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SUMMARY

The hippocampus constructs a map of the environ-
ment. How this ‘‘cognitive map’’ is utilized by other
brain regions to guide behavior remains unexplored.
To examine how neuronal firing patterns in the hippo-
campus are transmitted and transformed, we re-
corded neurons in its principal subcortical target,
the lateral septum (LS). We observed that LS neurons
carry reliable spatial information in the phase of ac-
tion potentials, relative to hippocampal theta oscilla-
tions, while the firing rates of LS neurons remained
uninformative. Furthermore, this spatial phase code
had an anatomical microstructure within the LS and
was bound to the hippocampal spatial code by syn-
chronous gamma frequency cell assemblies. Using
a data-driven model, we show that rate-independent
spatial tuning arises through the dynamic weighting
of CA1 and CA3 cell assemblies. Our findings
demonstrate that transformation of the hippocampal
spatial map depends on higher-order theta-depen-
dent neuronal sequences.

INTRODUCTION

Computation performed by machines or the brain is, in general,

referred to as ‘‘information processing.’’ However, the informa-

tive content of any computation is not inherent but requires inter-

pretation by an observer/actuator mechanism (Chiel and Beer,

1997; Buzsáki, 2010). Accordingly, the utility of a correlation

between the outside world and neuronal activity observed by

an experimenter must be tested against the impact of that activ-

ity on downstream targets. While environmental-neuronal corre-

lations have been extensively studied through the history of

neuroscience (Adrian and Zotterman, 1926; Hubel and Wiesel,

1962), the internal effect of environmentally correlated neuronal

activity on other brain regions remains largely unexplored.

Thus, we set out to investigate how a well-studied neuronal ac-

tivity pattern, the hippocampal spatial code, is transformed at

the hippocampal-lateral septal interface.
A prominent computation attributed to the hippocampus

(HPC) and its partner structures is the evaluation of the animal’s

position relative to environmental landmarks, known as the

cognitive map (O’Keefe and Nadel, 1978). Individual hippocam-

pal neurons, known as place cells (O’Keefe and Dostrovsky,

1971), fire selectively at particular positions of the animal’s

path. While the animal traverses through space, the firing rate

of a given place cell waxes and wanes, forming its place field.

This correlation between position and firing rate is often referred

to as ‘‘rate coding.’’ The activity of place cell populations is

coordinated by the hippocampal theta oscillation such that

assemblies of place cells representing the past, present, and

upcoming positions form ordered sequences of spiking within

each theta cycle (Skaggs et al., 1996; Dragoi and Buzsáki,

2006; Foster and Wilson, 2007; Gupta et al., 2012). Progressive

movement through an environment results in a systematic phase

shift of spikes from single place cells across successive theta cy-

cles. This spike-phase precession phenomenon (O’Keefe and

Recce, 1993) is referred to as ‘‘phase or temporal coding.’’

How these hypothesized rate or phase-coding mechanisms of

the abstract cognitive map are read out by downstream partners

and help the animal to choose appropriate paths have remained

unexplored. One possibility is that place cells in the CA1 and

subicular regions of the HPC transfer the map content to the

neocortex via entorhinal or retrosplenial cortical outputs where

further processing takes place to eventually influence locomo-

tion (Alexander and Nitz, 2015; Rothschild et al., 2017). Another

option is the lateral septum (LS), the main subcortical target of

CA3, CA1, and subicular pyramidal neurons (Swanson and

Cowan, 1979; Risold and Swanson, 1997). Convergence of hip-

pocampal efferents onto LS neurons is orders of magnitude

more dense (20–800 times; Figure S3) than any of its cortical

targets. Optogenetic activation or silencing of hippocampal

efferents in the LS effectively biases ambulatory patterns of the

animal (Bender et al., 2015), possibly mediated by its hypotha-

lamic, thalamic, mammillary body, and brainstem targets (Swan-

son and Cowan, 1979; Risold and Swanson, 1997). These struc-

tures are known to be involved in translating motivational values

into motor outputs (Grastyán et al., 1965; Valenstein et al., 1970;

Sheehan et al., 2004).

Using large-scale simultaneous recording of neuronal activity

in the HPC and LS, we found a reliable correlation between the

animal’s position in the maze and the spike timing of LS neurons
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in relation to the hippocampal theta oscillation phase. In

contrast, firing rates of LS neurons contained little spatial infor-

mation. These rate-independent theta ‘‘phase fields’’ of LS

neurons covered virtually the entire length of the maze. Using a

data-driven model of the HPC-LS circuit, we were able to

account for this conversion of spatial encoding formats. The

dynamic weighting of convergent synaptic inputs from CA1

and CA3 place cell assemblies, combined with the spatiotem-

poral theta oscillation phase map across hippocampal subre-

gions, results in a rate-independent encoding of spatial position

in LS neurons. These findings suggest that the HPC-LS pathway

is a potential route for the transformation of the cognitive map

into action.

RESULTS

To explore how hippocampal spiking output affects neuronal

firing in the LS during spatial traversal, we simultaneously re-

corded neurons from the HPC and its target LS (N = 5 animals).

First, we examined the firing patterns of 1,587 place fields of

2,297 isolated CA1 units and 224 place fields of 654 CA3 units,

while rats traversed one of three different linear tracks (Fig-

ure S1). Place cells reliably fired at specific locations on the

track, and their spikes displayed systematic advancement rela-

tive to the phase of theta oscillation while the animal ran though

the place field (O’Keefe and Dovstrovsky, 1971; O’Keefe and

Recce, 1993; Figures 1A–1C). Using an information theoretic

approach that quantifies the uniqueness and reliability of a

signal (Olypher et al., 2003), we quantified the maximum infor-

mation rate for individual hippocampal place fields at spatial

smoothing scales ranging from �3 to �100 cm. We found

that peak information rates occurred at stereotyped spatial

scales across the population (Figures 1D–1F). The mean peak

information rate occurred at consistently smaller spatial scales

for phase ‘‘coding’’ compared to discharge frequency coding

(Figure 1E; N = 1,820; two-sample t test; p < 10�40). For

smoothing windows less than 6 cm, corresponding to approxi-

mately one theta cycle at average running speed, the phase

code carried significantly (two sample t test; p < 0.00001;

N = 1,820 place fields) more spatial information than the firing

rate code (Figure 1G), whereas at spatial scales larger than

10 cm the firing rate code was more informative.

To directly compare and cross-validate these two forms of

tuning, we followed a predictive modeling approach where the

spike-rate or spike-phase relationships of single neurons was

used to predict the current position of the animal (20 bin smooth-

ing; �30 cm; Figure 1H). Across the population of recorded hip-

pocampal place fields, we found that the distributions of mean

squared errors for these two forms of encoding were statistically

equivalent at a spatial smoothing scale that incorporated both

peak information rates (Figure 1I; two-way Kolmogorov-Smirnov

[KS] test; N = 1,820 place fields comparison p = 0.19; N = 45 ses-

sions; p = 0.61). While peak information rates (Figures 1D–1G)

demonstrate that the spatial smoothing scale largely determines

which coding regime confers more spatial information per indi-

vidual position bin (�1.5 cm), the predictive modeling approach

(Figures 1H and 1I) quantifies howmuch predictive power over all

spatial bins a single neuron carries. Taken together, these ana-
1230 Neuron 98, 1229–1242, June 27, 2018
lyses demonstrate that from the perspective of an ideal observer,

such as the experimenter, prediction of the animal’s position is

equivalent whether using rate-position or theta phase-position

correlations at slower timescales (30 cm, �500 ms). Yet, at the

scale of single theta cycles (corresponding to �6 cm), phase

coding offers more information than firing rates.

However, the significant encoding of an external variable from

the perspective of the experimenter does not demonstrate that

the brain utilizes this information (Buzsáki, 2010; Brette, 2018).

To explore whether and how downstream ‘‘readers’’ may inter-

pret these potential coding regimes, we examined firing patterns

of neurons in the LS, themajor subcortical target of CA3 andCA1

hippocampal regions (Risold and Swanson, 1997; Witter, 2007;

Figures S1A, S1C, and S3).

