.939621	0.257702
Η	-6.008890	-3.633791	0.543847
С	-4.017390	-3.405184	-0.314424
Η	-3.850633	-4.462065	-0.487510
С	-3.023203	-2.506261	-0.624566
Η	-2.086955	-2.845890	-1.041188
Ν	-3.128061	-1.151026	-0.439392
Ν	-4.741050	0.586428	-0.005432
С	-4.104758	1.568552	-0.782405
С	-2.783540	1.574470	-1.100520
С	-4.904981	2.690446	-1.420902
Η	-5.882551	2.367790	-1.797511
Н	-5.098323	3.502313	-0.703911
С	-3.970317	3.137145	-2.566529
Н	-4.275781	2.635601	-3.491432
H	-4.016601	4.214883	-2.749679
C	-2.554209	2.658923	-2.153612
H	-2.001603	2.263151	-3.014062
Н	-1.958692	3.488432	-1.762095
lr	-1.415188	0.217746	-0.401883
Н	-0.846322	0.180475	-1.835691

10a-TS			
B3LYP SCF energy: -3058.11181512 a.u.			
B3LYP enthalpy: -3057.194103 a.u.			
B3L	YP free ener	gy: -305	7.330129 a.u.
B3L	YP-D3(BJ) S	SCF energy	in solution: -3059.21312918 a.u.
B3L	YP-D3(BJ)	enthalpy in s	solution: -3058.295417 a.u.
B3L	YP-D3(BJ) f	free energy i	n solution: -3058.431443 a.u.
Imag	ginary freque	ency: -20	6.6016 cm-1
Cart	esian coordii	nates	
ATC	DM X	Y	Ζ
С	5.708348	1.782012	2.091591
С	4.649432	1.486145	1.261721
С	3.955135	0.244215	1.361598
С	4.400525	-0.683049	2.356471
С	5.504636	-0.356848	3.189095
С	6.148317	0.851709	3.063377
Н	6.214857	2.738206	1.995618
Н	4.337584	2.214837	0.523029
С	2.826736	-0.084775	0.521684
С	3.723042	-1.918186	2.476453
Н	5.827080	-1.082334	3.931557
Н	6.990270	1.095483	3.704682
С	2.625175	-2.196921	1.702687
С	2.128753	-1.278087	0.730007
Н	4.077661	-2.650639	3.197273
Н	2.140170	-3.153170	1.833538
С	2.540719	0.879450	-0.591871
С	3.489896	0.925120	-1.679736
С	1.476771	1.780320	-0.573802
С	4.576178	0.009847	-1.788287
С	3.352194	1.916664	-2.704736
С	1.364422	2.760013	-1.606121
С	5.465055	0.078587	-2.838242
Н	4.705923	-0.755371	-1.032877
С	4.288300	1.967258	-3.771410
С	2.278076	2.836716	-2.624728
Н	0.544585	3.466554	-1.586267
С	5.326836	1.068091	-3.839726
Н	6.283060	-0.633757	-2.896832
Н	4.166088	2.731444	-4.534592
Н	2.178300	3.602798	-3.389404
Н	6.038783	1.113045	-4.658656
Р	0.547479	-1.731029	-0.188070
Р	-0.044222	1.532844	0.447988
---	-----------	-----------	-----------
С	0.109490	-3.344374	0.622021
С	-0.285957	-3.346657	1.974275
С	0.091402	-4.554940	-0.085359
С	-0.672212	-4.529488	2.600611
Н	-0.279208	-2.420581	2.542361
С	-0.311591	-5.738824	0.542435
Н	0.389706	-4.583091	-1.127324
С	-0.690081	-5.731093	1.884218
Н	-0.961807	-4.514394	3.647719
Η	-0.319945	-6.666869	-0.022172
Н	-0.994802	-6.652751	2.371791
С	1.143827	-2.262114	-1.852385
С	0.293159	-2.149440	-2.963497
С	2.408844	-2.847622	-2.022980
С	0.700305	-2.606410	-4.218668
Η	-0.688483	-1.697986	-2.847992
С	2.814546	-3.301125	-3.278139
Η	3.077920	-2.954294	-1.174738
С	1.962167	-3.180772	-4.378253
Η	0.031792	-2.509824	-5.069487
Η	3.797342	-3.748560	-3.396567
Η	2.280954	-3.533253	-5.355060
С	-0.761229	3.222190	0.699151
С	-2.126939	3.370409	0.981272
С	0.078639	4.343404	0.814997
С	-2.645762	4.616456	1.338340
Н	-2.786092	2.513353	0.918270
С	-0.444321	5.587951	1.167410
Н	1.143673	4.256242	0.626164
С	-1.808606	5.729412	1.426248
Η	-3.706723	4.714767	1.550767
Η	0.218253	6.445561	1.241201
Η	-2.214203	6.698729	1.701307
С	0.345494	1.155503	2.212132
С	1.400767	1.790820	2.881204
С	-0.547690	0.357139	2.941158
С	1.576050	1.604374	4.252158
Η	2.093358	2.425350	2.338095
С	-0.376318	0.182083	4.316258
Η	-1.381548	-0.119694	2.431884
С	0.688939	0.800908	4.972387
Η	2.406866	2.089029	4.756606
Н	-1.078083	-0.432796	4.873297
Η	0.824124	0.664148	6.041469
С	-6.699491	-0.454667	0.664638

С	-6.235575	0.696494	-0.257982
Η	-7.615128	-0.927385	0.297679
Η	-6.907311	-0.087744	1.677107
Η	-6.728934	0.659666	-1.235172
Η	-6.415921	1.682719	0.176505
С	-5.516860	-1.389642	0.664633
С	-4.405501	-0.727779	0.074985
С	-5.380671	-2.684205	1.089037
Η	-6.214763	-3.229011	1.522280
С	-4.119120	-3.299696	0.913582
Η	-3.951516	-4.332011	1.198059
С	-3.078709	-2.573216	0.386850
Η	-2.113661	-3.028122	0.253447
Ν	-3.161290	-1.256799	-0.000673
Ν	-4.779699	0.480044	-0.437742
С	-4.010761	1.276865	-1.277064
С	-2.656721	1.215527	-1.429836
С	-4.693129	2.284618	-2.186712
Η	-5.203619	1.770157	-3.015925
Η	-5.454253	2.888249	-1.678367
С	-3.507320	3.133460	-2.686307
Η	-3.648464	3.493883	-3.709474
Η	-3.392571	4.009693	-2.038160
С	-2.278652	2.211689	-2.527306
Η	-2.067417	1.667726	-3.459736
Н	-1.369696	2.773313	-2.294893
Ir	-1.337319	-0.045875	-0.544089
Η	-0.396320	0.387979	-1.712257

10b

 B3LYP SCF energy:
 -3058.11686277 a.u.

 B3LYP enthalpy:
 -3057.197920 a.u.

 B3LYP free energy:
 -3057.337080 a.u.

 B3LYP-D3(BJ) SCF energy in solution:
 -3059.21500579 a.u.

 B3LYP-D3(BJ) enthalpy in solution:
 -3058.296063 a.u.

 B3LYP-D3(BJ) free energy in solution:
 -3058.435223 a.u.

ATO	DM	Х	Y		Ζ	
С	-5.9	17215	-1.47	2093	1.8	887736
С	-4.7	61789	-1.30	8947	1.	155318
С	-4.0	82608	-0.05	5195	1.	108913
С	-4.6	53733	1.02	8449	1.8	849522
С	-5.8	54993	0.83	5743	2.5	583258

С	-6.477571	-0.389968	2.606744
Η	-6.406633	-2.441667	1.908319
Н	-4.360682	-2.155080	0.610275
С	-2.852922	0.137307	0.368550
С	-4.004525	2.284588	1.817417
Н	-6.269298	1.678717	3.130340
Н	-7.394052	-0.530808	3.172189
С	-2.814062	2.439161	1.155605
С	-2.188348	1.365709	0.451053
Н	-4.455103	3.129713	2.331741
Н	-2.347223	3.414574	1.162349
С	-2.471702	-1.007815	-0.533435
С	-3.318980	-1.220297	-1.682426
С	-1.443406	-1.918132	-0.274308
С	-4.327210	-0.290662	-2.072844
С	-3.151796	-2.395150	-2.487822
С	-1.300951	-3.081808	-1.085155
С	-5.115656	-0.515622	-3.178713
Н	-4.467790	0.615208	-1.496204
С	-3.991821	-2.606447	-3.613848
С	-2.143897	-3.326345	-2.138710
Н	-0.505595	-3.785657	-0.871944
С	-4.956224	-1.687893	-3.955420
Н	-5.869568	0.214727	-3.458114
Н	-3.851444	-3.508417	-4.203910
Η	-2.029132	-4.229984	-2.731947
Η	-5.591915	-1.855104	-4.819984
Р	-0.515154	1.707490	-0.324009
Р	0.037648	-1.471531	0.730324
С	0.009487	3.293595	0.487795
С	-0.002759	3.431774	1.889610
С	0.541634	4.339037	-0.281712
С	0.481617	4.590840	2.496391
Н	-0.404450	2.637337	2.513081
С	1.039825	5.493124	0.329987
Н	0.559927	4.264344	-1.363979
С	1.007300	5.625880	1.717794
Н	0.443822	4.685934	3.578302
Н	1.442149	6.292810	-0.285539
Η	1.382834	6.528983	2.190353
С	-0.956513	2.271546	-2.032790
С	-0.084111	2.025106	-3.103534
С	-2.135242	2.996596	-2.273556
С	-0.380821	2.493061	-4.385667
Η	0.827130	1.456227	-2.938615
С	-2.431861	3.460260	-3.555054

Н	-2.826910	3.199582	-1.461957
С	-1.555794	3.209794	-4.614003
Н	0.304800	2.291783	-5.204053
Н	-3.348781	4.017303	-3.726197
Н	-1.789667	3.570659	-5.611577
С	0.883847	-3.062993	1.148256
С	2.274771	-3.199662	1.066751
С	0.125753	-4.121181	1.681336
С	2.896199	-4.375768	1.495894
Н	2.868590	-2.389362	0.660435
С	0.747482	-5.296388	2.098374
Н	-0.953046	-4.034228	1.767640
С	2.135992	-5.426541	2.007443
Η	3.976601	-4.468047	1.427168
Η	0.147363	-6.108822	2.497933
Η	2.619625	-6.341624	2.336871
С	-0.465631	-0.959706	2.427937
С	-1.663693	-1.400309	3.007356
С	0.449726	-0.242950	3.212565
С	-1.950821	-1.104984	4.340670
Η	-2.379939	-1.968162	2.424327
С	0.162562	0.046276	4.547374
Η	1.393967	0.075139	2.784269
С	-1.041474	-0.379629	5.112513
Η	-2.888431	-1.442346	4.772873
Η	0.882736	0.596921	5.146350
Η	-1.266472	-0.153848	6.150922
С	6.685895	0.489322	0.287360
С	6.166712	-0.266223	-0.954591
Η	7.449873	1.226596	0.024782
Η	7.135463	-0.202079	1.011011
Η	6.385588	0.279976	-1.879944
Н	6.581212	-1.271590	-1.044919
С	5.434284	1.112681	0.849717
С	4.301790	0.547756	0.207765
С	5.253761	2.049173	1.835642
Н	6.097823	2.501375	2.348537
С	3.927042	2.403964	2.159586
Н	3.711689	3.146133	2.920002
С	2.883236	1.801088	1.494028
Н	1.866028	2.066129	1.728209
Ν	3.024513	0.862395	0.507622
Ν	4.695470	-0.336200	-0.769826
С	3.886993	-1.073477	-1.609338
С	2.514173	-1.182024	-1.563814
С	4.528553	-1.953067	-2.669220

Η	5.305996	-1.446518	-3.252388
Η	5.007942	-2.822400	-2.191050
С	3.323004	-2.381912	-3.525391
Η	3.196890	-1.674544	-4.353361
Н	3.446316	-3.379380	-3.957278
С	2.120707	-2.270380	-2.564799
Η	1.185130	-2.056823	-3.086781
Н	1.969101	-3.217393	-2.022220
Ir	1.226493	-0.024722	-0.540976
Η	0.194992	-0.515004	-1.621131

10c

B3LYP SCF energy: -3293.96722501 a	1.u.
B3LYP enthalpy: -3292.869596 a.u.	
B3LYP free energy: -3293.024702 a.u.	
B3LYP-D3(BJ) SCF energy in solution:	-3295.18734312 a.u.
B3LYP-D3(BJ) enthalpy in solution: -3	3294.089714 a.u.
B3LYP-D3(BJ) free energy in solution:	-3294.244820 a.u.

ATO	M X	Y	Ζ
С	-5.906158	-2.580323	-0.110230
С	-4.826195	-1.774537	-0.393440
С	-4.139370	-1.072656	0.638666
С	-4.610532	-1.232686	1.981421
С	-5.729804	-2.068260	2.242872
С	-6.367502	-2.730031	1.219860
Н	-6.411120	-3.106229	-0.915603
Н	-4.487425	-1.675177	-1.418115
С	-3.002211	-0.231430	0.371250
С	-3.957229	-0.522283	3.015143
Н	-6.073398	3 -2.171568	3.268983
Н	-7.223844	-3.365219	1.427051
С	-2.855122	0.254025	2.750145
С	-2.328835	0.385365	1.434621
Н	-4.342437	-0.589249	4.029676
Н	-2.407838	0.804124	3.565826
С	-2.665353	0.048658	-1.067560
С	-3.570770	0.906533	-1.801961
С	-1.538538	-0.459474	-1.708746
С	-4.742881	1.467407	-1.220201
С	-3.296360	1.220888	-3.172348
С	-1.242175	-0.059116	-3.046984
С	-5.603700	2.249468	-1.959775

Н	-4.967064	1.274774	-0.178612
С	-4.202099	2.027337	-3.909660
С	-2.100106	0.736088	-3.759814
Н	-0.319521	-0.386624	-3.511326
С	-5.340636	2.527432	-3.320431
Н	-6.494685	2.656998	-1.490583
Н	-3.976474	2.243262	-4.950919
Н	-1.866701	1.008341	-4.786196
Н	-6 031773	3 139418	-3 892734
Р	-0 743795	1 348201	1 148164
P	-0 235298	-1 444278	-0.841221
C	-0 299045	2 145233	2 775518
Č	-0 150229	1 411539	3 968692
C	0.061460	3 505360	2.801398
C	0.315905	2 013943	5 138300
H	-0.426005	0 363628	4 007431
C	0 541553	4 104615	3 968108
Н	-0.045791	4 115231	1 911870
C	0.668345	3 364099	5 142677
Н	0.399073	1 424280	6 047021
Н	0.807100	5 157924	3 954980
н	1 032929	3 832994	6 051833
C	-1 422005	2 817943	0.229431
C	-0.911512	3 271122	-0.993476
C	-2 503317	3 511840	0.804283
C	-1 457091	4 395316	-1 620989
Н	-0.098476	2 740093	-1 473145
C	-3 043009	4 634175	0 180668
н	-2 924514	3 176946	1 747713
C	-2 518382	5 082092	-1 034950
Н	-1 049439	4 727598	-2 571666
Н	-3 875273	5 157748	0.642589
Н	-2 939734	5 956719	-1 522176
C	0 394471	-2 688650	-2 063408
C	1 510459	-3 448498	-1 674365
C	-0.263083	-3 024168	-3 257038
C	1 975304	-1/101035	-2 475525
с н	2 011362	-3 230/5/	-2.475525
Γ	0.207601	4 067118	-0.755870
с u	1 151653	-4.007118	3 568611
Γ	-1.151055	-2.48/440	-3.308011
С U	1.331213	-4./90121	-3.070339
н ц	2.03/321	-3.0/01/8	-2.133983
п u	-0.313944	-4.300010	-4.901234
п С	1.093202	-3.009120	-4.30032/
C	-1.0/94/0	-2.041/09	0.27337/
U	-1.903338	-3.03/4/4	-0.234880

C	-0.853526	-2.644448	1.675288
С	-2.493443	-4.600869	0.562008
Н	-2.085331	-3.672384	-1.324115
С	-1.434678	-3.615705	2.492663
Н	-0.223374	-1.886874	2.115719
С	-2.256673	-4.596165	1.938604
Н	-3.133918	-5.358902	0.120665
Н	-1.240450	-3.603887	3.561609
Н	-2.708247	-5.354085	2.572297
С	5 322570	-3 269233	1 682161
Č	5.438318	-2.550684	0.321321
H	6.244831	-3.196286	2.265347
Н	5 105591	-4 336809	1 546195
Н	6.234046	-1.793520	0.334185
Н	5 638385	-3 237307	-0 502893
C	4.153312	-2.569467	2.325758
Ċ	3.465380	-1.817787	1.331433
Ċ	3 695365	-2 570913	3 617925
H	4 206007	-3 130405	4 396844
C	2 544184	-1 806192	3 905360
Ĥ	2.147915	-1.737807	4.912318
С	1 924274	-1 129822	2 877360
H	1 058994	-0.518836	3 073943
N	2.333218	-1.129485	1.577481
N	4.127776	-1.885899	0.133230
C	3.816586	-1.211330	-1.062081
C	2.749795	-0.416462	-1.300625
C	4.652141	-1.503276	-2.298613
Н	5.733175	-1.429616	-2.130997
Н	4.454666	-2.523963	-2.663346
С	4.143307	-0.443617	-3.294599
Н	4.780496	0.446961	-3.235448
Н	4.163112	-0.793423	-4.331306
С	2.723897	-0.100318	-2.793787
Н	2.440602	0.932383	-3.017949
Н	1.977386	-0.739493	-3.290649
Ir	1.266190	0.195552	-0.005384
Н	0.700588	1.007369	-1.230483
С	2.320745	2.410673	0.067180
Н	1.471600	3.049941	0.292430
С	2.792917	1.591344	1.068421
Н	2.388283	1.647649	2.073500
Н	3.764804	1.118306	0.964035
С	3.121134	2.837870	-1.134329
Н	3.877671	2.083496	-1.370207
Н	2.470029	2.939050	-2.010767

С	3.806082	4.196507	-0.866499
Н	3.047022	4.946927	-0.602280
Н	4.465757	4.102981	0.007249
С	4.615500	4.695105	-2.072052
Н	3.950610	4.782040	-2.942915
Н	5.370153	3.941236	-2.336626
С	5.302383	6.040195	-1.814648
Н	4.569871	6.821859	-1.579721
Н	6.000755	5.974872	-0.971656
Н	5.869765	6.368772	-2.692059

B3LYP SCF energy: -3293.94512989 a.u.
B3LYP enthalpy: -3292.849681 a.u.
B3LYP free energy: -3293.004666 a.u.
B3LYP-D3(BJ) SCF energy in solution: -3295.16160909 a.u.
B3LYP-D3(BJ) enthalpy in solution: -3294.066160 a.u.
B3LYP-D3(BJ) free energy in solution: -3294.221145 a.u.
Imaginary frequency: -314.7382 cm-1

ATON	И Х	Y	Ζ
С	6.272485	2.000654	0.854428
С	5.132102	1.464908	0.297976
С	4.366376	0.480269	0.987113
С	4.829110	0.060676	2.274694
С	6.012932	0.625061	2.820811
С	6.722684	1.577877	2.128040
Η	6.835013	2.752986	0.308683
Η	4.808172	1.802109	-0.679660
С	3.157606	-0.081529	0.436429
С	4.097313	-0.936543	2.960595
Н	6.346737	0.287895	3.798880
Η	7.627097	2.004834	2.551766
С	2.930799	-1.437258	2.438912
С	2.408033	-0.990740	1.190258
Н	4.470305	-1.308727	3.911626
Η	2.418083	-2.212337	2.990166
С	2.855184	0.259473	-0.995652
С	3.696842	-0.353523	-1.998745
С	1.858490	1.150644	-1.385854
С	4.706626	-1.305017	-1.677180
С	3.518162	-0.016691	-3.379473
С	1.678931	1.439470	-2.771989

