	Moving state									Stopped state		
	Close to walls					Far from walls						
Days	VP (mm/s)	l/τ_{P} (1/s)	% Exit	% U-turn	% Stop	Vc (mm/s)	<i>l</i> * (mm)	$l/\tau_{Stop,C}$ (1/s)	Days	α	β	
0 to 11	6.5	0.196	10	61	29	6.5	10.66	0.023	0 to 3	0.48	0.74	
									4 to 11	0.936	0.74	

S2 Table. Features of the paths of single spiderlings close to walls and far from walls in the dispersal arena.

V is the average speed, τ_p is characteristic time before an exit, a U-turn or a stop in the external ring, l^* is the transport mean free path (i.e., the distance for which the random walk becomes uncorrelated), $\tau_{Stop,C}$ is the characteristic time before a stop far from the walls. For stopped spiders, α and β give the probability of moving (Eq 1). See [5,36,72] for details.