We recorded a total of 1,647 LS neurons from five animals, of

which 840 surpassed a minimum threshold of at least 1.5 action

potentials per trial on average (�.33 Hz). In agreement with pre-

vious studies, we found that LS neurons carry a degraded firing

rate code for position when compared with the HPC (Leutgeb

and Mizumori, 2002; Takamura et al., 2006; Figures 2B and

3C). LS action potential ratemaps had significantly lower peak in-

formation rates than hippocampal place field maps (average of

0.4 bits/cm versus 1.7 bits/cm; two-sample t test p < 10�100),

and only 5.3% (232/4,393) of LS ratemaps showed place fields,

using the same criteria we applied to hippocampal units where

31.7% (1,820/5,735) of ratemaps displayed a place field. Those

few LS ratemaps that did qualify as having a ‘‘place field’’ were

significantly less stable across trials than CA1/CA3 place fields

(median coefficient of variance = 41.5 for LS versus 10 for

CA1/CA3 place fields; two sample t test; p < 10�20). In contrast,

themajority of LS neurons showed a form of position encoding in

their spike timing relative to the phase of theta oscillations re-

corded from the CA1 pyramidal layer (751/840, 89%; two sample

t test; p < 0.01) when compared to shuffled data, in at least one of

the behavioral conditions (Figure 2C). Importantly, theta phase

coding was often independent from any significant correlation

between the animal’s position and firing rates (Figure 2D). Across

the population of LS neurons, we observed significantly stronger

spike-phase coding when compared with models that utilized

spike rate information (Figure 2E; two sample t tests; N = 4,393

conditions, p < 10�100; N = 62 sessions, p < 10�10). Spike-

phase-based decoding outperformed firing rate-based decod-

ing of the rat’s position on the tracks (Figures 2F and 2G) whether

wemade the comparison at the level of LS neurons (N = 786/840;

two-sample t test; p < 0.01), conditions (N = 3,046/4,393), or

recording sessions (N = 62/62). Thus, the precise timing of action

potentials relative to hippocampal theta oscillations is the domi-

nant form of allocentric spatial encoding for single LS neurons,

rather than the rate at which action potentials occur at any given

location (Figures 3, S4, and S6). Notably, when there is no prese-

lection for subpopulations of neurons (i.e., place fields), the

lateral septal phase encoding of position is more reliable than

either the rate or phase codes of the HPC (Figures 3A and 3C).

Furthermore, the firing phases of ensembles of simultaneously

recorded LS neurons (range: 1–53) provided a better readout

of spatial position than either the firing phases or rates of an

equivalent number of HPC neurons (Figure S7; two-sample

t test; p < 0.001 at ensemble sizes of 15–25 neurons).



0.4

1.8

A B

C

D E F G H I

0 3.2

tri
al

 #

1

21

50

0
 position (meters)

 position (meters)0 3.2

rat
e

sh
uff

le
ph

as
e

M
S

E

1

3.5

 in
fo

 (b
its

/c
m

)

 in
fo

 (b
its

/c
m

)

0 80
kernel size(cm)

0 80
kernel size(cm)

0
kernel size(cm)

bi
ts

ph
as

e -
 b

its
ra

te

-0.6

0.6cell #80

300

50 cm

time (ms)

isodist=195

10
0 

uV

CA1 cell #80

MSE

0

8000
******

******

*

co
un

t

co
un

t

0

300

phase

rate

phase

rate
phase
rate

0 80
kernel size(cm)

-50 50

2000 10000

150

80

phase
rate

Figure 1. Hippocampal Place Cells Carry Precise Rate and Phase Codes for Position

(A) Gray dots indicate the animals head position through out each maze traversal. Green and red dots indicate the starts and stops, respectively (N = 21 trials).

Black dots reflect the animals’ position when action potentials were emitted by a single CA1 pyramidal neuron. Insets: black waveform shows the average action

potential shape for that neuron (1 Hz to 20 kHz), and the grayed area indicates the third SD in mean voltage throughout the recording. Histogram is the auto-

correlogram of spikes for the same neuron.

(B) Linearized firing rate maps. The y axis represents the number of trials (N = 21), and the x axis represents the linearized position of the animal on the maze.

(C) Linearized firing phasemaps. Each dot corresponds to a single action potential, with reference to the CA1 pyramidal layer theta phase (y axis; shown twice for

visibility) and the linearized position of the animal on the maze (x axis).

(D) Peak spatial information rates for the example neuron in (A)–(C) with different smoothing kernel widths. Red indicates the information rate obtained by using

spike rate (1B), and blue indicates the information rate using spike phase (1C).

(E) Histograms represent the smoothing kernels with the maximum peak information rate (peaks of red/blue lines in (D) for phase (blue) and rate (red) codes for a

total of 1,820 CA1 and CA3 place fields. Median phase peak information rate was 15 spatial bins, and median discharge frequency peak information rate was 29

spatial bins (two-sample t test p < 10�40). Inset histogram shows the distribution when smoothing kernel widths with peak information rates are subtracted for

phase and rate.

(F) Average peak information rates for 1,820 place fields for all smoothing kernel sizes. Bounds are ±3 SEM.

(G) Average of subtraction of phase and rate information scores for all 1,820 place fields and smoothing kernel sizes. Bounds are ±3 SEM. Red dots indicate bins

with significantly different rate and phase information (two sample KS test; p < 0.01).

(H) Mean squared error (MSE) values when using the example cell in (A)–(C) to predict the animal’s position. Blue dots are models that used the neurons firing

phase as a predictor, red dots are models that used the firing rate as a predictor, and black dots are MSE values for shuffled data (N = 10 iterations; Monte Carlo

cross-validation).

(I) Histogram of mean squared error (MSE) values for all place fields using firing rates (red) or firing phase (blue) to predict the animal’s position.

See also Figures S1 and S2.
We also examined the effect of running speed on LS phase

coding. Only 125 of 4,393 LS conditions (2.8%) had significant

correlations between running speed and the rate of phase pre-

cession (two sample t test; p < 0.01) compared to a trial shuffled

control distribution. Furthermore, only 10.7% of firing rate maps

in LS were significantly modulated by running speed, a value

similar to the �15% reported in HPC and entorhinal cortex

(McNaughton et al., 1983; Kropff et al., 2015). In contrast, 89%

of LS neurons displayed significant phase precession. Thus,
phase coding of LS neurons seems to be independent from

the running speed of the animal.

The different electrode locations across animals covered a

large volume of the LS, allowing us to examine the anatomical

microstructure of this phase code. The multiple site silicon

probes and the systematic mapping of LS across days by mov-

ing the probe shanks revealed a precise topography for the

magnitude of theta phase coding within the LS. Within single

recording sessions in individual rats (Figures 4A and 4B) and
Neuron 98, 1229–1242, June 27, 2018 1231



Figure 2. Lateral Septum Neurons Display a Rate-Independent Spatial Phase Code

(A) Behavioral tracking data for five different sessions. Same layout as in Figure 1A.

(B) Linearized firing rate maps for each of the five example neurons. For each heatmap, the y axis represents the number of trials recorded in the condition for that

recording (N = 28, 34, 13, 28, and 32), and the x axis represents the linearized position of the animal on the maze (meters).

(C) Spike theta phase-position scatterplots for each of the five example neurons.

(D) Mean squared error (MSE) values for models using shuffled data (black), firing rates (red), or firing phase (blue) to predict the animal’s position (N = 10

iterations).

(E) Histograms of average MSE values (blue/phase, red/rate) for all recorded LS neurons, across all conditions (N = 4,393).

(F) Histogram of average MSEphase-MSErate values for all conditions for lateral septum (LS) cells (magenta; N = 4,393, mean = – 1,000) and hippocampal place

fields (black; N = 1,820, mean = – 33).

(G) Histogram of average MSEphase-MSErate values for all recordings in the hippocampus (HPC) (black; N = 45 sessions, mean = – 25) and lateral septum

(magenta; N = 62 sessions, mean = – 1,024).

See also Figures S1–S3.
across all animals (Figures 4C and 4D) the strength of phase cod-

ing, relative to rate coding, reliably increased as a function of

recording depth within LS. Furthermore, the starting phase for

these ‘‘phase fields’’ varied systematically along the medial-

lateral axis across animals (Figure 4E). In three of the animals

where at least 1 mm of the dorsoventral axis of LS was recorded
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across multiple sessions, the phase onset for precession

varied systematically and significantly with recording depth

(DT5 r = 0.38, DT9 r = 0.25, DT2 r = 0.27; circular/linear correla-

tion; p < 0.001). Considering the known anatomical mapping of

hippocampal projection patterns (Risold and Swanson, 1997),

these data provide evidence that the hippocampal theta
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Figure 3. Rate and Phase Population Correlation Matrices

(A–C) Top row: correlation matrix (Pearson’s) across all positions for all 5,735 hippocampal conditions (N = 2,951 units, A), 1,820 hippocampal place fields

(N = 711 units, B), and for all 4,393 LS ratemaps (N = 840 units, C) using firing rates. Middle row: correlation matrices (circular) across all positions for all hip-

pocampal conditions (A), hippocampal place fields (B), and LS conditions (C) using theta phase of firing. All color axes are 0.1–1. Bottom row: anti-diagonal lines

from each correlation matrix are plotted for phase (blue) and rate (red) mappings. See also Figures S4 and S6.
oscillation, which is a traveling wave along both the septotempo-

ral and transverse axes of the HPC (Lubenov and Siapas, 2009;

Patel et al., 2012), entrains the spiking output of the LS in a

manner that is also a traveling wave of spiking activity that prop-

agates in both the medial-to-lateral and dorsal-to-ventral

directions.