С	5.496014	-1.866633	-2.656778
Н	4.852567	-1.599455	-0.645255
С	4.353961	-0.604012	-4.365755
С	2.491044	0.893937	-3.731744
Н	0.880610	2.103354	-3.079384
С	5.327993	-1.509843	-4.014910
Н	6.256820	-2.591765	-2.382195
Н	4.205062	-0.325304	-5.405990
Н	2.344623	1.147019	-4.779013
Н	5.963377	-1.955041	-4.775109
Р	0.767053	-1.671718	0.574656
Р	0.494138	1.679946	-0.250306
С	0.158258	-2.764585	1.954692
С	0.093961	-2.321808	3.290257
С	-0.382335	-4.026863	1.654653
C	-0.458737	-3.124576	4.290201
Н	0.490404	-1.348031	3.562721
С	-0.949877	-4.822273	2.653103
Н	-0.347535	-4.405485	0.638984
С	-0.984639	-4.378793	3.975210
Ĥ	-0.472310	-2.768103	5.316760
Н	-1.353665	-5.796914	2.393557
Н	-1.412599	-5.004649	4,752932
C	1.383937	-2.943987	-0.636975
Č	0.992202	-2.976642	-1.981418
Ċ	2.308705	-3.903732	-0.184656
С	1.500451	-3.947741	-2.849628
H	0.301240	-2.233656	-2.361421
C	2.811225	-4.873770	-1.048933
H	2.638445	-3.896686	0.849887
C	2.406201	-4.899829	-2.386370
H	1.186470	-3.952474	-3.889706
Н	3.521413	-5.607842	-0.678566
Н	2 799430	-5 654990	-3 061054
C	-0.033944	3.357244	-0.846957
Ċ	-1.268359	3.842987	-0.389155
Č	0.786890	4.218913	-1.593893
Ċ	-1 683526	5 141487	-0 690223
H	-1 900467	3 209697	0 222874
C	0 367523	5 514647	-1 901370
H	1 761224	3 888861	-1 937707
C	-0.870982	5 978829	-1 456414
Ĥ	-2.638893	5.502636	-0.318129
Н	1 016522	6 163333	-2 483076
Н	-1.194197	6.988260	-1.694075
Ċ	1.223667	2.221706	1.362628
	-	-	-

С	2.280730	3.144038	1.408247
С	0.628495	1.815017	2.563254
С	2.743478	3.629631	2.629714
Н	2.747977	3.485235	0.489919
С	1.086979	2.308306	3.787511
Н	-0.201220	1.118217	2.538361
С	2.146888	3.214107	3.823156
Н	3.569987	4.334131	2.649534
Н	0.611343	1.987572	4.710645
Н	2.504898	3.599341	4.773738
С	-5.424242	2.538134	1.796983
С	-5.246302	2.477620	0.263823
Н	-6.452096	2.312020	2.095651
Н	-5.186853	3.536445	2.185226
Н	-6.071052	1.934626	-0.212631
Н	-5.183859	3.467376	-0.192775
C	-4.428296	1.523056	2.293918
Č	-3.571665	1.140288	1.237652
Ċ	-4 244073	0 976233	3 545612
H	-4 889503	1 244869	4 377370
C	-3.201881	0.048824	3.703018
H	-3.020926	-0.444925	4.651342
C	-2.388809	-0.235654	2.618333
H	-1.585747	-0.949239	2.713207
N	-2 525441	0 311972	1 385061
N	-3.978606	1.734659	0.046286
C	-3.469845	1.530452	-1.221143
Č	-2.433740	0.700656	-1.582728
Č	-4.037287	2.329941	-2.381840
Ĥ	-5.133056	2.363229	-2.396551
Н	-3.686673	3.371733	-2.322659
C	-3 442699	1 610768	-3 607605
H	-4.133182	0.828303	-3.945834
Н	-3 273704	2 285883	-4 451584
С	-2.148733	0.976959	-3.060810
H	-1.836260	0.085344	-3.617350
Н	-1.316606	1.689570	-3.137640
Ir	-0 985193	-0 202878	-0 329689
H	-0 200457	-0.507640	-1 651896
C	-3 168669	-1 315395	-1 469566
H	-2 976962	-1 372668	-2 538661
C	-2.225099	-1.989639	-0.628588
Ĥ	-1.598963	-2.725876	-1.130048
Н	-2.604783	-2.335851	0.333793
C	-4.630786	-1.264152	-1.102709
H	-4.752168	-0.992477	-0.047835

Η	-5.156690	-0.516428	-1.705938
С	-5.280910	-2.649497	-1.337913
Η	-5.131680	-2.951136	-2.384217
Η	-4.772768	-3.401843	-0.721663
С	-6.783138	-2.651349	-1.017961
Η	-7.287528	-1.895445	-1.636004
Η	-6.930088	-2.343377	0.027085
С	-7.435677	-4.018719	-1.246655
Η	-7.335753	-4.336476	-2.291229
Η	-6.973169	-4.789274	-0.618375
Η	-8.504285	-3.991050	-1.007923

12

B3LYP SCF energy: -3293.97636281 a.u.
B3LYP enthalpy: -3292.878352 a.u.
B3LYP free energy: -3293.033017 a.u.
B3LYP-D3(BJ) SCF energy in solution: -3295.19045696 a.u.
B3LYP-D3(BJ) enthalpy in solution: -3294.092446 a.u.
B3LYP-D3(BJ) free energy in solution: -3294.247111 a.u.

ATON	И Х	Y	Z
С	6.554393	1.015157	0.848174
С	5.318023	0.735080	0.309149
С	4.385771	-0.102216	0.989768
С	4.782961	-0.637799	2.255699
С	6.068728	-0.342181	2.782228
С	6.941152	0.468721	2.094882
Н	7.241883	1.659939	0.308068
Н	5.049280	1.165838	-0.647796
С	3.076878	-0.401454	0.454161
С	3.873757	-1.467978	2.951329
Η	6.346937	-0.768101	3.742811
Η	7.922357	0.692008	2.503542
С	2.620555	-1.710735	2.451206
С	2.179633	-1.160849	1.209454
Н	4.176339	-1.913073	3.895883
Η	1.963812	-2.355072	3.017812
С	2.826497	0.085229	-0.945439
С	3.542251	-0.580751	-2.006220
С	2.031315	1.192770	-1.239922
С	4.302895	-1.766056	-1.790236
С	3.489952	-0.056038	-3.339008
С	1.997347	1.694414	-2.574153

С	4.970427	-2.382244	-2.825303
Н	4.343845	-2.198763	-0.797787
С	4.201868	-0.705710	-4.382692
С	2.720231	1.107748	-3.582554
Н	1.391587	2.563574	-2.800431
С	4.930019	-1.845775	-4.134278
Н	5.535376	-3.290173	-2.634586
Н	4.155523	-0.284884	-5.383971
Н	2.694161	1.524555	-4.586451
Н	5.469725	-2.338083	-4.938068
Р	0.459863	-1.616865	0.611957
Р	0.687043	1.770279	-0.106505
С	-0.322832	-2.433078	2.080824
С	-0.323706	-1.804877	3.340745
С	-1.010005	-3.649374	1.941814
С	-0.969319	-2.390248	4.430822
Н	0.203532	-0.865321	3.480331
С	-1.671302	-4.223906	3.030591
Н	-1.020372	-4.164486	0.988053
С	-1.649156	-3.601067	4.278124
Н	-0.937424	-1.899761	5.399941
Н	-2.193843	-5.167338	2.900563
Н	-2.151481	-4.056638	5.126578
С	0.889524	-3.058964	-0.481223
С	0.563466	-3.112788	-1.841860
С	1.625910	-4.121536	0.075240
С	0.952895	-4.201310	-2.626912
Н	0.008490	-2.299585	-2.293296
С	2.009616	-5.209054	-0.707120
Н	1.903996	-4.104517	1.124219
С	1.673294	-5.252610	-2.062694
Н	0.691416	-4.221591	-3.681123
Н	2.573796	-6.021083	-0.257121
Н	1.973980	-6.099682	-2.672634
С	0.411235	3.558540	-0.531349
С	-0.828291	4.132045	-0.210640
С	1.442216	4.399486	-0.983382
С	-1.039635	5.504870	-0.355578
Н	-1.633647	3.502791	0.151736
С	1.226279	5.769196	-1.138966
Н	2.421061	3.991899	-1.214306
С	-0.015226	6.326627	-0.826389
Н	-2.005609	5.931516	-0.099052
Н	2.033722	6.401703	-1.497099
Н	-0.179465	7.393958	-0.943058
С	1.390328	2.080198	1.579617

С	2.665861	2.636797	1.755660
С	0.562933	1.917523	2.698893
С	3.112187	2.995555	3.026720
Н	3.319990	2.787629	0.903102
С	1.006743	2.288350	3.971308
Н	-0.437764	1.519489	2.575899
С	2.284044	2.823207	4.138700
Н	4.108115	3.412262	3.147040
Н	0.349541	2.164752	4.828080
Н	2.631162	3.111211	5.126928
С	-5.302508	2.970260	0.348661
С	-4.648622	2.662870	-1.029655
Η	-6.379908	2.780071	0.333459
Η	-5.165550	4.023577	0.622523
Η	-5.306256	2.051647	-1.661344
Η	-4.393903	3.571259	-1.581118
С	-4.553927	2.065433	1.301076
С	-3.460979	1.500083	0.610520
С	-4.723822	1.742799	2.628146
Η	-5.549644	2.145430	3.208420
С	-3.794222	0.857370	3.214121
Η	-3.890946	0.551680	4.249935
С	-2.746353	0.367253	2.454466
Η	-2.033323	-0.324066	2.880634
Ν	-2.542727	0.689079	1.149450
Ν	-3.425484	1.894134	-0.696451
С	-2.604930	1.297432	-1.697917
С	-2.662893	-0.022929	-2.155796
С	-2.101656	2.212082	-2.815085
Η	-2.978236	2.676594	-3.293168
Η	-1.468430	3.027536	-2.463203
С	-1.403082	1.257946	-3.799524
Η	-1.479761	1.594084	-4.837594
Η	-0.342514	1.173268	-3.552986
С	-2.094199	-0.092779	-3.560117
Η	-2.966630	-0.219501	-4.223136
Η	-1.448469	-0.959900	-3.729202
Ir	-0.987682	-0.046789	-0.389629
Η	-0.098344	-0.449955	-1.621636
С	-3.375237	-1.251134	-1.615656
Η	-3.399175	-1.974368	-2.442165
С	-2.370774	-1.712545	-0.549231
Η	-1.885786	-2.644606	-0.839569
Η	-2.830876	-1.844380	0.433611
С	-4.834159	-1.067066	-1.157525
Η	-4.873870	-0.479638	-0.232763

Η	-5.385664	-0.496793	-1.920343
С	-5.547271	-2.407336	-0.924115
Н	-5.541141	-2.987885	-1.858391
Η	-4.980720	-2.999630	-0.191659
С	-6.992854	-2.247600	-0.434795
Η	-7.558884	-1.651684	-1.164924
Η	-6.996065	-1.669021	0.500315
С	-7.702953	-3.586351	-0.208512
Η	-7.749867	-4.172398	-1.134273
Η	-7.178469	-4.191705	0.540904
Η	-8.729798	-3.437754	0.142983

 B3LYP SCF energy:
 -3293.94769526 a.u.

 B3LYP enthalpy:
 -3292.852589 a.u.

 B3LYP free energy:
 -3293.008997 a.u.

 B3LYP-D3(BJ) SCF energy in solution:
 -3295.16549903 a.u.

 B3LYP-D3(BJ) enthalpy in solution:
 -3294.070393 a.u.

 B3LYP-D3(BJ) free energy in solution:
 -3294.226801 a.u.

 Imaginary frequency:
 -943.3217 cm-1

ATON	Λ X	Y	Ζ
С	6.605190	0.889713	0.969123
С	5.410527	0.555483	0.372343
С	4.418415	-0.184253	1.078146
С	4.695797	-0.558107	2.433597
С	5.940851	-0.202912	3.019478
С	6.878749	0.504077	2.304076
Η	7.347038	1.454012	0.411142
Η	5.217639	0.858167	-0.650566
С	3.163401	-0.549677	0.482911
С	3.715244	-1.280331	3.155050
Η	6.136717	-0.501062	4.046282
Η	7.828583	0.770049	2.758870
С	2.505477	-1.595049	2.583567
С	2.202334	-1.225054	1.243377
Η	3.929244	-1.586097	4.176222
Η	1.777857	-2.145124	3.167049
С	2.919815	-0.248713	-0.966124
С	3.638161	-1.008235	-1.960041
С	1.981312	0.699881	-1.365881
С	4.624381	-1.979456	-1.625306
С	3.355373	-0.797644	-3.348807

С	1.674599	0.846339	-2.751114
С	5.306244	-2.669914	-2.603492
Н	4.848333	-2.174732	-0.583789
С	4.073578	-1.525668	-4.333886
С	2.343656	0.127543	-3.708436
Н	0.904131	1.544353	-3.056487
С	5.035758	-2.440391	-3.972652
Н	6.060398	-3.398662	-2.319862
Н	3.847269	-1.344874	-5.381696
Н	2.103879	0.264815	-4.760015
Н	5.584375	-2.989059	-4.732751
Р	0.498251	-1.587291	0.572794
Р	0.924083	1.650064	-0.169917
С	-0.268526	-2.661770	1.878385
С	-0.814966	-2.034223	3.013569
C	-0.367419	-4.056274	1.772532
C	-1.420139	-2.780592	4.023094
H	-0.776933	-0.951601	3.098711
C	-0 983275	-4 803203	2 781689
Ĥ	0.025101	-4 570252	0.902868
C	-1 505590	-4 171184	3 909236
Ĥ	-1 831590	-2 276753	4 893310
Н	-1 053224	-5 882459	2 679571
Н	-1 981696	-4 754650	4 692024
C	0 817907	-2 735696	-0.832042
Č	0.097245	-2.622344	-2.028059
Č	1 769543	-3 762847	-0 707345
Č	0 303555	-3 528807	-3 070238
Н	-0 609458	-1 809281	-2 151159
C	1 972876	-4 668367	-1 747641
Ĥ	2 358058	-3 852125	0 201322
C	1 236825	-4 555906	-2 929963
Н	-0 260547	-3 426454	-3 993181
Н	2 711396	-5 457229	-1 637927
Н	1 398384	-5 260849	-3 740412
C	0 591467	3 225804	-1 099568
C	-0.628935	3 898719	-0.947119
C	1 581275	3 819817	-1 906393
C	-0.852425	5 129932	-1 570108
н	-1 410065	3 461122	-0.341732
C	1 356018	5 046163	-2 530742
н	2 528881	3 317405	-2.030742
C	0 13705/	5 708727	-2.070340
с н	-1 80/856	5 631736	-2.302400
H	-1.004030	5 487701	-1.+52009
и П	2.134074	5.402274	2 8/0100
11	-0.030273	0.004030	-2.040190

С	1.983165	2.281403	1.222164
С	3.002667	3.228825	1.035309
С	1.700545	1.857057	2.529876
С	3.715773	3.731101	2.123415
Н	3.241025	3.591890	0.042563
С	2.409581	2.363015	3.620396
Н	0.937575	1.102310	2.696320
С	3.419132	3.304226	3.419397
Н	4.501523	4.462518	1.957034
Η	2.174663	2.016900	4.623137
Η	3.971767	3.702835	4.265310
С	-5.899685	2.823363	0.757148
С	-5.604701	2.351693	-0.679742
Η	-6.575190	2.125248	1.268318
Η	-6.370060	3.810488	0.782217
Η	-6.351280	1.654860	-1.068682
Η	-5.532877	3.199812	-1.373329
С	-4.534858	2.796167	1.396504
С	-3.645066	2.057310	0.560969
С	-4.092752	3.311481	2.586928
Η	-4.755446	3.880854	3.232809
С	-2.744643	3.090836	2.943041
Η	-2.326427	3.494343	3.858137
С	-1.950253	2.351731	2.098321
Η	-0.909232	2.182421	2.340853
Ν	-2.366286	1.800853	0.910350
Ν	-4.288950	1.670009	-0.588052
С	-3.765784	1.111996	-1.787939
С	-3.533578	-0.192787	-2.010846
С	-3.607666	1.968770	-3.034062
Η	-4.586676	2.274506	-3.432591
Η	-3.043303	2.889584	-2.841433
С	-2.876233	1.012861	-4.004397
Η	-3.186593	1.145135	-5.044719
Η	-1.798677	1.205001	-3.954925
С	-3.164002	-0.408934	-3.465722
Η	-4.006638	-0.886232	-3.990265
Η	-2.308968	-1.084744	-3.590997
Ir	-0.904298	0.224669	0.322016
Η	-1.629596	-0.663774	-0.759198
С	-3.638302	-1.344765	-1.030729
Η	-3.227289	-2.226344	-1.542938
С	-2.777973	-1.123534	0.247347
Η	-2.508533	-2.082399	0.685892
Η	-3.340291	-0.549159	0.987574
С	-5.115755	-1.671576	-0.694467

Η	-5.544450	-0.828339	-0.135144
Н	-5.679822	-1.738629	-1.635803
С	-5.314773	-2.971175	0.096846
Н	-4.850914	-3.804258	-0.452483
Н	-4.789034	-2.908214	1.059385
С	-6.793264	-3.295944	0.353277
Н	-7.321662	-3.360801	-0.608288
Н	-7.256998	-2.462112	0.899777
С	-6.996607	-4.596396	1.137475
Н	-6.577337	-5.454280	0.597843
Н	-6.506550	-4.549723	2.117850
Н	-8.060150	-4.797443	1.306326

14

 B3LYP SCF energy:
 -811.06434751 a.u.

 B3LYP enthalpy:
 -810.633035 a.u.

 B3LYP free energy:
 -810.704588 a.u.

 B3LYP-D3(BJ) SCF energy in solution:
 -811.39757683 a.u.

 B3LYP-D3(BJ) enthalpy in solution:
 -810.966264 a.u.

 B3LYP-D3(BJ) free energy in solution:
 -811.037817 a.u.

ATO	M X	Y	Ζ
С	2.485542	-1.029100	2.159496
С	1.499131	0.153103	1.970236
Н	1.947188	-1.939962	2.455365
Н	3.226080	-0.822247	2.939053
Н	0.564842	0.017128	2.520750
Н	1.951226	1.100455	2.302012
С	3.077116	-1.184821	0.778580
С	2.288470	-0.452167	-0.137702
С	4.143375	-1.907816	0.285904
Н	4.783275	-2.490150	0.945294
С	4.384323	-1.869834	-1.101751
Н	5.213474	-2.415554	-1.540492
С	3.534114	-1.119314	-1.906595
Η	3.695543	-1.078992	-2.982700
Ν	2.482787	-0.407046	-1.453783
Ν	1.248236	0.199053	0.512974
С	0.531023	1.284592	-0.053339
С	-0.800118	1.459746	0.045786
С	1.215291	2.394872	-0.832274
Н	2.141158	2.735359	-0.350415
Н	1.497276	2.036876	-1.829525

С	0.126375	3.491157	-0.878182
Н	0.290364	4.203154	-0.060489
Н	0.134805	4.062215	-1.812230
С	-1.212722	2.746842	-0.645987
Н	-1.922135	3.344682	-0.058995
Η	-1.718147	2.521834	-1.597692
С	-1.788468	0.505464	0.671897
Η	-1.227145	-0.387997	0.977746
С	-2.843450	0.046906	-0.366733
Η	-3.477848	0.900861	-0.645969
Н	-2.315813	-0.256710	-1.281290
С	-3.733021	-1.115281	0.096493
Н	-3.096371	-1.950336	0.425640
Н	-4.323184	-0.816267	0.973722
С	-4.689466	-1.613018	-0.996689
Η	-4.104816	-1.924219	-1.873881
Н	-5.320990	-0.778262	-1.333002
С	-5.578739	-2.773324	-0.537564
Н	-4.975547	-3.633998	-0.222832
Н	-6.205570	-2.480507	0.314029
Η	-6.244704	-3.109439	-1.340678
С	-2.440459	1.114924	1.931378
Н	-3.052376	1.989564	1.678576
Η	-3.089013	0.391192	2.436600
Н	-1.678633	1.439682	2.649347

11L-TS

 B3LYP SCF energy:
 -3293.93794310 a.u.

 B3LYP enthalpy:
 -3292.842089 a.u.

 B3LYP free energy:
 -3292.996139 a.u.

 B3LYP-D3(BJ) SCF energy in solution:
 -3295.15940375 a.u.

 B3LYP-D3(BJ) enthalpy in solution:
 -3294.063550 a.u.

 B3LYP-D3(BJ) free energy in solution:
 -3294.217600 a.u.

 Imaginary frequency:
 -371.2607 cm-1

ATC	ЭM	Х	Y	Z		
С	-6.0	19073	-1.4946	49	1.963054	ŀ
С	-4.9	78683	-1.1084	56	1.147749)
С	-4.0	41037	-0.1197	49	1.565092)
С	-4.2	20540	0.4596	05	2.861587	
С	-5.3	06067	0.0451	60	3.679565	
С	-6.1	89779	-0.9133	62	3.242469)
Н	-6.7	18094	-2.2524	39	1.620439)

Н	-4.868156	-1.567842	0.172706
С	-2.935413	0.292137	0.736849
С	-3.313807	1.458830	3.283503
Н	-5.423692	0.502623	4.658640
Н	-7.018061	-1.224724	3.872383
С	-2.248109	1.820658	2.496649
С	-2.009339	1.222510	1.226093
Н	-3.470516	1.947260	4.242160
Н	-1.599316	2.608470	2.850379
С	-2.908709	-0.233446	-0.671124
С	-3.898884	0.284043	-1.588822
С	-2.006002	-1.200236	-1.109005
С	-4.852180	1.274002	-1.215847
С	-3.943041	-0.203646	-2.935012
С	-2.036005	-1.625074	-2.470762
С	-5.799470	1.726143	-2.108469
Η	-4.835185	1.678948	-0.211702
С	-4.931807	0.279588	-3.832162
С	-2.979785	-1.157563	-3.347729
Н	-1.295610	-2.329438	-2.827895
С	-5.848681	1.222480	-3.428759
Η	-6.517294	2.478294	-1.793537
Η	-4.948846	-0.111500	-4.846358
Н	-2.993698	-1.512491	-4.375342
Н	-6.604863	1.584130	-4.119531
Р	-0.471641	1.704897	0.252737
Р	-0.551388	-1.722948	-0.091633
С	0.313614	3.073277	1.247148
С	0.697708	2.895586	2.589922
С	0.650768	4.289325	0.628207
С	1.372692	3.896016	3.290272
Η	0.436572	1.983591	3.116955
С	1.335646	5.287678	1.325711
Н	0.374868	4.470728	-0.403874
С	1.697571	5.098155	2.659057
Н	1.637351	3.736689	4.331985
Н	1.577123	6.219288	0.821746
Н	2.220664	5.879097	3.203203
С	-1.244592	2.697112	-1.119755
С	-0.865868	2.586440	-2.463873
С	-2.229394	3.642433	-0.777645
С	-1.452937	3.396398	-3.440716
Н	-0.120665	1.858168	-2.759497
С	-2.810812	4.452279	-1.750724
Η	-2.543135	3.750573	0.256348
С	-2.423794	4.331701	-3.087874

Н	-1.147699	3.289845	-4.477958
Η	-3.569145	5.175670	-1.464624
Н	-2.879023	4.961138	-3.847169
С	-0.170871	-3.480355	-0.549778
С	1.038918	-3.998040	-0.057767
С	-1.057228	-4.355152	-1.198547
С	1.365411	-5.343593	-0.231922
Н	1.715457	-3.350262	0.489986
С	-0.724663	-5.699719	-1.380445
Н	-2.018972	-4.002718	-1.554284
С	0.488728	-6.197302	-0.904769
Н	2.299633	-5.728653	0.168581
Н	-1.424366	-6.359585	-1.885750
Н	0.742090	-7.244494	-1.042715
С	-1.158928	-2.081057	1.622822
С	-2.201388	-3.000788	1.823866
С	-0.507207	-1.547119	2.739543
С	-2.587465	-3.362659	3.112649
Н	-2.712904	-3.441125	0.973707
С	-0.888910	-1.914957	4.032123
Н	0.303037	-0.844446	2.597721
С	-1.930578	-2.822402	4.221376
Н	-3.401138	-4.068624	3.251408
Н	-0.369268	-1.493194	4.888345
Н	-2.228303	-3.111410	5.225305
С	5.818504	-2.452730	1.270907
С	5.236122	-2.871725	-0.097536
Н	6.759259	-1.902490	1.149689
Н	6.032572	-3.319469	1.903753
Н	5.946005	-2.713265	-0.911726
Н	4.938218	-3.926055	-0.109006
С	4.746746	-1.565380	1.846141
С	3.745708	-1.325772	0.875929
С	4.645712	-0.977467	3.087207
Н	5.399872	-1.144567	3.851272
С	3.539655	-0.146008	3.326707
Н	3.406717	0.359138	4.276906
С	2.616427	0.041047	2.314035
Н	1.780170	0.704331	2.458075
Ν	2.677460	-0.536777	1.087605
Ν	4.036499	-2.017652	-0.296673
С	3.292512	-2.086742	-1.460560
С	2.258479	-1.262657	-1.828645
С	3.621138	-3.141989	-2.502759
Н	4.696367	-3.259482	-2.679820
Н	3.241797	-4.124073	-2.183437

С	2.870838	-2.626468	-3.746706
Н	3.538711	-1.987459	-4.337231
Н	2.528431	-3.435675	-4.398284
С	1.719452	-1.786046	-3.159211
Η	1.385076	-0.986741	-3.831194
Η	0.844207	-2.422522	-2.978206
Ir	1.082136	-0.014275	-0.551660
Η	0.192963	0.204487	-1.825559
С	3.001384	0.603867	-2.093474
Η	2.675359	0.606923	-3.129819
С	2.487574	1.605132	-1.210402
Н	1.831346	2.332629	-1.688270
С	3.454461	2.235206	-0.216289
Н	4.168000	1.479499	0.136138
Н	2.926716	2.601391	0.669915
С	4.240814	3.405822	-0.839718
Н	4.792195	3.048014	-1.722141
Н	3.531857	4.161044	-1.209213
С	5.217804	4.067036	0.141202
Н	4.656410	4.430417	1.013336
Н	5.917780	3.309224	0.522185
С	6.006987	5.223961	-0.481053
Η	5.336304	6.013609	-0.841457
Н	6.692291	5.675555	0.244826
Н	6.604625	4.883449	-1.335363
Н	4.039170	0.313572	-1.949837

12L

 B3LYP SCF energy:
 -3293.96780157 a.u.

 B3LYP enthalpy:
 -3292.869268 a.u.

 B3LYP free energy:
 -3293.023687 a.u.

 B3LYP-D3(BJ) SCF energy in solution:
 -3295.18872683 a.u.

 B3LYP-D3(BJ) enthalpy in solution:
 -3294.090193 a.u.

 B3LYP-D3(BJ) free energy in solution:
 -3294.244612 a.u.

ATOM	И Х	Y	Ζ
С	6.317571	0.713759	1.579318
С	5.158315	0.523814	0.859994
С	4.115797	-0.320468	1.344304
С	4.318333	-0.956354	2.610045
С	5.528691	-0.751904	3.324952
С	6.512408	0.067240	2.823085
Н	7.092635	1.365216	1.185592

Н	5.038259	1.031386	-0.089193
С	2.881523	-0.525681	0.621055
С	3.292780	-1.785361	3.118420
Н	5.658510	-1.253663	4.280420
Н	7.434927	0.221029	3.375316
С	2.113084	-1.944362	2.437361
С	1.867109	-1.304180	1.186027
Н	3.445128	-2.299420	4.064130
Н	1.365567	-2.594792	2.866094
С	2.813092	0.112603	-0.736201
C	3.641520	-0.442207	-1.777867
C	2.077214	1.271752	-0.981970
Ċ	4.371041	-1.654099	-1.611085
Ċ	3.748222	0.232308	-3.037644
Ċ	2 200532	1 922095	-2 244782
Č	5 156188	-2 157686	-2 624235
H	4 296482	-2 193463	-0 674719
C	4 575061	-0.305927	-4 059761
C	3 022748	1 433391	-3 229225
н	1 639885	2 828868	-2 434981
\hat{C}	5 267821	-1 477254	-3 860044
н	5 697138	-3 087443	-2 473053
и Ц	1 647224	0.226435	5 004844
и П	3 11/1560	1 061061	-5.004844
и П	5 807270	1.901901	-4.174938
D D	0.22/966	-1.648116	-4.040377
I D	0.224900	1 780816	0.003218
I C	0.039303	2 740850	1 5/02/8
C	-0.044132	-2.740830	1.349240
C	-0.903017	-2.241/29	2.823320
C	-1.030073	-4.042830	2 745441
С U	-1.004314	-3.022327	2 110257
п С	-0.029133	-1.231307	3.119237
	-1./30300	-4.022479	2.143067
П	-0.822003	-4.438220	0.247023
	-2.000337	-4.51/009	3.404899
Н	-1.880059	-2.623544	4./31451
H	-2.059513	-5.828/49	1.868561
H	-2.6095/1	-4.926495	4.12120/
C	0.798153	-2.866472	-0.956221
C	0.423420	-2.801928	-2.303/85
C	1.648381	-3.911538	-0.547360
С	0.878116	-3.755608	-3.218942
Η	-0.217681	-1.999780	-2.646202
С	2.095961	-4.865981	-1.458812
Η	1.964239	-3.984784	0.488693
С	1.711197	-4.791175	-2.799927

Н	0.577481	-3.683690	-4.260422
Н	2.748722	-5.665889	-1.120692
Н	2.062254	-5.533219	-3.511279
С	0.488961	3.620686	-0.124377
С	-0.732496	4.207236	0.242407
С	1.561773	4.464060	-0.458085
С	-0.887005	5.594275	0.251049
Н	-1.566632	3.576408	0.527495
С	1.402812	5.851119	-0.459495
Н	2.530023	4.048166	-0.715804
С	0.178259	6.421148	-0.108251
Н	-1.839552	6.028484	0.542623
Н	2.242938	6.485504	-0.727969
Н	0.058674	7.500710	-0.105894
С	1.221860	1.865004	1.858457
С	2.468397	2.406780	2.206094
С	0.315490	1.547674	2.877934
С	2.807290	2.600295	3.544202
Н	3.182044	2.676686	1.434583
С	0.651014	1.752020	4.219007
Н	-0.663220	1.159172	2.623298
С	1.899536	2.274184	4.555246
Н	3.781667	3.008768	3.796532
Н	-0.067092	1.508654	4.997676
Н	2.163274	2.433685	5.596887
С	-5.240170	3.399930	0.007212
С	-4.435719	3.186366	-1.309421
Н	-6.313518	3.256876	-0.151394
Н	-5.105854	4.418955	0.389467
Н	-5.047082	2.708869	-2.086463
Н	-4.045396	4.123777	-1.714170
С	-4.645324	2.383190	0.956082
С	-3.525761	1.790534	0.332635
С	-4.959891	1.994086	2.237407
Н	-5.809358	2.417823	2.766210
С	-4.145824	1.015480	2.848864
Н	-4.359899	0.658718	3.850112
С	-3.068245	0.496788	2.154877
Н	-2.453778	-0.278706	2.589840
Ν	-2.723923	0.877086	0.895183
Ν	-3.324079	2.285854	-0.923805
С	-2.394937	1.761808	-1.868196
С	-2.507512	0.513260	-2.481846
С	-1.674511	2.733246	-2.801615
Н	-2.436955	3.348663	-3.303794
Н	-1.002183	3.423947	-2.291339

С	-0.970979	1.817596	-3.824084
Η	-0.905684	2.271409	-4.817133
Η	0.044114	1.596341	-3.491679
С	-1.801177	0.522365	-3.818046
Η	-2.603620	0.555560	-4.573873
Η	-1.217601	-0.379739	-4.025363
Ir	-1.107038	0.121026	-0.550297
Η	-0.124126	-0.211763	-1.734449
С	-3.456826	-0.587108	-2.114435
Η	-3.767545	-1.153664	-3.001509
С	-2.650665	-1.394852	-1.089546
Η	-2.132066	-2.210280	-1.599343
С	-3.568499	-1.975226	-0.006235
Η	-4.245880	-1.193012	0.358114
Η	-3.005766	-2.319925	0.862399
С	-4.420171	-3.149171	-0.529784
Η	-3.754675	-3.959577	-0.862303
Η	-4.987423	-2.836746	-1.418853
С	-5.398501	-3.696513	0.519294
Η	-6.062890	-2.885558	0.850765
Η	-4.832698	-4.009806	1.407850
Η	-4.365685	-0.172244	-1.658740
С	-6.240906	-4.869535	0.006729
Н	-6.925487	-5.237161	0.779347
Н	-6.845340	-4.576034	-0.860233
Н	-5.606483	-5.709288	-0.302717

13L-TS

 B3LYP SCF energy:
 -3293.94878743 a.u.

 B3LYP enthalpy:
 -3292.853062 a.u.

 B3LYP free energy:
 -3293.008255 a.u.

 B3LYP-D3(BJ) SCF energy in solution:
 -3295.17232436 a.u.

 B3LYP-D3(BJ) enthalpy in solution:
 -3294.076599 a.u.

 B3LYP-D3(BJ) free energy in solution:
 -3294.231792 a.u.

 Imaginary frequency:
 -842.6316 cm-1

AT(DM	Х	Y	Ζ	
С	-6.3	871487	1.38312	20 -1.	.016815
С	-5.1	64014	1.0868	15 -0.	.424779
С	-4.3	846594	0.0259	07 -0.	.911103
С	-4.8	818954	-0.7205	62 -2	.038580
С	-6.0)72414	-0.3955	51 -2	.623557
С	-6.8	335508	0.63452	25 -2.	125671

Н	-6.976527	2.197440	-0.628217
Η	-4.826839	1.669592	0.424736
С	-3.074565	-0.298558	-0.324643
С	-4.019536	-1.775580	-2.538025
Η	-6.415213	-0.977076	-3.475548
Н	-7.792557	0.876601	-2.578659
С	-2.793618	-2.055239	-1.985032
С	-2.286169	-1.308458	-0.884523
Η	-4.385920	-2.366499	-3.373801
Η	-2.214438	-2.871384	-2.395575
С	-2.651843	0.424253	0.919819
С	-3.347875	0.133972	2.150852
С	-1.594872	1.331468	0.922448
С	-4.419405	-0.800583	2.226768
С	-2.952598	0.793866	3.359792
С	-1.174443	1.920002	2.153477
С	-5.076798	-1.036204	3.414561
Η	-4.722746	-1.336321	1.335775
С	-3.654006	0.535971	4.566697
С	-1.843041	1.676654	3.325370
Η	-0.314140	2.579103	2.161863
С	-4.700840	-0.356656	4.596396
Η	-5.893421	-1.751978	3.443112
Η	-3.344163	1.056021	5.469739
Η	-1.522131	2.156460	4.246921
Η	-5.233774	-0.546750	5.523546
Р	-0.591599	-1.716422	-0.201118
Р	-0.487423	1.610707	-0.535683
С	-0.014064	-3.124477	-1.258084
С	0.221333	-2.893585	-2.627190
С	0.303298	-4.383637	-0.729048
С	0.725924	-3.901557	-3.446836
Н	-0.004321	-1.922812	-3.058263
С	0.824662	-5.389328	-1.549532
Η	0.145235	-4.590938	0.323305
С	1.030865	-5.155592	-2.908514
Н	0.885042	-3.707685	-4.503962
Н	1.062256	-6.358693	-1.120526
Н	1.425592	-5.941844	-3.545527
С	-1.037003	-2.514608	1.403384
С	-0.466749	-2.090157	2.609381
С	-1.988217	-3.550516	1.429846
С	-0.817696	-2.702262	3.815587
Н	0.231376	-1.261017	2.607450
С	-2.332752	-4.164402	2.632625
Η	-2.461077	-3.880625	0.509205

С	-1.744506	-3.743835	3.828879
Н	-0.371126	-2.357216	4.744015
Н	-3.063758	-4.968009	2.636923
Н	-2.016143	-4.221065	4.766126
С	-0.011225	3.405304	-0.413830
С	1.069007	3.868673	-1.181162
Ċ	-0.794614	4.351908	0.269767
Ċ	1 377523	5 228960	-1 237807
Ĥ	1 660511	3 173062	-1 763761
C	-0.482149	5 711340	0.216075
H	-1 658109	4 038465	0.845639
C	0.608372	6 1 5 5 3 0 3	-0.532768
Ĥ	2 216448	5 561840	-1 842846
Н	-1 101165	6 423286	0 755008
Н	0.847211	7 214101	-0 577111
C	-1 471676	1 734205	-2 097706
Č	-2 569891	2 599802	-2 217678
Č	-1 011554	1 061422	-3 237903
Č	-3 205029	2 767874	-3 446558
H	-2.930971	3 146980	-1 352442
C	-1 641240	1 238236	-4 472272
H	-0 152181	0 400104	-3 159034
C	-2 741037	2 089648	-4 577130
H	-4 060972	3 432179	-3 522807
Н	-1 271312	0.712576	-5 348370
Н	-3 233011	2 229377	-5 535481
C	5 099955	3 724586	0.655467
C	4 304598	3 292796	1 910115
H	6 170927	3 518555	0 769717
Н	4 996391	4 796182	0 459403
Н	4 960607	3 024436	2 741518
Н	3 622614	4 079092	2 251818
C	4 498006	2 884650	-0 441201
C	3 568529	1 963913	0.121171
Č	4 743341	2 876929	-1 791174
Ĥ	5 465705	3 557314	-2 233846
C	4 038125	1 950069	-2 589330
H	4 198792	1 885742	-3 659470
C	3 114531	1 127723	-1 983775
H	2 531900	0 423530	-2 567286
N	2.831414	1 133616	-0 643789
N	3 523112	2 098677	1 489803
C	3 139388	1 177501	2 488590
č	3 305278	-0 160896	2 488224
č	2.594856	1.699939	3.804727
H	3.379422	2.207887	4.384825

Н	1.789253	2.431163	3.663275
С	2.112252	0.411854	4.511721
Η	2.271351	0.439676	5.593498
Η	1.036425	0.293126	4.340967
С	2.878559	-0.742332	3.821971
Н	3.772157	-1.039594	4.392866
Н	2.270229	-1.650087	3.723435
Ir	1.094715	-0.121329	-0.241401
Н	1.623055	-0.786632	1.098219
С	3.851605	-1.008411	1.376770
Н	4.471689	-1.805693	1.807495
С	2.758623	-1.661730	0.485065
Н	2.323745	-2.514220	1.019456
Н	4.518573	-0.414588	0.741454
С	3.349120	-2.184410	-0.837093
Н	3.831899	-1.361555	-1.378753
Η	2.554703	-2.567388	-1.481283
С	4.386895	-3.309616	-0.628341
Н	5.228098	-2.942956	-0.025044
Н	3.925487	-4.127353	-0.055616
С	4.931606	-3.863342	-1.952702
Η	5.369749	-3.040445	-2.535942
Η	4.096343	-4.252939	-2.550586
С	5.980872	-4.962907	-1.755785
Η	6.349066	-5.339134	-2.716721
Η	6.844604	-4.590972	-1.191396
Н	5.565279	-5.813579	-1.202002

14L

 B3LYP SCF energy:
 -811.06657399 a.u.