Next, we addressed the potential mechanisms by which the

hippocampal population output is transformed into firing pat-

terns of LS neurons. We reasoned that such a transformation

should involve quantifiable functional coupling between these

regions that may be captured at the level of cross-region neuron

pairs. To test this hypothesis, we examined cross-correlograms

between spikes of hippocampal neurons and simultaneously re-

corded LS neurons (Figures 5A–5C). Synchronous peaks in the

cross-correlograms were often observed within ±25 ms (Fig-

ure 5C). To quantify this, we utilized a peer prediction method

that has been used to identify cell assemblies within single brain
structures (Harris et al., 2003; Tingley et al., 2015; Figure S5). By

using simultaneously recorded spike trains to predict the firing of

a single neuron, the temporal scale at which a neuron’s peers

best predict its firing can be assessed. Across 18.5% (2,087/

11,264) of hippocampal-LS cell pairs examined, spike trains of

hippocampal neurons reliably predicted the firing of action

potentials in LS neurons with a strongly skewed distribution of

assembly strengths (Figures 5D and 5E). Across all predictive

cell pairs, the median optimal timescale for peer prediction

was 25 ms (Figure 5F), corresponding to the slow gamma oscil-

lation generated mainly by the hippocampal CA3 region (Csics-

vari et al., 2003; Colgin et al., 2009; Fernández-Ruiz et al.,

2017). Notably, theta phase locking magnitudes did not signifi-

cantly correlate with either the strength or timescale of cell

assemblies (Figures S5B–S5E). Furthermore, LS neurons that

participated in at least one predictive cell assembly were found

to carry a more robust spatial phase code compared to neurons
Neuron 98, 1229–1242, June 27, 2018 1233
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Figure 4. Microstructure of the Theta Phase Code in the LS

(A) Left: histology for a recording with a single-shank silicon probe (64 channels spanning 1,275 mm). Right: single units were simultaneously isolated from

recording sites in the anterior cingulate cortex (ACG; black) and dorsal lateral septum (LSD; orange). Waveforms are positioned to match the recording site along

the shank with the largest amplitude waveform. LSI, intermediate lateral septum; SFi, septofimbrial nucleus.

(B) Location of the neuron’s cell body in the LS varies systematically with the strength of phase coding. Each dot indicates the electrode site with the maximum

waveform amplitude (0–1,275 mm; y axis) and the relative strength of phase coding (x axis) for a single neuron (MSEphase-MSErate).

(C) Reconstructed recording tracks for all five animals (magenta, orange, green, red, and blue; see also Figure S1). Black horizontal bars indicate the approximate

first and last recording site for each animal.

(D) Group data for 5 rats. Each dot is a session mean MSE determined by all recorded neurons in that session (range: 8–53). The orange circle outlined in black

corresponds to the session shown in (B). Spacing and estimated depth locations were determined with a combination of histology (Figure S1), electrophysio-

logical markers, and micro-drive turn records.

(E) For every phase precessing LS neuron, the mean phase angle, relative to CA1 theta, for the first 15 bins of its phase field is shown. Each colored histogram

shows the mean phase angles for neurons recorded from a single animal.

Colored dots, lines, and histograms in (C)–(E) correspond to the same animal.
that were not part of a predictive assembly (Figure 5G; two sam-

ple t test; p < 10�20).

Unfortunately, the presence of a reliable phase-position corre-

lation in LS neurons (Figures 2, 3, and S4) and their temporal

coupling, via gamma assemblies, with hippocampal neurons
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(Figure 5) does not give mechanistic insight into how LS neurons

read out spatial information from the HPC. Possibilities include

reading out rate, phase, or population synchrony patterns from

upstream hippocampal neurons. Because CA1 and CA3 place

cells tend to fire on the opposite phases of the theta cycle (Dragoi
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Figure 5. Gamma Timescale Cell Assemblies Bind Hippocampal and Lateral Septal Spatial Phase Codes

(A) Five example hippocampal (HPC) place fields. Upper: firing ratemaps for each example neuron. y axis is the number of trials; x axis is the linearized position on

the track. Color axis is 0 to max rate. Lower: firing phase maps for each example hippocampal neuron. y axis represents the CA1 theta phase; x axis represents

the linearized position of the animal.

(B) Firing phase maps for five example LS neurons, simultaneously recorded with the hippocampal neurons shown above.

(C) Cross-correlograms between each example cell pair (one HPC and one LS neuron), smoothed over 20ms. Red horizontal lines indicate a 50-ms time window,

within which each pair of neurons reliably fires together.

(D) Generalized linear model (GLM) approach to quantify assembly strength of simultaneously recorded HPC-LS neuron pairs. x axis represents the smoothing

kernel size (1–150 ms) of spike rate; y axis represents the deviation from fit for each model. Black line shows values for actual data; red lines indicate the average

deviation values expected after shuffling trial order.

(E) Scatterplot of smoothing kernel windows versus assembly strength values. For each HPC-LS ‘‘assembly’’ pair, the smoothing kernel with optimal fit (x axis) is

plotted against the relative strength of the assembly (y axis).

(F) Histogram of optimal fit windows. Red line indicates the median of 25 ms.

(G) LS neurons that participated in at least one highly predictive HPC-LS assembly pair (threshold R4) were observed to carry a significantly stronger spatial

phase-coding bias (two-way KS test; p < 10�20). x axis represents the percentile of the cumulative distribution (0%–100%) of LS neurons, and y axis represents

the sorted MSE value associated with that percentile. Magenta and black lines correspond to MSEphase-MSErate values expected from LS neurons that do or do

not participate in at least one gamma assembly with simultaneously recorded hippocampal neurons, respectively. Bounds are ±3 SDs. See also Figure S5.

Neuron 98, 1229–1242, June 27, 2018 1235



CA1

CA3 CA2Sub

 position (bins)1 200

 z
-s

co
re

d 
co

he
re

nc
e

θ phase coherence θ-γ coupling assembly strength

A B

C D E

4

8

-0.3

0

0.3

 z
-s

co
re

d 
co

he
re

nc
e

-0.1
 position (bins)1 200  position (bins)1 200

0

0.1

CA3, N=19

CA1, N=63

CA3, N=67

CA1, N=260

CA3, N=19

CA1, N=63
as

se
m

bl
y 

st
re

ng
th

260 CA1, 67 CA3
  PF centers

 position

1000um

reference sites
recording sites

0 1 2

*

position

G

F

H

fu
nc

tio
na

l c
on

ne
ct

io
n

 s
tre

ng
th

20

dynamic weighting model

CA1 -> LS

CA3 -> LS

 position

*theta reference site

CA1
CA3

LS

position 0
*

LS

position 2
*

LS

Figure 6. Lateral Septal Phase Precession Is a Readout of Dynamic

Weighting of CA1 and CA3 Inputs

(A) Representative schematic of histological results showing the hippocampal

recording locations in four animals (four CA1 and three CA3 sites).

(B) Representative histological results from simultaneous CA1 and CA3

recording of LFP with reference sites that spanned 1 mm above probe

recording tip.

(C) Theta phase coherence between CA1 (black), or CA3 (red), recording sites

and LS.

(D) Hippocampal theta-septal gamma coherence between CA1 (black), or CA3

(red) sites and LS.

(E) CA3 place fields form progressively stronger gamma assemblies with LS as

the animal traverses through space, while CA1 place fields decrease their

coupling strength. Bounds are ±1 SEM. Black dots indicate bins that are

significantly different between CA1 and CA3 (two-sample KS test; p < 0.05).

Inset shows that both CA1 and CA3 place cells tiled the entire track.

(F) Diagram of hypothetical coupling strengths between CA1/LS (black) and

CA3/LS (red) as a function of spatial position of the animal.

(G) Conceptual model of how dynamic weighting interacts with theta phase

delays across CA1–CA3 regions. LS output neuron is entrained to the phase of

theta oscillation reflecting the most strongly coupled input.
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and Buzsáki, 2006), we hypothesized that differential coupling to

these hippocampal regions could be involved in the phase pre-

cession of LS neurons.

To examine whether such a potential mechanism was sup-

ported by the data, we split the hippocampal recordings into

those in which LS neurons were recorded simultaneously with

either CA1 neurons (N = 63 sessions; black) or CA3 neurons

(N = 19 sessions; red; Figure 6A). A subset of recordings had

electrodes positioned in both CA1 and CA3 regions, allowing

for simultaneous local field potential (LFP) recording from all

three structures (N = 14 sessions; Figure 6B). LFP theta phase

coherence between LS and CA1 pyramidal layer sites was rela-

tively flat during the entire span of the tracks. In contrast, theta

phase coherence between LS and CA3 pyramidal layer

increased significantly from the beginning to the end of run (Fig-

ure 6C). A similar relationship was observed when cross-fre-

quency coupling strength (Bragin et al., 1995) between CA1 or

CA3 theta phase and LS gamma oscillation amplitudes were

examined. Although the strength of coupling increased in both

cases, it was significantly stronger for CA3-LS than for CA1-LS

comparisons (Figure 6D). To exclude the potential contribution

of volume-conduction for the LFP signals, we also examined as-

sembly strength changes as a function of position. The functional

coupling between CA1 place cells and LS neurons decreased

somewhat (r = –0.11; p = 0.079; N = 260 pairs), while coupling

between CA3 place cells and LS neurons significantly increased

(r = 0.34; p = 0.006; N = 72 pairs) as the animal progressed from

the start toward the goal location (Figure 6E). The functional

coupling of CA1-LS pairs was significantly anti-correlated with

CA3-LS pairs (r = – 0.88; p = 2.6e-64; N = 200 spatial bins).