 B3LYP enthalpy:
 -810.635047 a.u.

 B3LYP free energy:
 -810.707469 a.u.

 B3LYP-D3(BJ) SCF energy in solution:
 -811.39782318 a.u.

 B3LYP-D3(BJ) enthalpy in solution:
 -810.966296 a.u.

 B3LYP-D3(BJ) free energy in solution:
 -811.038718 a.u.

ATO	Ν	Х	Y		Ζ
С	2.72	0056	-1.41	2372	2.046932
С	1.86	9150	-0.11	5850	2.008010
Н	2.08	7478	-2.28	5674	2.257386
Н	3.48	8435	-1.37	3226	2.826011
Н	0.93	2290	-0.20	6094	2.563712
Н	2.42	8356	0.73	4970	2.426686

С	3.274014	-1.481692	0.643418
С	2.560982	-0.572422	-0.170823
С	4.246831	-2.259643	0.051173
Н	4.825707	-2.976538	0.629378
С	4.473451	-2.098434	-1.330028
Н	5.230903	-2.681350	-1.844092
С	3.703089	-1.176104	-2.029888
Н	3.855264	-1.037280	-3.099110
Ν	2.743518	-0.405883	-1.478792
Ν	1.607410	0.113853	0.570097
С	1.006099	1.324640	0.141722
С	-0.292653	1.634525	0.309441
С	1.791493	2.433607	-0.537515
Н	2.761538	2.615251	-0.056472
Н	2.007347	2.160858	-1.577281
С	0.833080	3.642438	-0.423920
Н	1.103889	4.241587	0.453516
Η	0.877608	4.304605	-1.294607
С	-0.575009	3.030758	-0.210406
Н	-1.187895	3.624249	0.482389
Η	-1.141766	2.982076	-1.152737
С	-1.369196	0.747013	0.866567
Η	-0.941644	-0.233536	1.108565
С	-2.564137	0.547163	-0.088608
Η	-3.016139	1.520474	-0.324308
Η	-2.196300	0.138752	-1.040004
С	-3.638733	-0.382160	0.489383
Н	-3.187677	-1.358410	0.721747
Н	-3.993049	0.024408	1.448777
С	-4.837201	-0.588438	-0.446411
Н	-4.483383	-0.993455	-1.406238
Н	-5.290027	0.387330	-0.678126
С	-5.912032	-1.519734	0.129350
Н	-5.459989	-2.495174	0.359224
Н	-6.265258	-1.115368	1.088836
Н	-1.749400	1.169805	1.811179
С	-7.105766	-1.719243	-0.810729
Н	-7.854869	-2.388265	-0.371614
Н	-7.600014	-0.764924	-1.031543
Н	-6.789015	-2.155185	-1.766412

B3LYP SCF energy: -3293.95115384 a.u. B3LYP enthalpy: -3292.856333 a.u. B3LYP free energy: -3293.008684 a.u. B3LYP-D3(BJ) SCF energy in solution: -3295.17135402 a.u. B3LYP-D3(BJ) enthalpy in solution: -3294.076533 a.u. B3LYP-D3(BJ) free energy in solution: -3294.228884 a.u. Imaginary frequency: -732.0190 cm-1

ATO	M X	Y	Ζ
С	6.473020	-1.243105	-0.234474
С	5.172248	-1.009821	0.154661
С	4.430469	0.096754	-0.355376
С	5.097276	0.957349	-1.283979
С	6.442750	0.700339	-1.659503
С	7.122014	-0.379921	-1.147961
Н	7.007926	-2.097740	0.170006
Н	4.708544	-1.687501	0.860101
С	3.053672	0.356782	0.023250
С	4.393324	2.071753	-1.794923
Н	6.923174	1.376374	-2.362054
Н	8.150660	-0.571596	-1.439113
С	3.077415	2.273245	-1.473409
С	2.360322	1.400037	-0.595059
Н	4.903486	2.766779	-2.456908
Н	2.577723	3.133850	-1.893589
С	2.560832	-0.506461	1.153415
С	3.168372	-0.272755	2.439621
С	1.740615	-1.623620	0.976176
С	3.912285	0.907710	2.729628
С	3.034831	-1.249539	3.480202
С	1.665771	-2.603110	2.006881
С	4.475191	1.108113	3.969807
Н	4.024305	1.665847	1.963522
С	3.642161	-1.021629	4.744777
С	2.314823	-2.436927	3.206299
Н	1.094473	-3.507306	1.844402
С	4.346862	0.133324	4.988795
Н	5.026492	2.022581	4.169160
Н	3.533782	-1.778553	5.517347
Н	2.260655	-3.211886	3.966810
Н	4.804469	0.302246	5.959170
Р	0.539985	1.787199	-0.365470
Р	0.574979	-1.729864	-0.463667
С	0.244270	2.905249	-1.829306
С	0.491277	2.427330	-3.131061
С	-0.249276	4.207621	-1.678106
С	0.252404	3.231231	-4.243262

п	0.890868	1.427914	-3.275183
С	-0.500025	5.009932	-2.797711
Н	-0.435255	4.612001	-0.689469
С	-0.250673	4.526747	-4.080131
Н	0.460848	2.848267	-5.238460
Н	-0.884374	6.016208	-2.657622
Н	-0.439052	5.152602	-4.947622
С	0.513188	3.006867	1.029563
С	-0.668423	3.243417	1.750707
С	1.645771	3.787203	1.313903
С	-0.716292	4.240608	2.725974
Н	-1.541373	2.626175	1.573232
С	1.596294	4.778959	2.294919
Н	2.569704	3.630824	0.767670
С	0.415142	5.011074	3.000901
Н	-1.637624	4.408060	3.276886
Н	2.482957	5.370824	2.503798
Н	0.377460	5.784486	3.762695
С	-0.174074	-3.419553	-0.324337
С	-1.061471	-3.693658	0.733062
С	0.093423	-4.435231	-1.254345
С	-1.643383	-4.953230	0.865944
Н	-1.291470	-2.916045	1.454584
С	-0.502566	-5.693178	-1.125803
Н	0.768464	-4.257183	-2.083070
С	-1.367678	-5.958025	-0.065654
Н	-2.314549	-5.150122	1.697626
Н	-0.280707	-6.465884	-1.856499
Н	-1.823700	-6.938652	0.036879
С	1.648957	-1.905331	-1.956593
С	2.865747	-2.601393	-1.870174
С	1.225213	-1.445442	-3.210923
С	3.643325	-2.816862	-3.008098
Н	3.208645	-2.977982	-0.911891
С	1.999436	-1.667562	-4.351845
Н	0.284700	-0.909705	-3.295353
С	3.212696	-2.350345	-4.251860
Н	4.586943	-3.347323	-2.920026
Н	1.654491	-1.305704	-5.316582
Н	3.818594	-2.519216	-5.137435
С	-5.619215	-2.491031	1.261744
С	-4.879877	-1.527940	2.224790
Н	-6.652193	-2.175297	1.087322
Н	-5.658259	-3.508809	1.668646
Н	-5.433340	-0.591001	2.367543
Н	-4.712201	-1.971795	3.207756

С	-4.777480	-2.442835	0.010317
С	-3.608900	-1.678340	0.277831
С	-4.939049	-3.024060	-1.219714
Η	-5.814227	-3.625556	-1.449394
С	-3.918263	-2.834678	-2.181854
Η	-3.980162	-3.287398	-3.164843
С	-2.831307	-2.056512	-1.859277
Η	-2.037811	-1.887791	-2.575348
Ν	-2.665211	-1.431948	-0.651061
Ν	-3.586827	-1.243337	1.565450
С	-2.513600	-0.613120	2.228795
С	-1.381181	-0.118571	1.668837
С	-2.527045	-0.592195	3.750735
Η	-3.470594	-0.231963	4.178346
Η	-2.360038	-1.601542	4.162870
С	-1.345663	0.343133	4.059148
Η	-1.706580	1.376838	4.128983
Η	-0.843715	0.102791	5.001804
С	-0.432228	0.194057	2.827781
Η	0.201334	1.067436	2.675545
Η	0.246438	-0.652855	2.979889
Ir	-1.089542	0.048711	-0.434051
Η	-1.060571	0.125186	-2.132749
С	-2.650752	1.622414	-0.736981
Η	-2.218888	2.597326	-0.519782
С	-2.337866	1.130556	-2.050407
Η	-1.827844	1.776518	-2.754487
Η	-3.043623	0.444790	-2.514810
С	-4.047171	1.491436	-0.153204
Η	-3.986556	1.405198	0.938619
Η	-4.531921	0.580340	-0.521289
С	-4.934020	2.700397	-0.512635
Η	-5.000829	2.792327	-1.606412
Η	-4.453701	3.623760	-0.156903
С	-6.347197	2.606308	0.078504
Η	-6.275188	2.509391	1.171636
Η	-6.828392	1.684999	-0.280484
С	-7.227501	3.810965	-0.270808
Η	-7.345057	3.914038	-1.356297
Η	-8.228001	3.713373	0.164611
Н	-6.790089	4.743734	0.105311

16 B3LYP SCF energy: -3293.97111076 a.u.

B3LYP enthalpy:-3292.871931 a.u.B3LYP free energy:-3293.027978 a.u.B3LYP-D3(BJ) SCF energy in solution:-3295.19938392 a.u.B3LYP-D3(BJ) enthalpy in solution:-3294.100204 a.u.B3LYP-D3(BJ) free energy in solution:-3294.256251 a.u.

ATC	M	Х	Y	Ζ
С	-6	.545588	1.051666	0.089345
С	-5	.225520	0.828957	0.414943
С	-4	.454348	-0.171809	-0.247609
С	-5	.111215	-0.936830	-1.263245
С	-6	.476151	-0.693336	-1.571679
С	-7	.184657	0.282225	-0.910580
Н	-7	.103067	1.823909	0.611784
Η	-4	.769724	1.433312	1.189077
С	-3	.059307	-0.418828	0.064927
С	-4	.376239	-1.940997	-1.936062
Н	-6	.948376	-1.295199	-2.343834
Н	-8	.228298	0.462947	-1.150871
С	-3	.048248	-2.134369	-1.663449
С	-2	.350127	-1.362865	-0.680770
Η	-4	.873717	-2.555516	-2.682019
Н	-2	.519858	-2.905460	-2.207456
С	-2	.552254	0.343761	1.260295
С	-3	.080054	-0.054682	2.540799
С	-1	.786073	1.510998	1.167149
С	-3	.770174	-1.287395	2.730952
С	-2	.915012	0.799937	3.680151
С	-1	.680427	2.365949	2.301316
С	-4	.249155	-1.652089	3.968903
Н	-3	.906555	-1.954397	1.887953
С	-3	.436492	0.403312	4.941459
С	-2	.247294	2.036405	3.508612
Н	-1	.147720	3.303765	2.211374
С	-4	.088298	-0.798512	5.087183
Н	-4	.759573	-2.603318	4.089519
Н	-3	.305525	1.069160	5.790653
Н	-2	.169760	2.718985	4.351247
Н	-4	.480068	-1.096333	6.055355
Р	-0.	525830	-1.742750	-0.509760
Р	-0.	667641	1.822827	-0.279151
С	-0	.183737	-2.513536	-2.166410
С	-0	.397781	-1.751419	-3.329156
С	0.	328805	-3.811327	-2.296062
С	-0	.105023	-2.275807	-4.587606

Η	-0.830309	-0.758024	-3.257482
С	0.627763	-4.331932	-3.558804
Н	0.490484	-4.426605	-1.417604
С	0.414595	-3.567506	-4.705917
Н	-0.289453	-1.678011	-5.476027
Н	1.021530	-5.341045	-3.640842
Н	0.642277	-3.977111	-5.685767
С	-0.467846	-3.189547	0.642636
С	0.725091	-3.519880	1.307588
С	-1.587726	-4.020214	0.811372
С	0.795588	-4.655961	2.114913
Н	1.595487	-2.882916	1.206115
С	-1.514255	-5.153319	1.623355
Н	-2.520669	-3.791751	0.307546
С	-0.323374	-5.475276	2.275583
Ĥ	1.725901	-4.896477	2.621767
Н	-2 390783	-5 783595	1 743825
Н	-0 267863	-6 357549	2 906765
C	0.015513	3 524062	0.002404
C	0.987204	3 713676	1 002041
C	-0 376434	4 630014	-0 767782
C	1 534026	4 975068	1 235519
H	1 305988	2.871953	1 607819
C	0 183895	5 889879	-0 541001
Н	-1 121925	4 519115	-1 546577
C	1 137003	6.067935	0 461036
Н	2 272171	5 103879	2 022709
н	-0 134243	6 732886	-1 147948
Н	1 566190	7 049729	0.639710
\hat{C}	-1 738880	2 089148	-1 755197
C	-3 040484	2.600925	-1 646973
C	-1 206681	1 866171	-3 034863
C	-3 796373	2 863566	-2 790542
н	-3 466866	2.005500	-0.668462
C	-1 957956	2.794710	-0.000402
н	-0.193639	1 486882	-3 143073
\hat{C}	-3 257855	2 632985	-4 058146
н	-4 806844	3 248500	-7 688429
и П	1 520020	1 06/213	5 162504
н Ц	-1.329029	2 8/1085	-3.102394
Γ	-5.840748	2.841085	1 106681
C	J.J07834 4 851056	2.730039	2 164267
с u	4.031030	1./10/22	2.10430/
п U	0.30/43/	2.31003/	1.030341
п U	5 165521	J./JUJJJ 0.800100	1.374039
п U	J.40JJ24	0.009100	2.200001 2.156417
п	4.0/4009	2.131010	3.13041/

С	4.682470	2.596664	-0.061078
С	3.565259	1.772354	0.223841
С	4.804554	3.150409	-1.310173
Н	5.639657	3.797726	-1.562599
С	3.797952	2.867424	-2.264045
Н	3.837252	3.285873	-3.263120
С	2.754877	2.040718	-1.912068
Н	1.975491	1.795483	-2.624138
Ν	2.627134	1.457658	-0.683443
Ν	3.567253	1.355231	1.520349
С	2.565494	0.604835	2.151183
С	1.472015	0.034613	1.584649
С	2.583216	0.476055	3.664390
Н	3.560623	0.179004	4.063169
Н	2.323257	1.433711	4.144176
С	1.500828	-0.592398	3.911976
Н	1.965895	-1.585326	3.924059
Н	0.979436	-0.457563	4.864480
С	0.561011	-0.476810	2.694042
Η	0.063610	-1.419200	2.468626
Н	-0.227844	0.254726	2.892895
Ir	1.093939	-0.006509	-0.399835
С	2.628819	-1.481659	-0.851811
Н	2.158050	-2.468049	-0.817730
С	2.972180	-1.197480	-2.327993
Н	2.107193	-0.859629	-2.917246
Н	3.329188	-2.103565	-2.834951
С	3.896556	-1.582316	0.009707
Η	3.624217	-1.664291	1.069152
Н	4.491089	-0.663871	-0.084144
С	4.799479	-2.778819	-0.350083
Н	5.132606	-2.700130	-1.393782
Н	4.213772	-3.708627	-0.285928
С	6.031946	-2.897092	0.557498
Н	5.704803	-2.983730	1.604064
Н	6.615278	-1.966551	0.496454
С	6.933287	-4.085142	0.204486
Н	7.305558	-4.007925	-0.824276
Н	7.802365	-4.139803	0.869575
Н	6.389546	-5.034039	0.288926
Н	3.751798	-0.433912	-2.420552

B3LYP SCF energy: -3293.92221196 a.u.

B3LYP enthalpy: -3292.824111 a.u. B3LYP free energy: -3292.978792 a.u. B3LYP-D3(BJ) SCF energy in solution: -3295.14177377 a.u. B3LYP-D3(BJ) enthalpy in solution: -3294.043673 a.u. B3LYP-D3(BJ) free energy in solution: -3294.198354 a.u. Imaginary frequency: -307.1495 cm-1

ATC	ЭM	Х	Y	Ζ
С	-6.	598933	0.452746	-0.136299
С	-5.	297457	0.269372	0.275267
С	-4.	376553	-0.501981	-0.493912
С	-4.	856988	-1.065119	-1.718723
С	-6.	207200	-0.867665	-2.114807
С	-7.	066685	-0.125400	-1.340038
Н	-7.	274854	1.046763	0.472462
Н	-4.	970824	0.726071	1.201046
С	-3.	001987	-0.706638	-0.091072
С	-3.	958943	-1.809367	-2.516380
Н	-6.	544496	-1.314221	-3.046645
Н	-8.	.098058	0.020905	-1.647552
С	-2.	647593	-1.958460	-2.145506
С	-2.	129972	-1.406555	-0.935828
Н	-4.	314613	-2.255657	-3.441681
Н	-1.	996159	-2.515253	-2.802419
С	-2.	627351	-0.161331	1.258985
С	-3.	228513	-0.768847	2.423583
С	-1.	823087	0.970998	1.412996
С	-4.	068861	-1.920266	2.349689
С	-2.	991653	-0.209087	3.721290
С	-1.	634677	1.526414	2.710356
С	-4.	615824	-2.482412	3.481967
Н	-4.	283130	-2.363555	1.384380
С	-3.	573737	-0.808799	4.871086
С	-2.	196824	0.956648	3.824890
Н	-1.	.055257	2.431246	2.828603
С	-4.	368932	-1.924489	4.759268
Η	-5.	250717	-3.359304	3.391959
Η	-3.	378560	-0.362946	5.843001
Η	-2.	.043675	1.407548	4.802195
Η	-4.	811024	-2.375672	5.642682
Р	-0.	278387	-1.617466	-0.654421
Р	-0.	868449	1.691487	-0.012717
С	0.	290245	-2.292039	-2.300713
С	0.	827742	-1.410719	-3.253819
С	0.	156173	-3.647546	-2.652023

С	1.223305	-1.864578	-4.513901
Η	0.952130	-0.361492	-2.996711
С	0.555116	-4.102547	-3.909831
Η	-0.268102	-4.354338	-1.947143
С	1.090119	-3.213657	-4.844776
Η	1.639402	-1.163806	-5.232477
Η	0.444094	-5.154270	-4.158376
Η	1.400585	-3.570639	-5.822577
С	-0.132273	-3.123916	0.425580
С	0.999286	-3.956150	0.341404
С	-1.109498	-3.431290	1.378856
С	1.144088	-5.053558	1.190184
Н	1.763366	-3.767551	-0.403352
С	-0.961678	-4.524879	2.234795
Н	-1.997794	-2.824266	1.462292
С	0.166323	-5.339084	2.146437
Н	2.020418	-5.689291	1.097944
Н	-1.738433	-4.736426	2.964193
Н	0.280663	-6.193538	2.807258
С	-0.374529	3.388753	0.566823
С	0.614260	3.511158	1.561635
С	-0.929170	4.562892	0.036064
С	1.004596	4.763336	2.033853
Н	1.084328	2.619884	1.965050
С	-0.525705	5.818184	0.500601
Н	-1.677159	4.513092	-0.745384
С	0.434548	5.924079	1.504739
Н	1.757314	4.832249	2.814717
Н	-0.970747	6.712367	0.073320
Η	0.739701	6.900174	1.871046
С	-2.106486	2.058427	-1.332589
С	-3.328573	2.683396	-1.033425
С	-1.800101	1.776941	-2.671093
С	-4.213453	3.030815	-2.053895
Н	-3.590597	2.900167	-0.001939
С	-2.686017	2.124849	-3.692838
Η	-0.872275	1.266646	-2.914037
С	-3.892101	2.755875	-3.385495
Н	-5.156700	3.509647	-1.807899
Η	-2.435517	1.897192	-4.725141
Η	-4.582874	3.027144	-4.178672
С	5.258931	3.677676	0.549229
С	4.963592	2.567682	1.593849
Η	6.231889	3.524996	0.069482
Η	5.283966	4.669489	1.012903
Н	5.779624	1.841129	1.668088
Н	4.790423	2.978499	2.593370
----	----------	-----------	-----------
С	4.124249	3.548717	-0.438309
С	3.288969	2.474470	-0.040373
С	3.810859	4.261712	-1.566647
Н	4.429446	5.089225	-1.902590
С	2.647777	3.891373	-2.282287
Н	2.344416	4.423741	-3.176451
С	1.892638	2.831437	-1.832800
Н	1.001835	2.520674	-2.363836
Ν	2.195101	2.089945	-0.723187
Ν	3.738866	1.892574	1.108656
С	3.167068	0.802957	1.773356
С	2.296811	-0.111499	1.241277
С	3.368788	0.645106	3.269443
Н	4.415088	0.752142	3.582457
Н	2.798844	1.405119	3.830538
С	2.822192	-0.773223	3.525504
Н	3.639744	-1.498580	3.447554
Н	2.375781	-0.882100	4.518562
С	1.807397	-1.003942	2.385523
Η	1.702510	-2.056753	2.122433
Η	0.806637	-0.666500	2.685096
Ir	1.003212	0.338328	-0.329874
С	3.141719	-1.072881	-0.471079
Η	2.466678	-1.643358	-1.106471
С	4.062552	-0.231237	-1.346111
Η	3.527630	0.428824	-2.029149
Η	4.667127	-0.908027	-1.963964
С	3.947274	-2.063962	0.384645
Н	3.299033	-2.591175	1.086549
Н	4.680484	-1.512640	0.985697
С	4.685633	-3.135199	-0.449553
Н	5.451240	-2.669858	-1.082293
Н	3.982294	-3.628429	-1.137523
С	5.356786	-4.196179	0.435585
Н	4.594015	-4.685210	1.058465
Н	6.045116	-3.700104	1.134073
С	6.119003	-5.254375	-0.369150
Η	6.918594	-4.799381	-0.965892
Η	6.578990	-5.998939	0.289706
Η	5.452496	-5.786168	-1.059223
Η	4.762994	0.362501	-0.751537

15L-TS

 B3LYP SCF energy:
 -3293.95426891 a.u.