Thus, all functional coupling metrics examined –LFP/LFP and

spike/spike– provide support for a dynamic weighting model.

These results suggest that the ratio of input strengths from the

hippocampal CA1 and CA3 regions to LS dynamically shift over

the course of the track (Figure 6F).When combinedwith the theta

phase shift between these regions, the relative strength of the

momentarily active CA1 and CA3 ensembles may determine

the phase of spiking output in the LS reader neuron (Figure 6G),

causing it to precess relative to the phase of the LFP theta

recorded in either upstream region (Figure 6H). Thus, the target

LS neuron encodes position along the entire track with the phase

of spiking.

To test the feasibility of the dynamic weighting model, we

created a spiking neural network of Hodgkin-Huxley model

neurons (Carnevale and Hines, 2006) that mimicked the output

properties of a single lamella of pyramidal neurons in the hippo-

campal formation and its projections to a single LS neuron (Fig-

ure 7A). The modeled network was designed to recapitulate the

following observed phenomena: (1) populations of CA1 and CA3

neurons send convergent projections to the LS (Figures 7A and

S3; Risold and Swanson, 1997), (2) place fields uniformly tile a

space (Figure 6E, inset; Figure 7B; O’Keefe and Dovstrovsky,

1971), (3) place cells phase-precess relative to an 8-Hz theta

oscillation (Figure 7C; O’Keefe and Recce, 1993), (4) theta
(H) Spiking output from a LS ‘‘reader’’ neuron demonstrates phase precession

relative to theta recorded at a fixed hippocampal site, in the CA3–CA1 axis,

across three different spatial positions
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Figure 7. Theta Oscillation-Coordinated

Hippocampal Assemblies Are Required for

Spike-Phase Precession of LS Neurons

(A) Biophysical model of CA1/CA3 place field

populations that provide convergent input to a LS

neuron.

(B) CA1/CA3 place fields tile a segment of space

(shown as time, assuming constant velocity). Each

colored bar indicates the firing field for a single

idealized neuron in CA1 (upper) or CA3 (lower).

(C) Left columns: spike-phase maps for 50 simu-

lated CA1 place cells that phase precess over a

single trial. Right columns: spike-phase maps for

neurons 10 and 40, showing reliable phase pre-

cession across 40 trials. Note that CA3 place cells

maintain the same dynamics but with a 180� phase
offset from CA1 theta.

(D) CA1/CA3 populations form theta sequences

within single trials.

(E) Column one: Static synaptic weight matrices

for CA1 (black) and CA3 (red). Neuron order is

sorted to match the order of place field location in

(B). Column two: firing rate maps for the modeled

LS neuron across 40 trials. White line is the mean

firing rate across trials. Column three: firing phase

maps for the modeled LS neuron across 40 trials,

relative to CA1 theta phase. Column four: mean

squared error values using the same decoder as in

(H) and (D) for shuffled data (black), firing rates

(red), or firing phases (blue) of the modeled LS

neuron.

(F) Same as in (E) but with a random synaptic

weight matrix.

(G) Same as in (E) but with a synaptic weight matrix

taken directly from the gamma assembly analysis

in Figure 6E. Dynamic weighting of synaptic matrix

produces a robust spatial phase code.

(H) Same as in (G) but without the presence of

population theta sequences. This is achieved by

injecting different theta rhythms into individual

CA1/CA3 neurons.
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sequences occur within single trials (Figure 7D; Dragoi and

Buzsáki, 2006; Foster and Wilson, 2007; Gupta et al., 2012),

and (5) CA3 theta is phase offset from CA1 by 180 degrees (Fig-

ures 7C and 7D; Buzsáki et al., 1983; Dragoi and Buzsáki, 2006).

Having created this model of hippocampal activity and its

output to LS, we asked how different synaptic weight matrices

influence the transmission, or transformation, of spatial informa-

tion through this simulated circuit (Figures 7E–7H). Using a static

weighting regime, where all synaptic connections have equal

strength, we observed no or highly variable spatial information

in the downstream neuron (Figure 7E). This is due to the interfer-

ence of spatial and temporal offsets of CA1 and CA3 cell firing.

Using random weight matrices, where each synaptic weight

is drawn from a normal distribution, we observed weak predic-

tions of spatial position that rarely exceeded chance for both

firing rates and firing phases (Figure 7F). The next synaptic

weight matrix we examined was one derived from the data

examining assembly strengths between HPC and LS (Figure 6E).

Using a connectivity matrix that matched the experimentally

measured negative correlation between CA1 and CA3 popula-

tions (r = – 0.88; Figure 7G, left column), we observed that the

downstream LS neuron carried a highly reliable phase code, in

a manner that is independent of firing rate information (Fig-

ure 7G). By injecting uncoordinated theta oscillations into indi-

vidual CA1 and CA3 neurons, we obtained identical place fields

and phase precession clouds but without the presence of coor-

dinated theta sequences within single trials. As a result of this

manipulation, the reliability of the phase-position relationship in

the model LS neuron was severely degraded (Figure 7H). Thus,

by dynamically weighting the outputs of CA3 and CA1 place

fields at different positions, the assembly firing of the hippocam-

pal output is transformed into a rate-independent phase code of

that space in the LS, consistent with our experimental observa-

tions (Figures 2, 3, and S4).

DISCUSSION

We examined the encoding of space in neuronal activity of the

HPC and its major subcortical output region, the LS. While firing

rate and theta phase of spiking of single place cells correlated

similarly with the rat’s spatial position in the HPC, the correlation

between firing rate and position was exceptionally rare for LS

neurons. Instead, the timing of spikes within the hippocampal

theta cycle (i.e., phase) carried a high level of spatial information.

Unlike the spatially restricted spike-phase precession of hippo-

campal place cells, LS phase fields could cover virtually the

entire length of the maze (�3.2 m). The strength of this phase

coding had an anatomical microstructure within the LS,

increasing along the dorsoventral axis. By examining theta

coherence, theta-gamma cross-frequency coupling, and cell

pair correlations between the HPC and LS, we found that LS

neurons compare the relative strengths of the activity of their

upstream CA1 and CA3 partner place cell assemblies. The

dynamically changing ratio of these strengths within the theta

cycle may be responsible for the timing of action potentials in

LS neurons. The biophysical model we implemented to examine

this hypothesis demonstrates that rate-independent spatial

encoding in LS can arise through the hypothesized dynamic
1238 Neuron 98, 1229–1242, June 27, 2018
weighting of CA1 and CA3 synaptic inputs, which converge on

target reader neurons in the LS. Our findings define a transforma-

tion rule between the cognitive map of the HPC and its action-

executing target, the LS.

Spatial Correlates of Firing Patterns in theHippocampus
and Lateral Septum
Numerous experiments have described that both firing rates and

theta phase of place cell spikes in the HPC correlate with the

spatial position of the animal (O’Keefe and Nadel, 1978; O’Keefe

andRecce, 1993; Jensen and Lisman, 2000; Dragoi andBuzsáki,

2006). Our findings confirm that rate coding of the animal’s posi-

tion is reliable when long time windows are used for calculating

rate (>10 cm, Figure 1). Yet, firing rate is an inherently ambiguous

code for spatial position because it waxes and wanes within the

place field, and, thus, the same instantaneous rate may refer to

two distinct positions. Firing rate also varies as a function of

speed of the animal (McNaughton et al., 1983) so at different

speeds the same instantaneous rate may refer to different posi-

tions. In agreement with the above reasoning, we found that

when rate coding of single place cells is examined at high spatial

resolution, e.g., at 6 cm or less, which corresponds to approxi-

mately a single theta cycle at average running speed, spike-theta

phase more reliably correlates with position than spike rate (Fig-

ure 1). Therefore, the hippocampal phase code operates at a

speed that may bemore amenable to the timescales for synaptic

integration (Losonczy and Magee, 2006), synaptic plasticity

(Bi and Poo, 1998), and perception (Thorpe et al., 1996).

In the LS, bona fide place fields, determined by classical firing

rate criteria, were rare and reflected only a degraded and unsta-

ble version of hippocampal place fields (Zhou et al., 1999; Leut-

geb and Mizumori, 2002; Takamura et al., 2006). In contrast, the

magnitude of correlation between spike theta phase and position

was comparable between neuronal populations recorded from

the LS and HPC (Figures 3 and S7). Thus, theta phase preces-

sion appears to be the predominant coding mechanism for

position in LS neurons, anchored to either local or distal cues

(Figure S6; Knierim, 2002)

Theta phase precession has also been reported in the prefron-

tal cortex (Jones and Wilson, 2005), ventral striatum (van der

Meer and Redish, 2011), and basal forebrain (Tingley et al.,

2017). However, in the ventral striatum, neurons show an antic-

ipatory ramping of spiking activity up to the reward sites, while in

the prefrontal cortex and basal forebrain firing rates are tuned to

specific behavioral task phases, dissociated from spatial cues

(van der Meer and Redish, 2011; Tingley et al., 2014). In contrast,

LS firing rates lacked reliable tuning to spatial features of

the task.

Phase-coding bias for position systematically increased from

dorsal-to-ventral regions of the LS (Figure 4), demonstrating a

topographical microstructure for spatial encoding within the

LS. Additionally, the starting phase for precession (i.e., ‘‘onset’’)

varied along both dorsal-to-ventral and medial-to-lateral axes

(Figure 4). Together, this would suggest that a similar computa-

tion is being carried out across subregions of the LS, whose

spiking output is organized as a ‘‘traveling wave,’’ which reflects

theta phase shifted inputs from different regions and septotem-

poral positions of the HPC (Lubenov and Siapas, 2009; Patel



et al., 2012). In addition, wewere able to demonstrate that hippo-

campal-LS spike-spike coupling, coherence of theta oscilla-

tions, and theta-gamma cross-frequency coupling could explain

several aspects of LS neuron phase precession. Overall, these

findings demonstrate that position information can be as reliably

‘‘decoded’’ from the lateral septum as from the HPC, although

the format of neuronal signaling that provides such information

is different in these structures. We would like to add a cautionary

note though that hitherto unexplored multi-synaptic, multi-struc-

ture mechanisms may allow for an alternative mechanism of

spike-phase coding of position in the LS.

Transmission and Utilization of the Hippocampal Spatial
Map by LS Neurons
Ample evidence supports the view that the HPC and its partner

structures generate a map of the environment, but less is known

about themechanisms bywhich this abstract code is read out by

downstream partners and utilized for action. Our findings sug-

gest that the LS is a potential decoder of hippocampal output

by comparing the ratio of inputs from CA1 and CA3 pyramidal

cells within each cycle of the theta oscillation and transforming

this ratio into precise spike times.

The correlation between position and theta phase spiking in LS

has several potential explanations. First, an argument can be

made that the phase shift reflects running speed variation. How-

ever, only a small fraction of LS neuronsweremodulated by loco-

motion speed, and we observed no relationship between the

magnitude of speed-rate correlation and themagnitude of phase

precession. A second potential explanation of spike theta phase

shift is due to reward goals, as in the ventral striatum (van der

Meer and Redish, 2011) or path length traveled. These options

are less likely because theta phase precession of many LS neu-

rons retained their relation to distant room cues after the rotation

of the maze, suggesting that the spike-phase shift is a spatial

‘‘code’’ (Figure S6). A third explanation is that LS neurons in-

herited their spiking activity directly from ventral hippocampal

place cells with large place fields (Kjelstrup et al., 2008; Royer

et al., 2010). While we cannot reject this hypothesis, it seems un-

likely given several aspects of the currently available data.

If phase precession is simply inherited directly from single

hippocampal neurons or coherent place field assemblies, one

should expect that concomitant firing rate changes of the

upstream neurons should also be transferred to LS neurons.

Specifically, we should have also found copies of small place

fields with firing rates and phase precession reminiscent of

dorsal hippocampal place cells. Because we surveyed a large

extent of the LS, it is unlikely that we systematically missed the

target zone of dorsal CA1 and CA3 pyramidal neurons. More-

over, previous anatomical mapping studies (Risold and

Swanson, 1997; Oh et al., 2014), our own tracing experiments

(Figure S3), and the shifting phase ‘‘onsets’’ of precession (Fig-

ure 4) show that our LS recordings spanned areas that receive

both dorsal and ventral CA1 and CA3 outputs. For an inheritance

model of LS phase precession, we would also expect the spatial

scaling of hippocampal inputs (Kjelstrup et al., 2008; Royer et al.,

2010) to be reflected in the firing patterns of LS neurons, yet we

observed comparable spatial scaling between the dorsal hippo-

campal and LS populations (Figures 3B and 3C).
A recently proposed set of ‘‘dual-input’’ models explains

phase precession of CA1 pyramidal neurons by the varying

strengths of CA3 and layer 3 entorhinal cortical neuron inputs

(Hasselmo et al., 2002; Colgin et al., 2009; Chance, 2012; Lasz-

tóczi and Klausberger, 2016; Fernández-Ruiz et al., 2017).

Entorhinal drive initiates place cell activity but short-term

depression of these afferents reduces the efficacy of this input,

while, in the outgoing part of the place field, the CA3 input is

the major source of excitation of CA1 place cells (Fernández-

Ruiz et al., 2017). In all these experiments and models, firing

rates determine the place field, associated with theta phase pre-

cession. In contrast, the form of theta phase advancement we

observed in LS occurred without the presence of discrete place

fields or reliable changes in firing rate (Figures 2 and S2), and at a

temporal scale (�6 s) slower than that observed for short-term

synaptic plasticity (Stevens and Wang, 1995; Fernández-Ruiz

et al., 2017). Importantly, phase precession of LS neurons

extended to virtually the entire path length, suggesting that the

spike phase relates to the current position, whereas the slope

of the phase precession simultaneously predicts a large part or

the entire length of the journey.

Our findings allowed for the formulation of an alternative

mechanism for theta phase precession in LS neurons. We

hypothesize that the changing relative strength of the CA3 and

CA1 assemblies (i.e., the ratio of CA1 versus CA3 inputs) is

responsible for the spike rate-independent slow phase preces-

sion of LS neurons. The computational model we built, using

the measured spike data from the HPC, demonstrated that the

dynamic weighting of inputs in the model LS neurons can repli-

cate our experimental findings. Using static or random weight

matrices, the hippocampal inputs failed to replicate the experi-

mental observations. Selectively removing population ‘‘theta

sequences’’ also rendered the circuit incapable of transforming

spatial information. Thus, information transference through the

hippocampal-LS circuit does not rely on the firing rate or

spike-phase codes of single hippocampal neurons. Rather, it

requires theta phase coordination across CA1 and CA3 popula-

tions, in addition to spatial encoding in single neurons. Theta

oscillations gradually shift their phase from the septal to the

ventral pole of the HPC (Lubenov and Siapas, 2009; Patel

et al., 2012), which was reflected by the mediolateral phase shift

of the starting phase of LS neurons. Thus, our model can be

generalized to any two anatomical locations in the septotempo-

ral axis of the HPC to provide the necessary theta phase offset

inputs for such a ratio-weighing model.

An obvious task for the future is to examine whether and

how targets of LS utilize this phase code. One possibility is

that the LS phase code that we have shown is a simple by-

product not used for any computation. Intuition would suggest

that any decoder of phase-locked spiking requires input from

the HPC in order to determine theta phase. However, this in-

formation is simultaneously encoded across the LS in lock

step with the hippocampal traveling theta wave (Figure 4).

This would allow for a similar dynamic weighting decoder

mechanism downstream of only convergent LS input. Such a

phase code may be useful in selectively addressing only those

downstream neurons of LS that receive convergent input or

simultaneous hippocampal theta signals. This may explain
Neuron 98, 1229–1242, June 27, 2018 1239



why neurons in lateral hypothalamic and several brain stem

nuclei display theta oscillations (S1awi�nska and Kasicki,

1995; Vertes and Kocsis, 1997). This hypothetical mechanism,

perhaps using the same decoding strategy as LS neurons,

would allow for the isolation of single channels within multi-

plexed signals across distributed and highly interconnected

brain networks.

Implications
As external observers,weoftenmake simplifying assumptions as

to the nature of neural encoding. However, the lack of ‘‘tuning’’ in

a given experimentmay simplymeanwe failed to identify the right

coding scheme. The current findings demonstrate a firing rate-in-

dependent encoding of positional information, which critically

depends upon the spatiotemporal structure across input popula-

tions (theta sequences) rather than on the first-order dynamics of

single-input neurons (place tuning of rate and phase precession).

Ourmodel supports the perspective that the hippocampal cogni-

tivemap is embeddedwithin a spatiotemporal phasemapacross

its anatomical subregions, and that LS rate-independent spatial

encoding is undetectable to the outside observer, without

reference to these inputs. Selective manipulations of this spatio-

temporal organization (Robbe et al., 2006; Lenck-Santini and

Holmes, 2008; Wang et al., 2015; Newman et al., 2017; Kao

et al., 2017), along with our current observations, demonstrate

that spatial information in the HPC can only be properly read

out when the spatiotemporal phase map is intact and the down-

stream neural observers have the necessary synaptic architec-

ture with which to decipher upstream information.
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theta waves along the entire septotemporal axis of the hippocampus. Neuron

75, 410–417.