 B3LYP enthalpy:
 -3292.859829 a.u.

 B3LYP free energy:
 -3293.013070 a.u.

 B3LYP-D3(BJ) SCF energy in solution:
 -3295.17308766 a.u.

 B3LYP-D3(BJ) enthalpy in solution:
 -3294.078648 a.u.

 B3LYP-D3(BJ) free energy in solution:
 -3294.231889 a.u.

 Imaginary frequency:
 -747.9765 cm-1

AT(DM X	Y	Ζ
С	6.092447	-0.775845	-2.288482
С	4.966693	-0.792027	-1.494679
С	4.203721	0.390640	-1.262421
С	4.659058	1.594857	-1.886876
С	5.830163	1.585980	-2.690606
С	6.536915	0.424001	-2.891446
Η	6.647907	-1.695586	-2.448729
Н	4.657725	-1.727321	-1.045476
С	3.005932	0.400508	-0.443843
С	3.928893	2.785065	-1.666097
Н	6.154149	2.518588	-3.145300
Н	7.431301	0.423217	-3.507656
С	2.767109	2.767743	-0.940395
С	2.250402	1.571485	-0.349831
Н	4.292602	3.719261	-2.086347
Η	2.241609	3.701084	-0.801627
С	2.769396	-0.882776	0.304964
С	3.717653	-1.198854	1.343638
С	1.843513	-1.848749	-0.095360
С	4.606990	-0.227247	1.887506
С	3.789137	-2.533205	1.862058
С	1.974935	-3.180676	0.390512
С	5.493487	-0.554639	2.888551
Η	4.573311	0.790039	1.515882
С	4.726543	-2.844256	2.883847
С	2.933220	-3.518770	1.314867
Н	1.311736	-3.951329	0.021444
С	5.560884	-1.876509	3.391436
Н	6.150993	0.208104	3.295808
Н	4.767204	-3.863662	3.258918
Н	3.025207	-4.548212	1.651996
Н	6.271462	-2.120946	4.175589
Р	0.599898	1.722136	0.527944
Р	0.329705	-1.376373	-1.061380
С	0.018333	3.375236	-0.108687
С	-0.139972	3.571885	-1.494966

С	-0.315451	4.424678	0.757217
С	-0.614332	4.782661	-1.994141
Н	0.122591	2.777881	-2.187495
С	-0.804545	5.636360	0.254349
Н	-0.192611	4.311446	1.828384
С	-0.954286	5.819999	-1.118351
Н	-0.717231	4.918824	-3.067201
Н	-1.059636	6.435880	0.944038
Н	-1.326364	6.763343	-1.507534
С	1.069248	2.160586	2.266393
С	0.157210	1.988891	3.319737
С	2.300943	2.780814	2.532992
С	0.468256	2.433050	4.606240
Н	-0.782978	1.480114	3.141455
С	2.612034	3.216285	3.821884
Η	3.018871	2.935176	1.734600
С	1.695822	3.047042	4.861089
Н	-0.248318	2.291037	5.410481
Н	3.570622	3.691242	4.010761
Н	1.937872	3.389107	5.863275
С	-0.476011	-3.005995	-1.431859
С	-1.080004	-3.726278	-0.383511
С	-0.523341	-3.541169	-2.727348
С	-1.695273	-4.952977	-0.625891
Η	-1.068184	-3.320304	0.623537
С	-1.151735	-4.766610	-2.968882
Н	-0.070191	-3.011023	-3.556868
С	-1.735955	-5.476530	-1.921514
Н	-2.146194	-5.500516	0.197356
Н	-1.176741	-5.163944	-3.979703
Н	-2.218682	-6.431341	-2.109786
С	0.943967	-0.848363	-2.721375
С	2.065841	-1.471677	-3.291897
С	0.250673	0.111247	-3.471698
С	2.485564	-1.136129	-4.579183
Н	2.614344	-2.221102	-2.730114
С	0.667594	0.442853	-4.762832
Н	-0.615247	0.602946	-3.038045
С	1.787107	-0.178639	-5.318168
Н	3.360870	-1.620846	-5.001698
Н	0.118629	1.187856	-5.332418
Н	2.114782	0.081654	-6.320585
С	-5.520038	-2.496629	1.887881
С	-4.365140	-2.259452	2.896273
Η	-6.352193	-1.806772	2.072203
Н	-5.923072	-3.511459	1.961137

Η	-4.656100	-1.593442	3.713699
Η	-4.017464	-3.199382	3.337350
С	-4.877555	-2.217026	0.551696
С	-3.595726	-1.651724	0.779279
С	-5.305674	-2.416035	-0.736435
Η	-6.270489	-2.869679	-0.946251
С	-4.447071	-2.023519	-1.789871
Η	-4.726322	-2.170194	-2.826891
С	-3.250184	-1.414988	-1.487682
Η	-2.590150	-1.063959	-2.269352
Ν	-2.812455	-1.184482	-0.212476
Ν	-3.273715	-1.648843	2.103163
С	-1.963824	-1.498760	2.619213
С	-0.914301	-0.912677	1.995393
С	-1.621414	-2.163739	3.944044
Η	-2.344363	-1.956781	4.742720
Η	-1.577019	-3.260642	3.838716
С	-0.230336	-1.573277	4.236471
Η	-0.340276	-0.661903	4.836495
Η	0.416329	-2.259098	4.793045
С	0.321821	-1.212243	2.842392
Η	1.046287	-0.397590	2.884471
Η	0.855475	-2.072298	2.420644
Ir	-1.123106	0.122470	0.149265
Η	-1.633507	0.972885	-1.257004
С	-2.610140	1.492657	1.026247
Η	-2.155106	2.220275	1.691232
С	-2.736921	1.853874	-0.353081
Η	-2.215518	2.753764	-0.653059
Η	-3.421211	0.932837	1.486002
С	-4.014636	1.635122	-1.137808
Η	-3.801606	1.504932	-2.205973
Η	-4.539478	0.739481	-0.796685
С	-4.936422	2.861030	-0.956981
Η	-5.158158	2.994714	0.110770
Η	-4.407019	3.768925	-1.278884
С	-6.249686	2.731530	-1.741504
Η	-6.021884	2.594072	-2.807840
Н	-6.775220	1.821127	-1.420641
С	-7.170046	3.943905	-1.565681
Н	-8.096647	3.823420	-2.137172
Н	-7.443553	4.086083	-0.513231
Η	-6.683756	4.864643	-1.909806

16L

 B3LYP SCF energy:
 -3293.98321495 a.u.

 B3LYP enthalpy:
 -3292.883842 a.u.

 B3LYP free energy:
 -3293.040601 a.u.

 B3LYP-D3(BJ) SCF energy in solution:
 -3295.20571419 a.u.

 B3LYP-D3(BJ) enthalpy in solution:
 -3294.106341 a.u.

 B3LYP-D3(BJ) free energy in solution:
 -3294.263100 a.u.

ATC	DM X	Y	Ζ
С	-6.423509	0.113556	1.791386
С	-5.257616	-0.035644	1.072717
С	-4.237145	0.960839	1.096164
С	-4.475806	2.123848	1.896385
С	-5.691541	2.256029	2.619122
С	-6.650456	1.271786	2.571041
Η	-7.179737	-0.665401	1.753440
Η	-5.118433	-0.931261	0.480447
С	-2.995674	0.826226	0.358926
С	-3.485490	3.133251	1.939694
Η	-5.846577	3.152955	3.213204
Η	-7.577991	1.379694	3.125700
С	-2.299442	2.975641	1.272930
С	-2.015751	1.812784	0.489862
Η	-3.670784	4.035739	2.516524
Н	-1.561833	3.764292	1.339156
С	-2.944978	-0.370732	-0.555720
С	-3.805544	-0.332304	-1.710456
С	-2.288396	-1.563312	-0.230914
С	-4.418527	0.871620	-2.165015
С	-4.072118	-1.535437	-2.444119
С	-2.605144	-2.752883	-0.946374
С	-5.229121	0.881861	-3.277579
Η	-4.229515	1.796682	-1.633082
С	-4.926843	-1.494893	-3.578888
С	-3.488496	-2.745863	-1.998725
Η	-2.143403	-3.687578	-0.654130
С	-5.493583	-0.312138	-3.991473
Н	-5.673703	1.815282	-3.610720
Η	-5.120535	-2.419487	-4.116678
Η	-3.730728	-3.672379	-2.513339
Η	-6.142739	-0.289028	-4.861864
Р	-0.322738	1.756813	-0.294812
Р	-0.815747	-1.576211	0.895060
С	0.613239	2.952024	0.771173
С	0.737725	2.677595	2.145707

C	1.262198	4.076113	0.243978
С	1.491934	3.511430	2.971231
Н	0.207379	1.836683	2.583051
С	2.021744	4.906506	1.073281
Н	1.173199	4.313707	-0.810608
С	2.140409	4.627182	2.435334
Н	1.566481	3.294320	4.033229
Н	2.514164	5.777782	0.650816
Н	2.726029	5.278852	3.077254
С	-0.529993	2.662495	-1.894008
С	0.369980	2.465004	-2.954604
С	-1.553801	3.613220	-2.043859
С	0.250988	3.206244	-4.131464
Н	1.158293	1.726722	-2.869178
С	-1.671677	4.348390	-3.224066
Н	-2.261377	3.787525	-1.240354
С	-0.769098	4.148838	-4.269895
Н	0.956203	3.041837	-4.941315
Н	-2.470205	5.078199	-3.323176
Н	-0.861484	4.722856	-5.187443
С	-0.363659	-3.364722	1.069273
С	0.301023	-4.004631	0.006572
С	-0.631582	-4.100379	2.233766
С	0.668755	-5.346312	0.102427
Н	0.524163	-3.451033	-0.900231
С	-0.248644	-5.440676	2.331942
Н	-1.141254	-3.634920	3.069580
С	0.398989	-6.067975	1.268242
Н	1.170100	-5.827948	-0.732792
Н	-0.464523	-5.993055	3.242174
Н	0.691177	-7.111432	1.344819
С	-1.420109	-1.158903	2.585605
С	-2.724466	-1.460338	3.004817
С	-0.526964	-0.598640	3.512093
С	-3.126499	-1.195438	4.314860
Н	-3.429270	-1.900749	2.307380
С	-0.924937	-0.341492	4.825198
Н	0.491208	-0.365587	3.210780
С	-2.228878	-0.637160	5.227297
Н	-4.142968	-1.425574	4.620640
Н	-0.219492	0.088795	5.530586
Н	-2.543614	-0.434355	6.246887
С	5.010696	-3.479866	-1.601060
С	4.119771	-2.806990	-2.680848
Н	6.064103	-3.211270	-1.724063
Н	4.947841	-4.573118	-1.659573

Н	4.657870	-2.015424	-3.217242
Η	3.749066	-3.522310	-3.418231
С	4.429694	-2.975347	-0.301116
С	3.254572	-2.239510	-0.590585
С	4.803128	-3.149291	1.008132
Η	5.690580	-3.717714	1.271786
С	3.988412	-2.578309	2.014455
Н	4.230235	-2.693663	3.064699
С	2.873456	-1.858442	1.646655
Н	2.235926	-1.400623	2.394051
Ν	2.498266	-1.651506	0.350210
Ν	2.991223	-2.218018	-1.927812
С	1.838365	-1.698047	-2.533773
С	0.884522	-0.924113	-1.958461
С	1.477222	-2.123469	-3.946350
Η	2.309816	-2.032064	-4.654021
Η	1.155725	-3.177503	-3.969857
С	0.314490	-1.168700	-4.284402
Н	0.712227	-0.267428	-4.765420
Н	-0.416642	-1.614163	-4.965756
С	-0.293352	-0.797299	-2.914369
Η	-0.762600	0.187220	-2.921223
Η	-1.074688	-1.514197	-2.640196
Ir	1.022107	-0.167694	-0.093095
С	2.720364	0.969973	-0.756149
Η	2.423032	1.920189	-1.209284
С	3.719046	1.275774	0.372698
Н	3.213824	1.772000	1.212276
Н	3.224208	0.400496	-1.546933
С	4.880940	2.176884	-0.092186
Η	5.388277	1.700090	-0.944235
Η	4.474336	3.126031	-0.468906
С	5.904471	2.464497	1.014161
Η	5.394375	2.943773	1.863180
Η	6.303359	1.512702	1.396638
С	7.070818	3.352514	0.558443
Н	7.575489	2.876784	-0.294467
Н	6.674130	4.306294	0.182348
С	8.091463	3.625256	1.668273
Η	8.911379	4.257789	1.310363
Η	7.625447	4.135315	2.520430
Η	8.529988	2.691640	2.041814
Н	4.145605	0.348375	0.774587

17L-TS

 B3LYP SCF energy:
 -3293.94145785 a.u.

 B3LYP enthalpy:
 -3292.843686 a.u.

 B3LYP free energy:
 -3292.999143 a.u.

 B3LYP-D3(BJ) SCF energy in solution:
 -3295.15329405 a.u.

 B3LYP-D3(BJ) enthalpy in solution:
 -3294.055522 a.u.

 B3LYP-D3(BJ) free energy in solution:
 -3294.210979 a.u.

 Imaginary frequency:
 -421.4516 cm-1

ATO	M X	Y	Z
С	-6.681398	0.630477	-0.600033
С	-5.414923	0.454032	-0.087983
С	-4.493086	-0.456997	-0.683800
С	-4.933306	-1.169974	-1.843908
С	-6.247943	-0.974557	-2.345930
С	-7.110437	-0.093858	-1.737231
Н	-7.359318	1.332686	-0.122973
Н	-5.117067	1.024604	0.782609
С	-3.153251	-0.656947	-0.174319
С	-4.031583	-2.058124	-2.472695
Н	-6.556263	-1.535513	-3.224422
Н	-8.114788	0.049776	-2.124986
С	-2.752505	-2.208577	-2.004120
С	-2.275407	-1.510173	-0.854615
Н	-4.357842	-2.615471	-3.347165
Н	-2.094555	-2.879432	-2.536388
С	-2.827464	0.072306	1.099546
С	-3.507519	-0.343132	2.303599
С	-2.005398	1.202292	1.129365
С	-4.372160	-1.477680	2.351157
С	-3.332713	0.403084	3.514522
С	-1.887193	1.950531	2.334498
С	-4.994906	-1.855891	3.520130
Н	-4.546755	-2.053669	1.449918
С	-3.991895	-0.009476	4.704410
С	-2.525311	1.564642	3.486587
Н	-1.297270	2.856378	2.348145
С	-4.804991	-1.117918	4.713040
Н	-5.646575	-2.725050	3.523681
Н	-3.842473	0.574771	5.608807
Н	-2.423369	2.160101	4.390482
Н	-5.306166	-1.425133	5.626207
Р	-0.459917	-1.755463	-0.428849
Р	-0.904951	1.648223	-0.305691
С	0.192992	-2.616613	-1.951494

С	0.854514	-1.871711	-2.941332
С	0.012917	-3.994691	-2.170802
С	1.328311	-2.477970	-4.106974
Н	1.016730	-0.808780	-2.787338
С	0.489103	-4.602527	-3.333350
Н	-0.505180	-4.600247	-1.435076
С	1.149520	-3.847251	-4.304748
Н	1.841099	-1.879592	-4.854999
Н	0.341720	-5.669030	-3.478223
Н	1.521384	-4.323274	-5.207506
С	-0.432081	-3.143603	0.804769
С	0.671349	-4.015915	0.877354
С	-1.469642	-3.306640	1.730204
С	0.730519	-5.010009	1.854127
Η	1.478986	-3.941219	0.158159
С	-1.407738	-4.299248	2.710604
Η	-2.335559	-2.661376	1.696196
С	-0.306619	-5.151875	2.779384
Η	1.586843	-5.677943	1.886781
Н	-2.227749	-4.401948	3.415649
Η	-0.258992	-5.926471	3.539385
С	-0.383371	3.406379	0.008093
С	0.503875	3.686630	1.064520
С	-0.814453	4.473730	-0.794780
С	0.913758	4.992579	1.329628
Н	0.878828	2.877885	1.682931
С	-0.390007	5.780321	-0.536844
Η	-1.483202	4.298991	-1.628438
С	0.467804	6.046648	0.528538
Η	1.585556	5.185914	2.161753
Н	-0.738651	6.588851	-1.173197
Η	0.789180	7.064010	0.732863
С	-2.001407	1.825968	-1.778923
С	-3.232979	2.496927	-1.697512
С	-1.565047	1.362949	-3.027740
С	-4.004557	2.700706	-2.841082
Н	-3.590727	2.862767	-0.739603
С	-2.336381	1.568810	-4.173488
Η	-0.623760	0.826287	-3.105086
С	-3.556733	2.239216	-4.081528
Н	-4.957827	3.214995	-2.761743
Н	-1.985765	1.200636	-5.133582
Н	-4.159195	2.398984	-4.971157
С	5.145565	3.396214	1.001316
С	4.648108	2.397437	2.078642
Η	6.205716	3.247893	0.773737

Н	5.031114	4.433421	1.337385
Η	5.382937	1.606962	2.272582
Н	4.423163	2.887526	3.029070
С	4.251848	3.112264	-0.181086
С	3.265112	2.171830	0.208295
С	4.224893	3.626376	-1.452601
Н	4.965358	4.348437	-1.785142
С	3.191127	3.201207	-2.319954
Н	3.113997	3.582610	-3.331615
С	2.268178	2.286696	-1.864604
Н	1.463352	1.938562	-2.500451
Ν	2.291934	1.738001	-0.612207
Ν	3.418391	1.795008	1.512419
С	2.688767	0.816194	2.195589
С	1.870589	-0.132092	1.642542
С	2.675742	0.801500	3.712014
Н	3.668486	0.936449	4.158619
Н	2.041664	1.609584	4.112726
С	2.084523	-0.589079	4.017670
Н	2.900978	-1.313780	4.119079
Н	1.506669	-0.610097	4.946382
С	1.235142	-0.935568	2.774916
Н	1.212188	-2.009013	2.579291
Н	0.193222	-0.618324	2.908070
Ir	0.902524	0.166034	-0.179206
С	2.735831	-1.234438	0.213351
С	4.225155	-0.904448	0.136475
Н	4.404795	-0.078784	-0.561979
С	5.036157	-2.128730	-0.332358
Н	4.860084	-2.965173	0.359795
Н	4.669948	-2.460197	-1.314798
С	6.544395	-1.855356	-0.419958
Н	6.724244	-1.026450	-1.120910
Н	6.909529	-1.512372	0.559767
С	7.359586	-3.078066	-0.862315
Н	7.179367	-3.904616	-0.160562
Н	6.992598	-3.422762	-1.839464
С	8.864084	-2.801234	-0.949742
Н	9.414544	-3.693157	-1.268421
Н	9.080233	-2.002244	-1.669584
Н	9.268148	-2.490871	0.021651
Н	4.600835	-0.590644	1.117143
Н	2.409730	-1.501247	-0.806183
Н	2.561849	-2.117752	0.825430

 B3LYP SCF energy:
 -575.18734061 a.u.