Paxinos, G., and Watson, C. (2013). The Rat Brain in Stereotaxic Coordinates

(Academic Press).

Risold, P.Y., and Swanson, L.W. (1997). Connections of the rat lateral septal

complex. Brain Res. Brain Res. Rev. 24, 115–195.

Robbe, D., Montgomery, S.M., Thome, A., Rueda-Orozco, P.E., McNaughton,
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STAR+METHODS
KEY RESOURCES TABLE
Resource Source Identifier/Location Description

Antibodies

Red retrobeads IX Lumafluor https://lumafluor.com

DAPI antibody Sigma-Aldrich Cat#: D8417 SIGMA

Experimental Models: Organisms/Strains

Rat: Long-Evans Charles River Cat#: Crl:LE 006 2 female, 3 male; adults

Software and Algorithms

Analysis tools Buzsáki Lab https://github.com/buzsakilab/buzcode Analysis tools used

throughout the paper

Data visualization scripts David Tingley https://github.com/DavidTingley/papers Example MATLAB scripts

that recreate each main figure

HPC/LS recording data David Tingley CRCNS (will be uploaded upon publication)

Projection density data Allen Brain Institute http://connectivity.brain-map.org/

Klustaviewa Rossant et al., 2016 https://github.com/klusta-team/klustaviewa

Spikedetekt2 Cortical Processing

Laboratory (UCL)

https://github.com/klusta-team/spikedetekt2

Klustakwik2 Kadir et al., 2014 https://github.com/klusta-team/klustakwik/

Position decoder Meyers, 2013 http://www.readout.info/

MATLAB MathWorks https://www.mathworks.com/

pyNN Davison et al., 2008 http://neuralensemble.org/PyNN/

Other

Silicon probe (5x12, 6x10,

8x8, and 4x8)

Neuronexus https://neuronexus.com/

Silicon probe (1x64) Cambridge Neurotech https://www.cambridgeneurotech.com/

Intan RHD2000 Intan technologies http://intantech.com/RHD2000_evaluation_

system.html

Motive tracking system Optitrack http://optitrack.com/ 6 Flex3 camera system
CONTACT FOR REAGENT AND RESOURCE SHARING

Further information and requests for resources and datasets should be directed to and will be fulfilled by Gyorgy Buzsáki (gyorgy.

buzsaki@nyumc.org).

EXPERIMENTAL MODEL AND SUBJECT DETAILS

Animal handling and behavioral training
Five adult Long-Evans rats, 3 male and 2 female, were used in this study. Each animal was handled for 2-3 weeks daily prior to exper-

imental training. After handling, animals were exposed to each maze for several days and trained to alternate, without stopping,

between paths through the maze. Because the circular maze was symmetric along the 0 and 90 degree axes, animals were shaped

such that alternation took place relative to a cued (tapping prior to trial blocks) start/stop location (one of four possible). Dynamic re-

cueing during the behavioral session could then be used to change the animal’s trajectory through space, without changing the

allocentric cues in the room or rotating the maze. On the linear maze, animals were trained to continuously alternate between the

two ends. All stop locations were rewarded with 1/3 piece of Honey Nut Cheerio if animals completed a successful trial without stop-

ping or alternating the incorrect direction. All experiments were approved by the Institutional Animal Care and Use Committee at New

York University Medical Center.
Neuron 98, 1229–1242.e1–e5, June 27, 2018 e1

mailto:gyorgy.buzsaki@nyumc.org
mailto:gyorgy.buzsaki@nyumc.org
https://lumafluor.com
https://github.com/buzsakilab/buzcode
https://github.com/DavidTingley/papers
http://connectivity.brain-map.org/
https://github.com/klusta-team/klustaviewa
https://github.com/klusta-team/spikedetekt2
https://github.com/klusta-team/klustakwik/
http://www.readout.info/
https://www.mathworks.com/
http://neuralensemble.org/PyNN/
https://neuronexus.com/
https://www.cambridgeneurotech.com/
http://intantech.com/RHD2000_evaluation_system.html
http://intantech.com/RHD2000_evaluation_system.html
http://optitrack.com/


METHOD DETAILS

Surgical procedures
Rats were anesthetized with isoflurane and implanted with silicon probes (NeuroNexus and Cambridge NeuroTech) mounted on

custom built microdrives. Each animal was implanted with two probes in the right hemisphere, one targeting LS and one targeting

dorsal CA1 (Paxinos and Watson, 2013). Coordinates and probe specifications for each animal can be found in Figure S1A. During

surgery implants were placed dorsal to target regions, allowing for movement into target regions after recovery from surgery.

Craniotomies were sealed with sterile wax. To provide electrical shielding and mechanical protection, copper mesh was shaped

around the probes and filled with dental cement. Two stainless steel screws implanted above the cerebellum were used for

grounding.

Retrobead injections
Rats were anesthetized with isoflurane and injected with 20-150 mL of red retrobeads into the LS at one to three depths, spaced

200 mm apart. After waiting two weeks, hippocampal slices were prepared and examined for localization of beads. In all cases where

LS injections were correctly targeted, and no leakage into the ventricle was observed, CA1 and CA3 neurons could reliably be found

that were filled retrogradely.

Analysis of Allen Brain Institute connectivity data
55 experiments were downloaded from the Allen Brian Atlas (http://connectivity.brain-map.org/) where CA1 and/or CA3 of the HPC

had been injected (AAV-EGFP) without virus leakage into cortex or subiculum. For each injection, 9 target regions were selected (LS,

subiculum, entorhinal, retrosplenial, orbitofrontal, prelimbic, infralimbic, posterior parietal, and primary visual cortices). For each

target region, the normalized fluorescence intensity was calculated as the summed fluorescence intensity divided by the injection

volume and number of voxels per target region (Isum/(Volinject*Voxsum).

Recording/Data processing
Recordings were conducted using the Intan RHD2000 interface board, sampled at 20 kHz. Amplification and digitization were done

on the head stage. Waveform extraction and initial clustering was conducted using SpikeDetekt and Klustakwik. Example parame-

ters for these algorithms can be found in the GitHub repository (https://github.com/DavidTingley/papers). Manual waveform discrim-

ination was then conducted using the Klustaviewa software suite. Waveform amplitude was utilized during this stage to assess unit

stability. Any waveforms that changed significantly throughout the duration of the recording were discarded. Waveform isolation

quality was quantified using the isolation distance metric (https://github.com/buzsakilab/buzcode) and the waveform amplitude

(Figures S1B–S1E).

For one animal, position within the environment was tracked with two headmounted LED’s (1 blue, 1 red) and an overhead camera

(Basler, 30 Hz). For the other four animals, position was tracked with the OptiTrack camera system. IR reflective markers were

mounted in unique positions on each animals’ head stage and imaged simultaneously by six cameras (Flex 3) placed above the

behavioral apparatus. Calibration across cameras allowed for the three dimensional reconstruction of the animals’ head position,

and head orientation, to within 1 mm (avg. displacement error = 0.70 mm ± 1.5 mm) at 120 Hz.

Position data was analyzed and segmented using a custom MATLAB software suite. Only ballistic trials, without stopping or

deviation from the trained trajectory, were extracted for further analysis. These trials made up �90%–95% of all trials attempted

for any given recording. Quantification of the different behavioral paradigms and their dynamics can be found in Figures S1F–S1I.

Histology
Animals were placed under anesthesia and electrolytic marker lesions were conducted (4 mA for 4 s). Animals were perfused with 4%

paraformaldehyde under deep anesthesia. Brains were removed and sliced in 80 mm slices using a vibratome (Leica VT1000S). For

implanted animals, a DAPI stain was used to localize probe tracks. The deepest point of lesion, combined with the record of turn

depths, was used to estimate the location of each recording. Initial recordings in more dorsal structures (anterior cingulate, corpus

callosum, or the ventricle) were also used to verify depth coordinates in the LS for each animal.

QUANTIFICATION AND STATISTICAL ANALYSIS

Spatial information analysis
To compare phase and rate variables, data was discretized to an equal number of bins (N = 7 phase or rate bins). The metric chosen

(Olypher et al., 2003) assigns positional bins information scores that reflect the uniqueness of the data at that position relative to other

positions, and the reliability of the data across trials at that position.Pk is the probability of observing spike rate (or phase) k. Pk j xi is the
conditional probability of observing spike rate (or phase) k in position xi.