 B3LYP enthalpy:
 -574.935109 a.u.

 B3LYP free energy:
 -574.986894 a.u.

 B3LYP-D3(BJ) SCF energy in solution:
 -575.41708279 a.u.

 B3LYP-D3(BJ) enthalpy in solution:
 -575.164851 a.u.

 B3LYP-D3(BJ) free energy in solution:
 -575.216636 a.u.

Cartesian coordinates

ATC	DM	Х	Y	Ζ
С	-1.	575346	2.178057	0.076806
С	-0.	047886	2.011787	-0.142172
Н	-2.	.021596	2.833171	-0.678640
Н	-1	.784713	2.627056	1.056635
Н	0.	240411	2.316903	-1.157767
Н	0.	535066	2.609657	0.562889
С	-2.	082647	0.759120	0.014933
С	-0.	983679	-0.129891	0.030615
С	-3.	354587	0.227597	-0.008777
Н	-4	.232665	0.869342	-0.021469
С	-3.	486433	-1.174998	-0.014305
Н	-4	.464100	-1.645472	-0.036257
С	-2.	334400	-1.951024	0.013654
Н	-2.	406677	-3.037325	0.017065
Ν	-1	.079622	-1.457706	0.034797
Ν	0.	216027	0.572241	0.048678
С	1.	507572	0.037960	-0.001048
С	1.	886141	-1.255332	-0.025769
Н	1.	203013	-2.091987	-0.026219
С	2.	703834	0.975298	-0.069128
Н	2.	774495	1.444333	-1.062692
Н	2.	654137	1.794793	0.658313
С	3.	899175	0.033461	0.207330
Η	4.	792389	0.311990	-0.361069
Η	4.	159111	0.088296	1.270551
С	3.	386335	-1.390849	-0.122048
Η	3.	692749	-1.707129	-1.132709
Η	3.	795085	-2.142492	0.566493

19

B3LYP SCF energy:	-3058.11779916 a.u.
B3LYP enthalpy:	-3057.199434 a.u.
B3LYP free energy:	-3057.335655 a.u.

B3LYP-D3(BJ) SCF energy in solution:	-3059.21885586 a.u.
B3LYP-D3(BJ) enthalpy in solution:	-3058.300491 a.u.
B3LYP-D3(BJ) free energy in solution:	-3058.436712 a.u.

ATO	M X	Y	Z
С	5.685499	9 2.591603	0.106949
С	4.57389	7 1.878135	-0.282698
С	3.91798	5 0.979423	0.609583
С	4.44780	0.865942	1.936061
С	5.597825	5 1.613152	2.308852
С	6.211109	2.457148	1.413847
Н	6.16456	8 3.265207	-0.598056
Η	4.19326.	3 2.005879	-1.288282
С	2.752780	0.212149	0.231143
С	3.802922	0.008849	2.857466
Н	5.982222	3 1.502336	3.319502
Н	7.09209	6 3.021703	1.705029
С	2.686769	9 -0.700508	2.493916
С	2.142038	8 -0.619042	1.180269
Η	4.199662	2 -0.080335	3.865585
Η	2.21210	5 -1.337041	3.228519
С	2.277369	9 0.356772	-1.191263
С	3.111830	0 -0.152646	-2.251023
С	1.108893	3 1.055573	-1.522912
С	4.32466	5 -0.863688	-2.006325
С	2.73904	0.064223	-3.619399
С	0.775210	5 1.280752	-2.887451
С	5.09754	7 -1.340414	-3.040789
Н	4.65246	8 -1.021883	-0.985767
С	3.558519	9 -0.440140	-4.665929
С	1.56616	0.802849	-3.902302
Н	-0.10973	2 1.852746	-3.135012
С	4.713320	5 -1.131250	-4.387481
Н	6.01659	0 -1.876559	-2.821668
Н	3.25307	0 -0.263413	-5.693942
Н	1.298584	4 0.994247	-4.938346
Н	5.33415.	3 -1.511632	-5.193255
P	0.555097	-1.549307	0.879646
P	-0.106864	1.586382	-0.232148
C	0.224390	0 -2.470400	2.470008
C	-0.80380	7 -2.094525	3.347578
C	1.000338	3 -3.600128	2.793505
C	-1.05380	0 -2.827310	4.511310
H	-1.40954	8 -1.224010	3.122910
C	0.759390) -4.320027	3.962364

Н	1.797165	-3.922501	2.131314
С	-0.272776	-3.938776	4.823773
Н	-1.860653	-2.522828	5.172197
Н	1.374522	-5.184547	4.195539
Н	-0.465060	-4.506331	5.729862
С	0.974334	-3.013319	-0.168642
С	-0.028486	-3.979634	-0.370118
С	2.255410	-3.253696	-0.673284
С	0.246711	-5.147533	-1.076490
Н	-1.026750	-3.815315	0.026044
С	2.528505	-4.423026	-1.390375
Н	3.050274	-2.540332	-0.501365
С	1.527071	-5.370124	-1.594656
Н	-0.536260	-5.886704	-1.221321
Н	3.528312	-4.588850	-1.781266
Н	1.740515	-6.280781	-2.147041
С	-1.280013	2.773995	-1.043422
С	-2.247901	2.293547	-1.946028
С	-1.258578	4.147963	-0.753923
С	-3.142210	3.166926	-2.562331
Н	-2.307170	1.230098	-2.152746
С	-2.166655	5.017660	-1.363861
Н	-0.538916	4.552141	-0.053280
С	-3.105746	4.533627	-2.272688
Н	-3.872987	2.778123	-3.266323
Η	-2.133050	6.076492	-1.123680
Η	-3.807261	5.212645	-2.748918
С	0.840474	2.662569	0.926816
С	1.745100	3.594836	0.387358
С	0.617546	2.657331	2.309446
С	2.400621	4.505530	1.214792
Н	1.936948	3.613715	-0.681385
С	1.280275	3.566461	3.136690
Н	-0.061406	1.929177	2.739780
С	2.168844	4.494012	2.592155
Н	3.098166	5.217164	0.783161
Н	1.101739	3.545140	4.208066
Н	2.682496	5.201664	3.236575
С	-6.705468	-0.074480	-0.315495
С	-5.862794	-1.099688	-1.108702
Н	-7.499785	-0.560824	0.258526
Н	-7.186831	0.647784	-0.985785
Н	-6.040822	-2.126425	-0.768082
Н	-6.056134	-1.059654	-2.181918
С	-5.686500	0.603551	0.564848
С	-4.386694	0.172453	0.189253

С	-5.828774	1.533734	1.560937
Η	-6.808252	1.889985	1.866743
С	-4.652806	2.026763	2.172001
Η	-4.700767	2.766245	2.963477
С	-3.428329	1.555490	1.764202
Η	-2.513580	1.906039	2.219731
Ν	-3.255240	0.605329	0.784230
Ν	-4.450086	-0.736781	-0.833940
С	-3.390465	-1.315433	-1.515519
С	-2.049141	-1.170907	-1.237668
С	-3.688028	-2.107153	-2.780504
Η	-4.474276	-2.860399	-2.652951
Η	-4.030023	-1.429731	-3.580135
С	-2.317435	-2.723220	-3.113874
Η	-2.244123	-3.721023	-2.665021
Η	-2.154280	-2.833585	-4.190354
С	-1.311391	-1.776064	-2.430933
Η	-0.375644	-2.271439	-2.173988
Η	-1.036104	-0.954834	-3.112445
Ir	-1.289335	-0.207122	0.444467
Η	-0.921333	0.365566	1.947114

 B3LYP SCF energy:
 -3293.96292966 a.u.

 B3LYP enthalpy:
 -3292.865817 a.u.

 B3LYP free energy:
 -3293.019238 a.u.

 B3LYP-D3(BJ) SCF energy in solution:
 -3295.18110259 a.u.

 B3LYP-D3(BJ) enthalpy in solution:
 -3294.083990 a.u.

 B3LYP-D3(BJ) free energy in solution:
 -3294.237411 a.u.

ATON	И Х	Y	Ζ
С	6.079579	-1.066490	-2.176409
С	4.973141	-0.957465	-1.363277
С	4.170229	0.221726	-1.353909
С	4.559634	1.283626	-2.231250
С	5.711413	1.148292	-3.051894
С	6.461549	-0.003315	-3.027828
Н	6.667650	-1.979806	-2.160478
Η	4.710906	-1.791607	-0.725252
С	2.993867	0.363759	-0.518914
С	3.783013	2.464266	-2.248875
Н	5.984927	1.975697	-3.701540
Н	7.341260	-0.100863	-3.657292

С	2.647595	2.567509	-1.488256
С	2.206380	1.512434	-0.633201
Н	4.092076	3.295071	-2.878148
Н	2.088545	3.490167	-1.531762
С	2.782224	-0.764064	0.454735
С	3.751446	-0.905838	1.512072
С	1.843626	-1.778600	0.249017
C	4.671467	0.128579	1.848035
Ċ	3 821797	-2 129480	2 255930
Č	1 970195	-3 004691	0.959751
Č	5 584817	-0.032913	2 865195
Ĥ	4 642325	1 061837	1 299043
C	4 784648	-2 270924	3 291742
C	2.943810	-3 184649	1 911945
Н	1 291586	-3 819379	0 744030
C	5 647682	-1 244593	3 594994
H	6 267153	0 776189	3 109473
Н	4 823307	-3 208040	3 841120
Н	3 032586	-4 137978	2 426732
Н	6 378514	-1 359438	4 390160
P	0.610532	1 782920	0.307055
P	0.351066	-1 495080	-0.815385
C	0.012994	3 403549	-0 397247
C	-0.317710	3 492039	-1 764221
C	-0 164772	4 538601	0.405350
C	-0 797596	4 680795	-2 308499
H	-0 195880	2 624224	-2.404310
C	-0 664365	5 727442	-0 139635
H	0.085559	4 511096	1 459420
C	-0 978427	5 804419	-1 494226
H	-1 034685	4 729995	-3 367677
Н	-0 798967	6 592797	0 503008
Н	-1 358828	6 729837	-1 916979
C	1 203197	2 336010	1 975316
Č	0 390040	2 234067	3 114754
Č	2 437277	2 998922	2 089627
Č	0 799682	2 778487	4 333871
H	-0 555577	1 708475	3 063064
C	2.847364	3 536983	3 309752
Н	3 078664	3 112492	1 222090
C	2 029493	3 429672	4 435736
н	0 156803	2 685518	5 204667
Н	3 805752	4 044094	3 376840
Н	2 348407	3 850495	5 384993
Ċ	-0.463675	-3.158627	-0.940638
Č	-1.092771	-3.712522	0.189733
-			

С	-0.488291	-3.883074	-2.142263
С	-1.704777	-4.963016	0.122305
Н	-1.109165	-3.155460	1.120286
С	-1.113563	-5.131412	-2.208778
Н	-0.022027	-3.484325	-3.034841
С	-1.718445	-5.677807	-1.078548
Н	-2.173966	-5.379444	1.009660
Н	-1.120194	-5.674724	-3.149470
Н	-2.197827	-6.651264	-1.130257
С	1.030028	-1.268529	-2.521566
С	2.134773	-2.042791	-2.916568
С	0.421659	-0.433585	-3.467981
С	2.619663	-1.975923	-4.222141
Н	2.618436	-2.702997	-2.203582
С	0.907513	-0.367992	-4.775953
Н	-0.429285	0.173849	-3.178171
С	2.007177	-1.137702	-5.156222
Н	3.480007	-2.574916	-4.505783
Н	0.424659	0.287198	-5.495789
Н	2.386025	-1.084975	-6.172896
С	-5.658399	-2.353628	1.675686
С	-4.580441	-2.056894	2.748401
Н	-6.507105	-1.665309	1.767170
Н	-6.058039	-3.368220	1.768863
Н	-4.932475	-1.354959	3.509820
Н	-4.258961	-2.970450	3.259359
С	-4.925171	-2.131705	0.376649
С	-3.660034	-1.551833	0.660134
С	-5.279264	-2.383048	-0.924497
H	-6.232005	-2.844301	-1.169859
С	-4.363116	-2.029338	-1.940601
Н	-4.582833	-2.213654	-2.985992
С	-3.185608	-1.407515	-1.592989
Н	-2.485120	-1.079222	-2.348175
Ν	-2.817353	-1.129200	-0.305045
Ν	-3.437811	-1.474257	2.006612
С	-2.177721	-1.280043	2.624109
Ċ	-1.083774	-0.727856	2.049979
Ċ	-1 953044	-1 835490	4 023660
Ĥ	-2.746495	-1.579637	4.736280
Н	-1.885729	-2.936578	4.011812
C	-0.598584	-1 200584	4 387630
Ĥ	-0.771012	-0.235432	4.881046
Н	-0.004384	-1.818896	5.068385
C	0.073590	-0.974994	3.018815
Ĥ	0.823714	-0.183417	3.039760

Η	0.609246	-1.886059	2.725008
Ir	-1.119479	0.169072	0.063323
Η	-1.214793	0.699237	-1.496317
С	-2.594314	1.593878	1.140015
Η	-1.979072	2.250512	1.741210
С	-2.825392	1.901706	-0.192472
Η	-2.260582	2.716504	-0.622966
Η	-3.300803	0.985765	1.694617
С	-4.091511	1.589210	-0.947834
Η	-3.865116	1.301706	-1.980830
Η	-4.638840	0.761555	-0.487617
С	-4.993837	2.844359	-0.967634
Η	-5.228164	3.139193	0.064675
Η	-4.441251	3.684948	-1.410488
С	-6.298213	2.625534	-1.747437
Η	-6.057972	2.331148	-2.778801
Η	-6.846120	1.780467	-1.307245
С	-7.196186	3.866894	-1.763313
Η	-8.117374	3.682846	-2.326667
Η	-7.480548	4.164015	-0.746680
Η	-6.686211	4.719501	-2.227768

21-TS

 B3LYP SCF energy:
 -3293.93885607 a.u.

 B3LYP enthalpy:
 -3292.843868 a.u.

 B3LYP free energy:
 -3292.999030 a.u.

 B3LYP-D3(BJ) SCF energy in solution:
 -3295.15881311 a.u.

 B3LYP-D3(BJ) enthalpy in solution:
 -3294.063825 a.u.

 B3LYP-D3(BJ) free energy in solution:
 -3294.218987 a.u.

 Imaginary frequency:
 -268.5506 cm-1

ATON	И Х	Y	Ζ
С	5.952213	2.326253	1.170878
С	4.898802	1.695165	0.547569
С	4.186652	0.642294	1.190411
С	4.610899	0.251231	2.500403
С	5.703737	0.917484	3.116869
С	6.362208	1.936423	2.468584
Н	6.476186	3.130242	0.661659
Η	4.599400	2.008424	-0.446084
С	3.068667	-0.017920	0.568992
С	3.943825	-0.825167	3.131712
Η	6.010920	0.603901	4.111288

Н	7.197717	2.440475	2.945675
С	2.859217	-1.424723	2.540420
С	2.362533	-0.998539	1.275863
Н	4.303115	-1.180796	4.094229
Н	2.397787	-2.262421	3.043988
С	2.824611	0.261258	-0.888117
C	3,783277	-0.302232	-1.818273
C	1.752223	1.001464	-1.376628
Ċ	4 889441	-1 093782	-1 398317
Č	3 624509	-0.081613	-3 224539
Č	1 575598	1 136956	-2 789411
C	5 791819	-1 601498	-2 308249
Ĥ	5 026507	-1 306389	-0 345674
C	4 574642	-0.608688	-4 137768
C	2 487698	0.634783	-3 679603
Н	0 705112	1 659992	-3 168240
C	5 643856	-1 351506	-3 691501
Н	6 626776	-2 200852	-1 956778
Н	4 437615	-0.416709	-5 199095
Н	2 343944	0 776532	-4 748061
Н	6 367933	-1 750533	-4 395919
Р	0.807781	-1 778423	0 569563
P	0.355005	1 646842	-0 345723
\hat{C}	0.152537	-2 926452	1 877825
C	0.047244	-2 563827	3 234936
C	-0 437410	-4 141251	1 478913
C	-0 582612	-3 400794	4 158940
н	0.457716	-1 622456	3 585236
C	-1 077826	-4 970552	2 401829
Н	-0 379816	-4 460660	0 443758
C	-1 147046	-4 608689	3 747498
Н	-0.626282	-3 104780	5 203616
Н	-1 514617	-5 906190	2.064379
Н	-1 634570	-5 259897	4 466947
C	1.031370	-2.975040	-0.635773
C	1 582340	-2 715431	-2 013496
C	2 247463	-4 115493	-0 163999
C	2.247405	-3 593781	-2 901352
н	1 133578	-1 809063	-2.901332
C	2 873901	-4 989809	-1.050229
н	2.073201	-4 328338	0 899546
C	2.201771	-4 736957	-2 424072
н	2.040000	-3 371518	-3 964367
Н	3 385791	-5 867777	-0.665515
Н	3 333747	-5 421010	-3 114348
C	-0 031495	3 321487	_1 049077
\sim	0.051775	J.J2170/	1.077044

С	-1.177027	3.963972	-0.549879
С	0.807329	4.032824	-1.921457
С	-1.487938	5.268579	-0.933625
Н	-1.821859	3.451746	0.156025
С	0.490405	5.337471	-2.309460
Н	1.718959	3.583217	-2.298603
С	-0.660065	5.957215	-1.823006
Η	-2.374831	5.750651	-0.531170
Н	1.152658	5.869017	-2.987155
Н	-0.903997	6.971956	-2.124145
С	1.037845	2.224620	1.279680
С	1.949805	3.292631	1.328228
С	0.574457	1.682521	2.484733
С	2.395052	3.790126	2.551412
Η	2.307771	3.748302	0.410738
С	1.014459	2.186125	3.710876
Н	-0.135368	0.866069	2.468324
С	1.927018	3.240103	3.747118
Н	3.105313	4.611660	2.569827
Н	0.638060	1.756405	4.635340
Н	2.268143	3.635802	4.699570
С	-5.270712	2.583353	2.206636
С	-5.237404	2.634716	0.664776
Н	-6.275406	2.385192	2.589956
Н	-4.936017	3.535215	2.639274
Η	-6.075175	2.073755	0.229921
Η	-5.266651	3.652233	0.270579
С	-4.284348	1.486622	2.519536
С	-3.506920	1.235184	1.355983
С	-4.047464	0.775064	3.667216
Н	-4.634723	0.940818	4.565983
С	-3.023484	-0.196013	3.632984
Н	-2.804456	-0.821624	4.490771
С	-2.289443	-0.354691	2.479136
Н	-1.513100	-1.099427	2.424937
Ν	-2.476321	0.364830	1.333343
Ν	-3.962014	1.975226	0.298307
С	-3.585374	1.808069	-1.044353
С	-2.579685	1.033173	-1.499887
С	-4.243032	2.654790	-2.117171
Н	-5.338229	2.662593	-2.066531
Н	-3.911091	3.701846	-2.040787
С	-3.724860	1.993737	-3.410514
Η	-4.442879	1.235861	-3.744665
Η	-3.593639	2.708533	-4.228401
С	-2.405544	1.306399	-2.992623

Н	-2.201011	0.417190	-3.598998
Η	-1.553005	1.985318	-3.146720
Ir	-1.316087	-0.145197	-0.415241
Η	-0.804526	-0.818030	-1.943600
С	-1.672222	-1.830200	-1.972390
Η	-0.922058	-2.602782	-2.131365
С	-2.494499	-1.923658	-0.767798
Η	-2.169727	-2.692195	-0.062872
Η	-2.192025	-1.551267	-2.888994
С	-4.008197	-1.841355	-0.861162
Η	-4.412463	-1.541101	0.115392
Η	-4.297876	-1.058117	-1.570919
С	-4.653655	-3.179820	-1.270329
Η	-4.267130	-3.486997	-2.253638
Η	-4.346781	-3.964122	-0.562643
С	-6.186151	-3.117874	-1.323766
Η	-6.567851	-2.803536	-0.341713
Η	-6.491705	-2.336948	-2.034693
С	-6.830761	-4.450467	-1.719233
Η	-7.923111	-4.371624	-1.745596
Н	-6.496744	-4.774670	-2.712372
Η	-6.571370	-5.243325	-1.007082

 B3LYP SCF energy:
 -3293.93718115 a.u.