IposðxiÞ=
X
KR0

Pk j xi log
Pk j xi
Pk
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Spiking rates (or phases) were smoothed using a box filter over progressively larger sets of position bins (1-50 bins which corre-

sponds to�1.5-80 cm). The box filter implemented for neural data returned themean value for a set of bins surrounding each position

bin. To apply this to the spike phase data, the circular mean was taken.

Instantaneous firing rate and firing phase independence
When examining the correlation between two signals, it is important to account for inherent structure in both of the individual signals.

For two time series, the appropriate null distribution is to circularly shift one time series, relative to the other, by random offsets; thus

preserving the autocorrelation structure of both signals while removing any cross-correlation structure. For two rhythmic signals this

is especially important, as randomly permuting one time series (thus removing autocorrelation structure) often leads to an inadequate

null distribution.

To examine the relationship between instantaneous firing rate and instantaneous firing phase, this circular shifting approach was

used to generate a satisfactory null distribution. The instantaneous firing rate (IFR) for each action potential was calculated as one

divided by the mean of the previous and following inter-spike intervals (Harris et al., 2003). The instantaneous firing phase was taken

as the phase of CA1 theta at which each action potential occurred. As both of these signals (IFR and LFP theta) are rhythmic around

�8Hz, is it very common to find spuriously high circular/linear correlations (.4 – 0.8) that do not differ significantly from those expected

after circular shifting Figure S2.

LFP theta phase coherence
A 3rd order Butterworth bandpass filter (4-12 Hz) was applied to the raw LFP, after which the angle of the Hilbert transform was taken

to extract just the phase component of the signal. Theta phase coherence was then measured across 150 ms windows that were

moved through time at 50 ms steps using multi-taper estimation.

LFP cross-frequency coupling
Theta-gamma cross frequency coupling was assessed as the circular-linear correlation between CA1 LFP theta phase and LS LFP

gamma power. CA1 LFP was bandpass filtered (Butterworth; 4-12 Hz; order = 3), and the angle of the Hilbert transform was taken as

the phase angle. LS LFP gamma power was assessed as the root-mean squared (window = 50 ms) power of the bandpass filtered

signal (Butterworth; 40-200 Hz; order = 3).

Position prediction analysis
Action potential timeswere extracted for each successful trial andmapped onto at linearized position vector such that firing rates and

firing phases were associated with particular positions, rather than times. Estimates of firing rate or firing phase (relative to dCA1

theta) were calculated for each position bin and smoothed across 20 bins using a box filter (�30 cm). All results were qualitatively

similar when smoothing over smaller or larger scales (10-50 cm). A maximum correlation coefficient classifier was then produced

where the estimated firing rate, or firing phase, was used as a predictor; and the animals’ position as the response variable. 60%

of the data (entire block of trials in the same condition) was randomly selected to train the model, and the remaining 40% of the

data was used to test the model, generating a mean squared error (MSE). The classifier operates by building a template from the

training data by averaging across different observations at each position. For each test sample it then selects a prediction based

on which position bin from the template correlates most strongly with the test sample. When using this method with single features

(i.e., neurons), it is equivalent to taking the minimum squared deviation between the training template and test sample. XTr is the

template created from training data (average firing rate or phase for all positions). XTei is the test sample for position i.

PosðiÞpred = argmin
i

��
XTr i � XTei

�2�

10-fold cross validation was performed with different 60/40 randomly selected splits, generating a distribution of mean squared

errors for each model type (rate, phase, and shuffle). The iterations did not serve to obtain ten independent tests but to achieve a

more reliable estimate of predictive strength (or mean squared error) than could be obtained with just one cross-validation. Data

was shuffled by randomly permuting the vector of phases or rates associated with the vector of positions. Significance was then

determined by a two sample t test when comparing these distributions of MSE values. Neurons were required to fire a minimum

of 1.5 spikes per trial on average to be considered for this analysis (Ex. > = 30 spikes across 20 trials). All results were qualitatively

similar using Bayesian decoding (see Figure S7) and generalized linear modeling approaches.

Ensemble position prediction analysis
The method for predicting animal position from ensemble activity was a naive Bayes decoding method. Populations of simulta-

neously recorded hippocampal (range: 1-83) or lateral septal (range: 1-53) neuron firing rates, or firing phases, were discretized

into 20 bins. Prior to binning, these data were smoothed using the same method as all single neuron decoding (box filter,

20 bins). The data were then split into 60% training and 40% testing partitions. 10-fold cross validation of this splitting procedure
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was used andmean squared error values were averaged across all iterations. Training data was used to calculate themean values for

each neuron and position. To quantify the relationship between rate (or phase) and position, the log likelihood function is calculated

using these discretizedmean rates (or phases) as parameters for Poisson distributions for each neuron. The probability of observing a

given discretized firing rate (or firing phase) for each neuron is then calculated for each position. These probabilities are then multi-

plied across all neurons (assuming independence) to give an overall likelihood value for each position. The position with the highest

likelihood value is chosen as the predicted position.

Peer prediction analysis
The method for detecting and quantifying gamma cell assemblies between LS and HPC builds off of methods previously developed

to assess within region assemblies (Harris et al., 2003; Tingley et al., 2015). The approach uses a generalized linear model with the

spike train of one neuron as a ‘predictor’ and a simultaneously recorded peer as a ‘response’. By temporally smoothing the predictor

spike trainwith different windows (1-150ms), eachmodel will have a different goodness of fit with the response spike train. Themodel

with the best fit, and accompanying temporal smoothing window, are then assessed for significance by comparing the deviation of fit

with that expected from shuffled versions of the same data. For shuffling, the trial order between predictor and response variables is

shuffled such that two spike trains from different trials are used as the predictor/response variables, rather than two spike trains from

the same trial. This shuffling is carried out 10 times to create a distribution of deviation of fits. The ‘assembly strength’ value quantifies

the ratio between the actual deviance and the best possible deviance taken from the null distribution. Thus, an assembly strength

score of 8 reflects a reduction in ‘deviance of fit’ that is 8 times larger than the best observed reduction taken from the shuffled data-

set. The decision for what is, or is not, an assembly (threshold is 4 throughout the paper) was chosen to reflect when cross correlo-

grams clearly showed a visible peak at the expected timescale. When examining the data with assembly strength thresholds ranging

from 1.5-8, all results were qualitatively similar.

Each neuron pair has a single assembly strength value, determined by all spikes that occur during a single block of trials. For

Figure 6E (position dependence of assembly strengths), these values were then cross-referenced with cells that had significant place

fields, thus only firing in a restricted set of positions. The center of mass for each place field was taken as the ‘position’ for these

LS-HPC (place cell) pairs. HPC cells that participated in an assembly but did not have a place field were not included in this analysis.

To ensure that co-tuning to theta phase or behavioral correlates did not spuriously lead to assembly detection, theCA1 theta phase

(sin, cosine and raw phase angles), the animal’s position, and the animal’s velocity were provided to all GLM’s as additional predic-

tors to regress out such co-variation (Figure S5).

Reference frame analysis
To assess which frame of reference LS phase precessing neurons were locked to, maze rotations were conducted within single

recording sessions. This allowed for the dissociation of different frames of reference (egocentric, maze/reward-centric, and allocen-

tric). A multivariate modeling approach was taken using the same maximum correlation decoder as for the position prediction

analysis. Egocentric, maze-centric, and allocentric information were provided as predictors to the model, and the firing phase of

LS neurons was provided as the response variable. A total of 23 variables were examined, 6 allocentric (x, y, z, pitch, yaw, and

roll), 4 route-centric (maze orientation and direction of motion), 1 reward/goal-centric (distance to current reward location), and

12 egocentric (1st and 2nd derivatives of position variables for velocity and acceleration). Null distributions were created by circularly

shuffling each variable by a random amount and re-running the decoder. Models were trained on a random subset of available data

(60%) and evaluated on the remaining data (mean squared error; 40%).

Place field definition
The set of heuristics used to identify a ‘place field’ were the following 1) Minimum peak firing rate of 2 Hz, 2) Minimum field width of

8 cm, 3) Maximum field width of 120 cm, 4) Minimum of 1.5 spikes per trial on average, and 5) at least 10 trials with consistent

behavior. Given these criteria, 711 of 1,425 HPC neurons had at least one place field with a mean of 1.27 ± 1.76 fields per neuron.

There was no limit set on the number of place fields single neurons could have. The median peak in-field firing rate was 8.5 ± 12 Hz,

and the median field width was 38 ± 16 spatial bins (�57 cm). The start and stop position for each field were taken as the spatial bins

where the firing rate drops below 20% of the peak firing rate. The center of mass for each field was calculated only for bins between

the start/stop bins. As this definition excludes potentially informative spikes outside of the place field of a cell, it was only used to

identify and cross reference with other analyses. All rate/phase correlations, peer prediction, and position prediction modeling

was carried out using all action potentials recorded during the behavioral trials.