 B3LYP enthalpy:
 -3292.838701 a.u.

 B3LYP free energy:
 -3292.997376 a.u.

 B3LYP-D3(BJ) SCF energy in solution:
 -3295.16798394 a.u.

 B3LYP-D3(BJ) enthalpy in solution:
 -3294.069504 a.u.

 B3LYP-D3(BJ) free energy in solution:
 -3294.228179 a.u.

ATO	M X	Y	Ζ
С	-6.130478	-1.640157	1.565621
С	-5.041683	-1.188888	0.853445
С	-4.183364	-0.180763	1.379456
С	-4.496862	0.355693	2.669466
С	-5.627605	-0.128581	3.380260
С	-6.430188	-1.107472	2.842518
Н	-6.768170	-2.411499	1.143012
Н	-4.829364	-1.610335	-0.122317
С	-3.030532	0.299220	0.662913
С	-3.681177	1.388816	3.187925
Н	-5.848202	0.294123	4.357123

Η	-7.294839	-1.470402	3.390563
С	-2.574209	1.824675	2.502272
С	-2.199737	1.261630	1.248624
Η	-3.945137	1.845585	4.138591
Н	-1.997441	2.636416	2.923298
С	-2.869814	-0.154126	-0.762446
С	-3.779711	0.420884	-1.727437
С	-1.931409	-1.099727	-1.179340
С	-4.759206	1.393573	-1.375129
С	-3.712657	0.016004	-3.100377
С	-1.852380	-1.442046	-2.564950
С	-5.625265	1.907331	-2.315354
Н	-4.826758	1.737182	-0.350503
С	-4.622550	0.558492	-4.045684
С	-2.718912	-0.916336	-3.488180
Η	-1.102790	-2.149494	-2.895320
С	-5.565896	1.483890	-3.663527
Н	-6.363911	2.645690	-2.016673
Н	-4.557344	0.227580	-5.079160
Н	-2.651351	-1.215493	-4.531325
Η	-6.261102	1.892399	-4.391211
Р	-0.622844	1.816841	0.406694
Р	-0.579200	-1.764822	-0.097063
С	0.156391	3.062037	1.542257
С	0.375977	2.790335	2.907135
С	0.690471	4.251320	1.015591
С	1.074889	3.686373	3.717260
Η	-0.016026	1.882670	3.356405
С	1.398512	5.142046	1.826037
Η	0.546600	4.497386	-0.030067
С	1.590165	4.867181	3.179416
Н	1.209791	3.461535	4.771750
Н	1.794360	6.056116	1.392750
Н	2.133132	5.565095	3.809901
С	-1.280699	2.863689	-0.967453
С	-1.117464	2.474278	-2.301748
С	-2.014504	4.030404	-0.687387
С	-1.642411	3.246294	-3.340652
Η	-0.597413	1.551960	-2.538850
С	-2.535648	4.802634	-1.723559
Н	-2.171819	4.341972	0.340956
С	-2.344732	4.415660	-3.053288
Н	-1.505794	2.927877	-4.369882
Н	-3.093277	5.705992	-1.492957
Н	-2.750621	5.019910	-3.859488
С	-0.280749	-3.495714	-0.687688

С	0.940156	-4.088103	-0.325703
С	-1.235223	-4.281386	-1.355334
С	1.204965	-5.423454	-0.634511
Н	1.685553	-3.509010	0.209002
С	-0.964648	-5.614150	-1.671280
Н	-2.195402	-3.860218	-1.635094
С	0.256333	-6.188610	-1.314752
Н	2.152780	-5.866339	-0.340639
Н	-1.714312	-6.204315	-2.190971
Н	0.463729	-7.226354	-1.559554
С	-1.284058	-2.156019	1.569941
С	-2.319343	-3.093508	1.718246
С	-0.702782	-1.606931	2.720062
С	-2.770188	-3.455981	2.986004
Н	-2.771626	-3.551673	0.844858
С	-1.150461	-1.974634	3.990939
Η	0.107899	-0.895064	2.624764
С	-2.186614	-2.898235	4.126284
Η	-3.576259	-4.177430	3.083360
Η	-0.684531	-1.542950	4.872656
Н	-2.534518	-3.188338	5.113616
С	5.453432	-2.657718	1.634341
С	5.254875	-2.707901	0.102072
Н	6.480588	-2.399913	1.906433
Н	5.226915	-3.628776	2.092451
Н	6.030316	-2.136992	-0.424266
Н	5.250941	-3.724916	-0.295389
С	4.446723	-1.621366	2.073469
С	3.563831	-1.368789	0.986210
С	4.271486	-0.972202	3.265676
Η	4.935386	-1.146090	4.107379
С	3.201646	-0.051390	3.360492
Η	3.022342	0.516944	4.265768
С	2.376049	0.133323	2.278246
Н	1.571747	0.850123	2.306206
Ν	2.508029	-0.528071	1.087018
Ν	3.939665	-2.067679	-0.119283
С	3.358524	-1.940973	-1.386691
С	2.259243	-1.204908	-1.643593
С	3.849418	-2.751359	-2.566546
Н	4.936081	-2.716713	-2.711011
Н	3.573194	-3.812068	-2.457574
С	3.083656	-2.086257	-3.732145
Η	3.692826	-1.277193	-4.150518
Η	2.852225	-2.784295	-4.542348
С	1.814382	-1.486856	-3.076877

Н	1.446703	-0.609308	-3.619217
Η	1.004393	-2.230141	-3.077204
Ir	1.218225	0.002301	-0.418193
С	2.452854	1.828077	-2.457454
Η	2.737656	2.847101	-2.754118
С	2.514271	1.656104	-0.931534
Η	2.050711	2.537089	-0.469938
Η	3.130897	1.129541	-2.959868
С	3.969543	1.617551	-0.438066
Η	3.989841	1.524492	0.654551
Η	4.476137	0.729666	-0.843056
С	4.796467	2.866702	-0.803304
Η	4.898351	2.948998	-1.893345
Η	4.256067	3.767516	-0.474977
С	6.196886	2.864284	-0.174361
Η	6.102880	2.798805	0.919390
Η	6.733061	1.957032	-0.489490
С	7.026505	4.098788	-0.543266
Η	8.019222	4.067143	-0.080433
Η	7.167213	4.171705	-1.628528
Η	6.533893	5.020982	-0.211313
Η	1.451131	1.665021	-2.871254

23-TS

 B3LYP SCF energy:
 -3293.92802464 a.u.

 B3LYP enthalpy:
 -3292.830097 a.u.

 B3LYP free energy:
 -3292.984014 a.u.

 B3LYP-D3(BJ) SCF energy in solution:
 -3295.15110655 a.u.

 B3LYP-D3(BJ) enthalpy in solution:
 -3294.053179 a.u.

 B3LYP-D3(BJ) free energy in solution:
 -3294.207096 a.u.

 Imaginary frequency:
 -322.9651 cm-1

ATO	Μ	Х	Y	Ζ
С	-6.	099715	1.875584	-1.617478
С	-5.	031265	1.429389	-0.871828
С	-4.	152536	0.422863	-1.368275
С	-4.4	411373	-0.095104	4 -2.678578
С	-5.	522820	0.383200	-3.423393
С	-6.	355405	1.346984	-2.905091
Н	-6.	754399	2.642041	-1.212231
Н	-4.	856819	1.853545	5 0.109351
С	-3.	029727	-0.074365	5 -0.611643
С	-3.	549401	-1.088873	3 -3.198055

Н	-5.702005	-0.030734	-4.412473
Η	-7.205654	1.704777	-3.478558
С	-2.470792	-1.535938	-2.475478
С	-2.180135	-1.028704	-1.177355
Н	-3.753105	-1.504268	-4.182062
Н	-1.845125	-2.305140	-2.906732
С	-2.858689	0.450735	0.785550
С	-3.834271	0.076478	1.776838
С	-1.844289	1.351240	1.120778
С	-4.857845	-0.880637	1.520805
С	-3.789302	0.675758	3.078115
С	-1.826453	1.940352	2.416113
С	-5.781444	-1.209722	2.487189
Η	-4.899954	-1.365699	0.553224
С	-4.762594	0.322376	4.051072
С	-2.774300	1.622621	3.357756
Η	-1.071702	2.675248	2.662439
С	-5.742420	-0.598861	3.763667
Η	-6.549212	-1.946223	2.268000
Н	-4.716526	0.795860	5.028552
Η	-2.753776	2.102969	4.332987
Η	-6.484035	-0.862270	4.512306
Р	-0.708871	-1.705963	-0.231643
Р	-0.446541	1.682854	-0.059375
С	-0.036960	-3.006395	-1.388024
С	0.538258	-2.583993	-2.603119
С	0.000328	-4.373952	-1.082000
С	1.103789	-3.497919	-3.490713
Н	0.541054	-1.527805	-2.857756
С	0.578065	-5.290318	-1.966742
Н	-0.412604	-4.738938	-0.149194
С	1.126163	-4.859101	-3.173328
Н	1.528869	-3.146903	-4.426969
Н	0.595894	-6.344511	-1.704855
Η	1.569154	-5.573878	-3.860815
С	-1.634788	-2.696359	1.039722
С	-1.525456	-2.426763	2.407607
С	-2.546703	-3.684279	0.619393
С	-2.262653	-3.159554	3.342113
Η	-0.884080	-1.626563	2.745856
С	-3.276245	-4.419546	1.551424
Η	-2.689340	-3.882131	-0.438546
С	-3.128158	-4.165682	2.918114
Η	-2.163870	-2.932887	4.399846
Η	-3.965239	-5.186945	1.209545
Η	-3.697471	-4.739608	3.643704

С	0.415214	3.186874	0.611714
С	1.140900	3.073137	1.812483
С	0.418475	4.423190	-0.051820
С	1.806546	4.172621	2.353662
Н	1.193359	2.115737	2.320023
С	1.101059	5.519330	0.483649
Н	-0.107279	4.543342	-0.990980
С	1.787524	5.402520	1.691117
Н	2.342758	4.066708	3.293049
Η	1.087901	6.466733	-0.047885
Η	2.306243	6.259398	2.111775
С	-1.280886	2.318992	-1.584068
С	-2.228449	3.353698	-1.503692
С	-0.964686	1.792200	-2.843288
С	-2.820081	3.863903	-2.658971
Н	-2.506110	3.762221	-0.536081
С	-1.557964	2.300648	-4.000043
Η	-0.274232	0.956995	-2.916775
С	-2.481500	3.342838	-3.910110
Η	-3.550915	4.663618	-2.580946
Н	-1.304892	1.876761	-4.967830
Η	-2.944216	3.740614	-4.808670
С	5.767402	2.614108	0.713694
С	5.321613	1.608364	1.804648
Η	6.783343	2.407365	0.363757
Н	5.759517	3.641747	1.095564
Н	6.007088	0.755463	1.879580
Н	5.250339	2.071641	2.791323
С	4.732150	2.437186	-0.368963
С	3.713170	1.574335	0.109590
С	4.628174	2.971471	-1.627226
Н	5.392129	3.633282	-2.025348
С	3.487086	2.638202	-2.392492
Н	3.347693	3.027607	-3.394494
С	2.538645	1.798561	-1.853848
Н	1.661294	1.523161	-2.420744
Ν	2.623563	1.240899	-0.606217
Ν	3.989561	1.129253	1.368553
С	3.235813	0.230501	2.123129
С	2.194544	-0.551869	1.695362
С	3.466065	0.165776	3.622638
Η	4.525810	0.111875	3.898887
Η	3.056999	1.057551	4.127308
С	2.692407	-1.103993	4.013076
Η	3.356025	-1.974188	3.944097
Н	2.295661	-1.067937	5.032448

С	1.591320	-1.199123	2.941292
Н	1.236850	-2.218227	2.793747
Н	0.723614	-0.600542	3.252690
Ir	1.062370	-0.116230	-0.014471
С	2.542912	-3.193725	0.855151
Н	1.501972	-3.396542	1.109315
С	2.736229	-1.880846	0.106751
Н	2.223911	-1.945138	-0.862143
Н	2.878107	-4.023826	0.222517
С	4.208833	-1.582230	-0.179900
Н	4.303098	-0.641038	-0.725988
Н	4.765136	-1.473841	0.759641
С	4.894221	-2.670075	-1.037600
Н	4.940543	-3.617254	-0.485928
Н	4.293712	-2.865034	-1.938231
С	6.317005	-2.270276	-1.455026
Н	6.277733	-1.331082	-2.025649
Н	6.911114	-2.057222	-0.554639
С	7.022658	-3.345519	-2.287917
Н	8.033788	-3.031345	-2.569189
Н	7.109446	-4.285757	-1.730243
Н	6.470767	-3.557512	-3.211823
Н	3.134842	-3.223883	1.776544

 B3LYP SCF energy:
 -811.06436615 a.u.

 B3LYP enthalpy:
 -810.633064 a.u.

 B3LYP free energy:
 -810.704423 a.u.

 B3LYP-D3(BJ) SCF energy in solution:
 -811.39782286 a.u.

 B3LYP-D3(BJ) enthalpy in solution:
 -810.966521 a.u.

 B3LYP-D3(BJ) free energy in solution:
 -811.037880 a.u.

ATO	М	Х	Y	Ζ
С	-1.0	662950	-2.408994	-0.915047
С	-0.0	673039	-1.244161	-1.177355
Н	-1.	225218	-3.141791	-0.223310
Н	-1.	917603	-2.943712	-1.835961
Н	0.	367174	-1.522186	-0.990396
Н	-0.	746181	-0.892190	-2.217891
С	-2.3	833602	-1.703591	-0.272481
С	-2.4	426920	-0.404188	0.107394
С	-4.	119740	-2.097676	0.032397
Н	-4.	485651	-3.086325	-0.236025

С	-4.952159	-1.179514	0.702342
Н	-5.974463	-1.436535	0.960386
С	-4.437885	0.069380	1.033445
Η	-5.059213	0.794279	1.557018
Ν	-3.184982	0.479964	0.751997
Ν	-1.105088	-0.172726	-0.253037
С	-0.537465	1.124031	-0.349870
С	0.704541	1.450686	0.054477
С	-1.289230	2.299739	-0.950296
Η	-1.826240	2.029237	-1.868851
Η	-2.044992	2.663733	-0.244290
С	-0.160882	3.326737	-1.197834
Η	0.187992	3.242445	-2.233939
Η	-0.484946	4.361586	-1.047233
С	0.984334	2.914017	-0.239356
Н	1.975174	3.084113	-0.680644
Н	0.960993	3.499655	0.692512
С	1.684306	0.553253	0.772118
Н	1.163716	-0.390128	0.987091
С	2.101601	1.170558	2.123206
Н	2.688251	2.086262	1.979157
Н	1.220141	1.425111	2.721743
С	2.908082	0.225381	-0.121434
Н	2.542629	-0.108296	-1.103121
Н	3.478411	1.146825	-0.308474
С	3.850573	-0.846240	0.445078
Η	4.290114	-0.501055	1.390574
Η	3.269436	-1.748383	0.690717
С	4.984235	-1.223847	-0.519048
Η	4.552149	-1.582162	-1.464380
Η	5.560082	-0.322019	-0.771566
С	5.928205	-2.289552	0.048046
Η	5.387096	-3.215332	0.280109
Η	6.724649	-2.538463	-0.662689
Η	6.404051	-1.944739	0.974427
Н	2.710927	0.473293	2.707616

21L-TS

 B3LYP SCF energy:
 -3293.93897868 a.u.

 B3LYP enthalpy:
 -3292.844150 a.u.

 B3LYP free energy:
 -3292.997754 a.u.

 B3LYP-D3(BJ) SCF energy in solution:
 -3295.15939743 a.u.

 B3LYP-D3(BJ) enthalpy in solution:
 -3294.064569 a.u.

 B3LYP-D3(BJ) free energy in solution:
 -3294.218173 a.u.