Spiking model
The spiking model was developed in the python programming language with pyNN serving as the frontend and the NEURON simu-

lator as the backend (Davison et al., 2008; Carnevale and Hines 2006). Themodel consists of 50 CA1, and 50 CA3, ‘place cells’ which

all send convergent input to a single LS neuron. Each hippocampal neuron is a Hodgkin-Huxley spiking model that receives two

inputs, a subthreshold theta oscillation and a ramp current at a particular time as themodel runs. The combination of these two inputs

creates a firing output that is localized in time and shifted in theta phase. CA3 neurons receive a 180-degree phase delayed theta

oscillation.
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When the population of hippocampal neurons receive a single theta input, the population of neurons is coordinated into ‘theta

sequences’. Injecting different (phase offset) theta rhythms into individual neurons creates the same firing field and phase precession

clouds for single neurons across trials, but without the presence of ‘theta sequences’ on single trials. For all synaptic weight matrices

(dynamic, static, random), the weight matrix is scaled such that that LS target neuron receives the same net excitation.

DATA AND SOFTWARE AVAILABILITY

The dataset is currently under preparation to be uploaded to the CRCNS database. Upon request the data is immediately available.
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Supplemental Information 
Figure S1. Technical details: histology, cluster quality, and behavior. Related to Figures 1 

and 2. (A) Diagrams of the silicon probe locations and supporting histology are given for 

each animal. Red triangles indicate track localization for each image.  All images are sorted 

anterior-to-posterior in the left-to-right direction.  (B) Upper: Average waveforms across 8 

electrodes of a single silicon shank for 14 simultaneously recorded LS neurons. Lower: Auto-

correlograms for the same 14 neurons are shown as the colored bar plots. Colors match the 

waveforms in upper panel. Cross-correlograms between each possible cell pair are shown in 

the white bar plots.  X-axis bins are 0.5 ms, and each y-axis is normalized to the maximum 

count. (C) Upper: Histogram of isolation distances for 1,647 lateral septal neurons. Lower: 

Histogram of peak waveform amplitudes for 1,647 lateral septal neurons. (D) Upper: 

Histogram of isolation distances for 2,297 CA1 neurons. Lower: Histogram of peak 

waveform amplitudes for 2,297 CA1 neurons. (E) Upper: Histogram of isolation distances 

for 654 CA3 neurons. Lower: Histogram of peak waveform amplitudes for 654 CA3 neurons. 

(F) Average velocity plots for the circle alternation (N=2,889 trials), central alternation 

(N=6,608 trials), and linear (N=625 trials) tracks.  Bounds are +/- one standard deviation. (G) 

Histograms of all translational velocities across the entire duration of all trials for each 

behavior type. (H) Histograms of all trial durations for each behavior type. (I) Behavioral 

tracking data for the three trial types; central stem alternation (left), linear track (center), and 

circle maze alternation (right). Green and red dots indicate the start and stop locations for 

individual trials. (J) Population average firing rates (y-axis) for lateral septum (magenta) and 

hippocampus (black) across all positions (x-axis). Bounds are +/- 3 SEM. 

 

Figure S2. Firing rate and firing phase are independent variables at the single trial level. 

Related to Figures 1 and 2. (A) Upper: For the example neuron in Figure 1A-C, the circular-

linear correlation between CA1 theta phase and instantaneous firing rate is plotted (black) for 

each trial (N=21; X-axis). The mean of a null distribution (circularly shifted data with 

random offsets; N=100 shuffle) is plotted in blue with bounds that represent ± 1 standard 

deviation from the mean.  Lower: For each trial the P-value when comparing these values is 

plotted as the black line.  The red line indications P=.05. (B) For every action potential for 

the example neuron in Figure 1a-c, the instantaneous firing rate was calculated (1 / 



[ISIpre+ISIpost]/2).  This instantaneous firing rate (y-axis) is plotted relative to the CA1 theta 

phase (x-axis) at which the action potentials occurred. Note reduced rate at the peak of the 

theta cycle (0). (C) For all CA1/CA3 conditions the mean (across trials) circular linear 

correlation for actual data (x-axis) is plotted against the mean circular linear correlation taken 

from the circular shifted null distribution (y-axis). Red: Neurons with significantly (P<.05) 

higher actual correlations, when compared to the null distribution. They account for less than 

2% of all conditions. (D) Histograms for all CA1/CA3 conditions shown in Fig. S2C. Blue 

shows the actual data, red shows the shuffled data.  The black and red lines indicate the 

means of the distributions for actual and shuffled data, respectively. (E and F) Same as C and 

D for all LS conditions. 

 

Figure S3. Lateral septum is a major target of the hippocampal formation. Related to Figures 

3-7. (A) 55 CA1/CA3 injections were downloaded from the Allen Institute mouse 

connectivity atlas. For each injection, 9 target regions were selected (lateral septum, 

subiculum, entorhinal, retrosplenial, orbitofrontal, prelimbic, infralimbic, posterior parietal, 

and primary visual cortices).  For each target region, the normalized fluorescence intensity 

(y-axis; log-scale) is plotted for each injection (x-axis).   Injections are sorted by total 

injection volume. (B) Histograms showing the log-scaled fluorescence intensity across all 55 

injections, for each target region. Values given in the upper right corner of each plot are the 

median value across all 55 injections.  (C) Our own experiments: Upper images are brain 

slices from a red retrobead injection (Lumaflour; 100 nL) into the lateral septum of a Long-

Evans rat.  Below are slices of the hippocampal formation, showing retrobead filled 

pyramidal neurons in both the CA1 and CA3 regions of the hippocampus. 

 

Figure S4. LS phase coding examples. Related to Figure 3. Left Column: Six example 

hippocampal place cells.  Grey dots indicate position tracking data, colored dots indicate the 

firing of an action potentials at that position.  The color indicates the mean firing phase, 

relative to LFP theta recorded in the CA1 pyramidal layer, for each action potential. Peak = 

positive. Mean firing phase is calculated for each action potential as the circular mean of the 

ten closest (in position) action potentials. Columns 2-5: 21 example LS neurons. White 

arrows indicate the start position and direction of travel for each neuron. 



 

Figure S5. Gamma assembly strength is independent from phase locking. Related to Figure 

5. (A) Diagram of assembly strength quantification.  Multiple predictors (theta phase, 

velocity, position, and a temporally smoothed peer spike train) were given to a generalized 

linear model.  Model deviances of fit were taken for different temporal smoothing windows 

(1-150 ms) and compared against each other and a shuffled control (red line; bounds are ±3 

STD). (B) Assembly strength is independent from HPC theta phase kappa values (C) 

Assembly strength is weakly negatively correlated with theta phase resultant vector of HPC 

neurons (D) Optimal smoothing timescale is independent from HPC theta phase kappa values 

(E) Optimal smoothing timescale is weakly positively correlated with HPC theta phase 

resultant magnitudes. 

 

Figure S6. Lateral septal phase code can be anchored to distal and local cues. Related to 

Figure 2. (A) Example neuron recorded in seven different rotation conditions which is 

anchored to distal cues. Top row: Behavioral tracking data. Bottom row: Position-phase 

scatter plots of all action potentials recorded for that behavioral condition. Magenta lines 

highlight the ‘phase-field’ for each condition.  (B) Example neuron recorded in seven 

different rotation conditions that is anchored to local cues. (C) Circular standard deviations 

are plotted against position (all spikes within +/- 20 bins), and circularly shifted to be aligned 

across conditions relative to the goal location (left column) or allocentric room cues (right 

column). Bold line is the mean, bounds are ± one standard deviation. Cell #44 precession 

better aligns across conditions relative to allocentric cues, while cell #13 precession better 

aligns relative to the goal location. (D) Reference frame data (x/y position, route position, 

distance to the goal, or acceleration/velocity variables) were used to predict the firing phase 

of LS neurons. Comparison is a two-sample T-test, * is p < 10-10. 

 

Figure S7. Bayesian ensemble decoding of position using firing rates or firing phases. 

Related to Figures 2-3. (A) Density heatmap of 12,078 HPC ensembles (1-83 cells) that used 

firing phases to decode position.  Y-axis is the mean squared error for each model, X-axis is 

the number of HPC neurons in the ensemble, and the color axis is model counts.  Colored 

lines are the best polynomial fits with order = 2.  (B) Density heatmap of 12,078 HPC 



ensembles (1-83 cells) that used firing rates to decode position (C) Density heatmap of 

11,026 LS ensembles (1-53 cells) that used firing phases to decode position (D) Density 

heatmap of 11,026 LS ensembles (1-53 cells) that used firing rates to decode position.  (E) 

Overlay of polynomial fits for different regions (LS/HPC, magenta/black) and coding types 

(phase/rate, dashed/solid). (F) Estimated number of neurons necessary to reduce the mean 

squared error to < 100 (~15 centimeters).  The polynomial fits for each decoder type (LS 

phase, LS rate, HPC phase, and HPC rate) are interpolated until a MSE value of less than 100 

(~15 cm) is obtained. 
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