Imaginary frequency:

ATO	Μ	Х	Y	Ζ
С	-5	.882006	-2.622434	-0.412329
С	-4	.783071	-1.814629	-0.601772
С	-4	.150966	-1.158708	0.493692
С	-4	.703121	-1.363005	1.798662
С	-5	.838962	-2.200495	1.964065
С	-6	.419656	-2.819729	0.882186
Η	-6	.342456	-3.113153	-1.265211
Η	-4	.386759	-1.679499	-1.601205
С	-2	.992653	-0.318578	0.322031
С	-4	.116436	-0.684879	2.892182
Н	-6	.242188	-2.338472	2.964052
Η	-7	.289396	-3.456468	1.015723
С	-2	.997038	0.091350	2.720008
С	-2	.378482	0.249478	1.447448
Η	-4	.568335	-0.774929	3.876915
Η	-2	.608765	0.623199	3.576339
С	-2	.604414	0.026857	-1.091271
С	-3	.492536	0.921024	-1.805885
С	-1	.468618	-0.462012	-1.733090
С	-4	.659411	1.483437	-1.214752
С	-3	.201040	1.279021	-3.162159
С	-1	.156472	-0.017647	-3.054799
С	-5	.496322	2.311236	-1.931562
Н	-4	.896681	1.260364	-0.182208
С	-4	.086363	2.126289	-3.878734
С	-2	.002843	0.802935	-3.753229
Н	-0	.232681	-0.340270	-3.520677
С	-5	.218400	2.630275	-3.280353
Н	-6	.381109	2.721959	-1.453616
Н	-3	.848899	2.371829	-4.910901
Н	-1	.758834	1.102593	-4.769623
Н	-5	.892749	3.275642	-3.835760
Р	-0.	793922	1.247230	1.305218
Р	-0.	165733	-1.461460	-0.884077
С	-0	.334162	1.831753	3.013093
С	-0	.344197	1.011548	4.157668
С	0.	236754	3.113409	3.139095
С	0.	156749	1.466468	5.379612
Н	-0	.751165	0.007079	4.114715
С	0.	748240	3.562521	4.357659
Н	0	.266544	3.783105	2.286256
С	0.	704934	2.744164	5.486667

Н	0.112401	0.815963	6.248832
Н	1.172827	4.560403	4.421679
Н	1.092671	3.097887	6.437359
С	-1.494599	2.809813	0.566173
С	-1.321697	3.133175	-0.786528
С	-2.308241	3.643965	1.355357
С	-1.907637	4.280955	-1.327356
Н	-0.752775	2.478004	-1.436834
С	-2.892137	4.788149	0.815003
Н	-2.483217	3.405943	2.399613
С	-2.685863	5.115591	-0.527513
H	-1.764055	4.509471	-2.379351
Н	-3 510993	5 422168	1 443723
Н	-3 139240	6 008876	-0 947484
C	0 469081	-2.673547	-2 140687
Č	1 602022	-3 418992	-1 771350
Č	-0 177099	-2 991279	-3 345294
Č	2,090310	-4 431093	-2 597680
H	2 100210	-3 219055	-0.828660
C	0.317554	-4 001792	-4 174237
H	-1 074310	-2.462169	-3 646512
C	1 455117	-4 720036	-3 807558
H	2 964289	-4 999745	-2 291701
Н	-0 196156	-4 229183	-5 104178
Н	1 837417	-5 506115	-4 452368
C	-1.038703	-2.711388	0.179601
Č	-1 912342	-3 639058	-0 413502
Č	-0 764045	-2 832439	1 546109
C	-2 501874	-4 647261	0 345979
H	-2 128870	-3 584412	-1 475335
C	-1 349374	-3 846876	2 307384
Ĥ	-0.087936	-2.138324	2.023365
C	-2 220623	-4 756550	1 709936
H	-3 179461	-5 350331	-0 129734
Н	-1 118158	-3 925191	3 366293
Н	-2 674416	-5 548320	2 299152
C	5 524149	-2.902962	1 853114
Č	5 620123	-2 264237	0 450949
Ĥ	6 412617	-2.700887	2,457859
Н	5 417601	-3 993135	1 783270
Н	6 346387	-1 440541	0.432656
Н	5 899680	-2.980985	-0 323401
C	4 269368	-2 284429	2 416605
č	3 558700	-1 650499	1 359239
č	3 759033	-2 275720	3 688271
H	4.286331	-2.749015	4.511708

С	2.526176	-1.619596	3.892103
Н	2.076737	-1.549136	4.875978
С	1.888540	-1.048435	2.814767
Н	0.959018	-0.523771	2.948095
Ν	2.356344	-1.057618	1.531945
Ν	4.264148	-1.730718	0.190794
С	3.931316	-1.124793	-1.029209
С	2.831429	-0.382985	-1.272452
С	4.758388	-1.421821	-2.266205
Н	5.837541	-1.295966	-2.118481
Н	4.599435	-2.460117	-2.597683
С	4.184858	-0.413964	-3.283430
Η	4.776535	0.509012	-3.253890
Η	4.209454	-0.789280	-4.310945
С	2.752736	-0.130617	-2.776858
Η	2.404715	0.869914	-3.048955
Η	2.043785	-0.837523	-3.231071
Ir	1.383050	0.192128	0.050806
Η	1.122655	1.545908	-1.041602
С	1.919063	2.469234	-0.438789
Н	1.108315	3.134304	-0.143145
С	2.609468	1.829561	0.673766
Н	2.364719	2.163468	1.680797
Н	3.669310	1.618670	0.529099
С	2.716886	3.036744	-1.608278
Η	3.530290	2.353164	-1.869011
Η	2.078509	3.148141	-2.494095
С	3.300928	4.411213	-1.229651
Η	2.486949	5.087417	-0.930163
Η	3.949767	4.298527	-0.350187
С	4.095588	5.052177	-2.376014
Η	3.441523	5.163451	-3.252125
Η	4.903264	4.372118	-2.680872
С	4.686596	6.415288	-2.001284
Η	3.899471	7.127607	-1.725825
Η	5.371629	6.330626	-1.149093
Η	5.247317	6.846232	-2.837602

22L

 B3LYP SCF energy:
 -3293.97661190 a.u.

 B3LYP enthalpy:
 -3292.877209 a.u.

 B3LYP free energy:
 -3293.035040 a.u.

 B3LYP-D3(BJ) SCF energy in solution:
 -3295.20009414 a.u.

 B3LYP-D3(BJ) enthalpy in solution:
 -3294.100691 a.u.

B3LYP-D3(BJ) free energy in solution: -3294.258522 a.u.

ATC	ЭM	Х	Y	Ζ
С	-6	.643696	0.405754	0.248258
С	-5	.310473	0.234238	0.548557
С	-4	450886	-0.522810	-0.300921
С	-5	.026206	-1.097706	-1.479414
С	-6	.406267	-0.909923	-1.760168
С	-7	.203241	-0.173422	-0.915690
Н	-7	.273684	0.988167	0.914563
Н	-4	.909367	0.685548	1.448065
С	-3	.046645	-0.709540	-0.017685
С	-4	.197047	-1.853132	-2.341817
Н	-6	.818926	-1.360392	-2.659144
Н	-8	.257616	-0.035138	-1.136500
С	-2	.861659	-2.007418	-2.072771
С	-2	.253935	-1.428731	-0.917482
Н	-4	.630235	-2.312486	-3.226630
Н	-2	.260304	-2.595364	-2.753654
С	-2	.542246	-0.150069	1.283715
С	-2	.976486	-0.795550	2.500435
С	-1	.750651	0.999178	1.357207
С	-3	.769437	-1.979818	2.503486
С	-2	.613306	-0.239345	3.770962
С	-1	.374144	1.508341	2.636017
С	-4	.174915	-2.566762	3.681446
Η	-4	.066826	-2.422973	1.561380
С	-3	.052101	-0.863808	4.969462
С	-1	.809026	0.925813	3.799313
Η	-0	.729021	2.375514	2.694413
С	-3	.817935	-2.005194	4.930168
Η	-4	.779125	-3.468993	3.651830
Η	-2	.767586	-0.420252	5.920247
Η	-1	.524855	1.348367	4.759944
Η	-4	.149034	-2.476639	5.850784
Р	-0.	422679	-1.747689	-0.711668
Р	-0.	856218	1.712510	-0.096978
С	0.	076882	-2.282173	-2.416512
С	0.	126955	-1.302291	-3.424260
С	0.	478041	-3.588428	-2.725198
С	0.	576216	-1.618972	-4.706437
Η	-0	.229337	-0.296678	-3.219851
С	0.	928421	-3.903350	-4.010722
Η	0.	.440881	-4.365111	-1.969279
С	0.	983912	-2.922271	-5.001350

Н	0.597720	-0.852427	-5.476336
Н	1.233337	-4.921501	-4.235254
Н	1.333620	-3.172387	-5.998691
С	-0.361116	-3.317608	0.264842
С	0.871099	-3.842835	0.693196
С	-1.529180	-4.050790	0.522815
С	0.928634	-5.063957	1.364416
Н	1.790019	-3.303645	0.499830
С	-1.469056	-5.270291	1.200904
Н	-2.490596	-3.679509	0.189509
С	-0.242190	-5.779666	1.624502
Η	1.890431	-5.453928	1.685304
Н	-2.385383	-5.820962	1.393250
Н	-0.196291	-6.728874	2.150531
С	-0.597590	3.509639	0.319469
С	0.415014	4.208291	-0.355690
С	-1.485570	4.240819	1.128106
С	0.562627	5.588388	-0.197219
Н	1.079680	3.684094	-1.031581
С	-1.332303	5.617687	1.292169
Η	-2.307062	3.742481	1.631682
С	-0.303472	6.296275	0.635734
Η	1.351220	6.107458	-0.735235
Η	-2.026999	6.161445	1.926321
Н	-0.189559	7.369274	0.760838
С	-2.026447	2.007332	-1.499810
С	-3.361304	2.390576	-1.309010
С	-1.498219	2.029323	-2.798853
С	-4.157824	2.746317	-2.396848
Η	-3.785335	2.412431	-0.311033
С	-2.292149	2.394582	-3.888180
Н	-0.450491	1.788612	-2.960797
С	-3.627377	2.745890	-3.689258
Н	-5.194213	3.026865	-2.232365
Н	-1.865562	2.409224	-4.887365
Н	-4.248931	3.028274	-4.534089
С	4.230966	4.104127	1.341564
С	3.718538	3.062682	2.366470
Н	5.292735	4.326176	1.480344
Н	3.680800	5.048652	1.437217
Н	4.546214	2.479861	2.788636
H	3.164806	3.517400	3.190248
C	3.921976	3.455618	0.014515
C	3.052624	2.360805	0.252792
C	4.276475	3.762716	-1.274658
Η	4.944209	4.590676	-1.495263

С	3.746753	2.965887	-2.319560
Н	4.004383	3.155117	-3.355289
С	2.888279	1.934608	-2.007963
Н	2.460647	1.308483	-2.784015
Ν	2.510209	1.624504	-0.731100
Ν	2.833582	2.167996	1.582923
С	2.186842	1.058646	2.154536
С	1.459934	0.111586	1.518482
С	2.238321	0.865376	3.656354
Н	3.254837	0.937632	4.062054
Н	1.642832	1.634624	4.171028
С	1.643921	-0.550581	3.851006
Н	2.444872	-1.255431	4.095147
Н	0.925435	-0.581981	4.674597
С	0.989518	-0.942963	2.498200
Н	1.305283	-1.942911	2.194355
Н	-0.102933	-0.975211	2.561537
Ir	1.084421	0.076316	-0.458369
С	3.942384	-1.237631	0.035389
Η	3.645409	-1.633402	1.016882
С	2.731541	-1.209139	-0.903528
Н	2.415439	-2.237878	-1.100075
Н	3.054798	-0.824730	-1.887760
С	5.105332	-2.084971	-0.511248
Н	4.756881	-3.114520	-0.683243
Н	5.403491	-1.698103	-1.497083
С	6.329151	-2.111914	0.414661
Н	6.683149	-1.082420	0.577194
Н	6.029543	-2.489465	1.404198
С	7.487936	-2.964413	-0.119913
Н	7.784231	-2.590838	-1.110341
Н	7.136566	-3.994189	-0.276511
С	8.707099	-2.976323	0.808258
Н	9.103569	-1.964106	0.955849
Η	8.450051	-3.378111	1.796193
Η	9.514840	-3.592957	0.398725
Н	4.306060	-0.219200	0.224575

25-TS

 B3LYP SCF energy:
 -3293.91407551 a.u.

 B3LYP enthalpy:
 -3292.819370 a.u.

 B3LYP free energy:
 -3292.974474 a.u.

 B3LYP-D3(BJ) SCF energy in solution:
 -3295.13307224 a.u.

 B3LYP-D3(BJ) enthalpy in solution:
 -3294.038367 a.u.

B3LYP-D3(BJ) free energy in solution: -3294.193471 a.u. Imaginary frequency: -399.3275 cm-1

ATO	M X	Y	Ζ
С	6.615326	1.274316	0.167842
С	5.354427	0.876594	-0.218326
С	4.483361	0.200093	0.685013
С	4.958664	-0.030137	2.015577
С	6.269545	0.377539	2.381239
С	7.085835	1.016386	1.477595
Н	7.256553	1.790088	-0.541334
Н	5.018368	1.085689	-1.226674
С	3.154222	-0.219173	0.312930
С	4.092684	-0.650397	2.945708
Н	6.610864	0.181855	3.394578
Н	8.085618	1.328541	1.765200
С	2.813395	-0.999518	2.593026
С	2.313965	-0.790224	1.274701
Н	4.447121	-0.838341	3.956120
Н	2.182193	-1.457924	3.341381
С	2.743867	-0.013787	-1.114979
С	3.390260	-0.801530	-2.139475
С	1.781630	0.924208	-1.479247
С	4.354002	-1.806034	-1.842501
С	3.057313	-0.585246	-3.515739
С	1.427139	1.081126	-2.852775
С	4.965446	-2.527804	-2.844571
Н	4.612696	-2.005087	-0.809878
С	3.708341	-1.339896	-4.526733
С	2.061187	0.371974	-3.838069
Н	0.626365	1.759400	-3.124291
С	4.648722	-2.290613	-4.201963
Н	5.699434	-3.286707	-2.588719
Н	3.445966	-1.153034	-5.565050
Н	1.790820	0.521530	-4.880466
Н	5.143371	-2.862193	-4.981960
Р	0.557392	-1.353067	0.906172
Р	0.636915	1.708981	-0.259387
С	0.059465	-2.111701	2.537452
С	-0.371474	-1.260841	3.572160
С	0.055180	-3.495444	2.770516
С	-0.775251	-1.774827	4.804265
Н	-0.397429	-0.189812	3.411881
С	-0.359610	-4.010504	4.002397
Н	0.367188	-4.182486	1.993294

С	-0.772982	-3.155070	5.023383
Н	-1.096538	-1.097198	5.590427
Н	-0.355202	-5.085604	4.159652
Н	-1.092425	-3.557539	5.980400
С	0.903011	-2.846632	-0.143371
С	0.076298	-3.212958	-1.214023
С	2.006110	-3.664747	0.162676
С	0.338944	-4.368918	-1.953560
Н	-0.755270	-2.577085	-1.489050
С	2.263730	-4.820797	-0.573423
Н	2.669476	-3.401079	0.980456
С	1.429104	-5.177589	-1.634651
Н	-0.308161	-4.631009	-2.786330
Н	3.120996	-5.438472	-0.320624
Н	1.633209	-6.074745	-2.212233
С	0.332358	3.455311	-0.828260
С	-0.533392	4.231745	-0.035076
С	1.033404	4.085687	-1.865100
С	-0.723168	5.585694	-0.297479
Н	-1.057575	3.777270	0.800799
С	0.841075	5.446412	-2.127078
Н	1.744684	3.534139	-2.468416
С	-0.040452	6.197788	-1.352764
Η	-1.398255	6.165179	0.325963
Η	1.393051	5.915626	-2.936718
Н	-0.186085	7.254232	-1.558537
С	1.588252	2.265460	1.237674
С	2.773961	2.999549	1.069860
С	1.040410	2.154554	2.519236
С	3.403864	3.585433	2.165364
Н	3.207393	3.120059	0.081855
С	1.664768	2.753773	3.616618
Η	0.117084	1.606928	2.654722
С	2.848540	3.468592	3.442844
Η	4.327141	4.138750	2.019685
Η	1.221787	2.660855	4.604599
Η	3.334987	3.936939	4.293765
С	-4.916669	-3.017826	-2.352666
С	-4.330866	-1.809041	-3.127859
Η	-4.721401	-3.960860	-2.872720
Η	-6.003854	-2.931947	-2.239902
Η	-3.676282	-2.129784	-3.945429
Н	-5.112383	-1.174311	-3.547208
С	-4.221999	-2.944547	-1.016874
С	-3.409195	-1.795466	-0.974731
С	-4.315833	-3.739872	0.105989

Η	-4.941297	-4.628115	0.119091
С	-3.601739	-3.338658	1.246060
Η	-3.655045	-3.897893	2.173081
С	-2.796472	-2.213431	1.182335
Η	-2.237827	-1.893970	2.045931
Ν	-2.632877	-1.457604	0.064883
Ν	-3.538425	-1.047763	-2.127471
С	-3.249885	0.295654	-2.258673
С	-2.612443	1.137825	-1.368200
С	-3.640361	0.957917	-3.567979
Η	-3.454207	0.322187	-4.440479
Η	-4.716817	1.196027	-3.571325
С	-2.787716	2.229826	-3.556581
Η	-1.815509	2.018545	-4.018363
Η	-3.244065	3.060519	-4.103735
С	-2.608400	2.516051	-2.059654
Η	-1.720434	3.107453	-1.865634
Η	-3.461884	3.116337	-1.701253
Ir	-1.078817	0.143014	-0.052039
Η	-0.520757	-0.478041	-1.444433
С	-3.233316	1.559134	0.495271
Η	-3.094954	2.613191	0.267959
С	-2.350982	1.079125	1.546271
Η	-1.845731	1.871340	2.096470
Η	-2.782976	0.334284	2.216616
С	-4.700161	1.160513	0.485263
Η	-5.161828	1.435655	-0.470819
Η	-4.801325	0.075204	0.599068
С	-5.465818	1.856994	1.630950
Η	-5.023367	1.572919	2.594264
Η	-5.342726	2.946101	1.542494
С	-6.962827	1.515047	1.630832
Η	-7.084475	0.425434	1.712930
Η	-7.400786	1.800808	0.664071
С	-7.731346	2.203134	2.763986
Η	-7.339253	1.909380	3.745163
Η	-7.654742	3.294517	2.689116
Η	-8.794790	1.941614	2.738005
8. References:

- 1. F. Mo, G. Dong, Science 2014, 345, 68.
- 2. P. Mizar, B. Myrboh, Tetrahedron Lett. 2006, 47, 7823.
- 3. G.-Z. Wang, J. Jiang, X.-S. Bu, J.-J. Dai, J. Xu, Y. Fu, H.-J. Xu, Org. Lett. 2015, 17, 3682.
- 4. W. D. Kerber, M. R. Gagné, Org. Lett. 2005, 7, 3379.
- 5. M. Schinkel, L. Wang, K. Bielefeld, L. Ackermann, Org. Lett. 2014, 16, 1876.
- 6. W. B. Reid, J. J. Spillane, S. B. Krause, D. A. Watson, J. Am. Chem. Soc. 2016, 138, 5539.
- C. Hirschhäuser, J. Velcicky, D. Schlawe, E. Hessler, A. Majdalani, J.-M. Neudörfl, A. Prokop, T. Wieder, H.-G. Schmalz, *Chem.--Eur. J.* 2013, 19, 13017.
- 8. S. Z. Tasker, A. C. Gutierrez, T. F. Jamison, Angew. Chem. Int. Ed. 2014, 53, 1858.
- 9. L. A. Paquette, F. Pierre, C. E. Cottrell, J. Am. Chem. Soc. 1987, 109, 5731.
- 10. Nakamura, S.; Kaneeda, M.; Ishihara, K.; Yamamoto, H. J. Am. Chem. Soc. 2000, 122, 8120.
- 11. D. Xing, G. Dong, J. Am. Chem. Soc. 2017, 139, 13664.
- 12. U. P. Dhokte, P. M. Pathare, V. K. Mahindroo, H. C. Brown, J. Org. Chem. 1998, 63, 8276.
- 13. S. Ozaki, H. Yoshinaga, E. Matsui, M. Adachi, J. Org. Chem. 2001, 66, 2503.
- a) B. S. Pilgrim, A. E. Gatland, C. T. McTernan, P. A. Procopiou, T. J. Donohoe, *Org. Lett.* 2013, 15, 6190; b) B. S. Pilgrim, A. E. Gatland, C. H. A. Esteves, C. T. McTernan, G. R. Jones, M. R. Tatton, P. A. Procopiou, T. J. Donohoe, *Org. Biomol. Chem.* 2016, 14, 1065.
- 15. a) A. D. Becke, J. Chem. Phys. 1993, 98, 5648; b) C. Lee, W. Yang, R. G. Parr, Phys. Rev. B 1988, 37, 785.
- 16. A. V. Marenich, C. J. Cramer, D. G. Truhlar, J. Phys. Chem. B 2009, 113, 6378.
- a) S. Grimme, J. Antony, S. Ehrlich, H. Krieg, J. Chem. Phys. 2010, 132, 154104; b) S. Grimme, S. Ehrlich, L. Goerigk, J. Comput. Chem. 2011, 32, 1456.
- 18. X. Li, H. Wu, Y. Lang, G. Huang, Catal. Sci. Technol. 2018, 8, 2417.