Supplemental Figure 1. Quantile-Quantile plots for GWAS of common CNV for two array datasets

Principal component analysis was conducted on the matrix of copy number status (0,1) of all deletion and duplication CNVR regions. Logistic regression was performed to estimate the association of all common CNVR with EOC risk using unadjusted and principal component adjusted models. The inflation factor (lambda) was calculated to assess the correction of population stratification by PC covariates.

				DELET	IONS			DUPLICATIONS							
	Model (Histolo	1 ^a ogy)		(His	Model 2 ^C tology + Histolog N=778	y*Stage)		Model (Histolo	1 ^a ogy)	Model 2 ^C (Histology + Histology*Stage) N=778					
	All, mean	b P _{hist}	All, mean	d P _{hist}	Stage 1/2, mean	Stage 3, mean	P _{int} e	All, mean	b P _{hist}	All, mean	d P _{hist}	Stage 1/2, mean	Stage 3, mean	P _{int} e	
HGS, n	410		410		99	311		410		410		99	311		
NSEG	16.7	ref	16.7	ref	20.8	15.4	ref	5.8	ref	5.8	ref	4.1	6.4	ref	
KB	1005.0	ref	1005.0	ref	1498.9	847.7	ref	836.8	ref	836.8	ref	553.1	927.1	ref	
LGS, n	121		119		24	95		121		119		24	95		
NSEG	18.0	0.06	17.9	0.68	18.7	17.7	0.50	5.7	0.48	5.7	0.16	6.1	5.6	0.07	
KB	879.6	0.07	874.0	0.25	990.7	844.6	0.84	703.1	0.42	709.0	0.75	633.1	728.2	1.00	
Endomotrioid n	241		127		97	50		241		127		07	50		
NSEG	241 17 0	0.20	157	0 0003	07 16.8	228	0 0008	5 2	0.44	57	0.41	07 1 Q	30 7 0	0 1 3	
KR	1095 /	0.20	980.2	0.0003	0/2 1	1044 7	0.0008	607.8	0.44	674.0	0.41	4.5 590.6	7.0 810 1	0.13	
KD	1095.4	0.75	500.2	0.02	945.1	1044.7	0.01	092.8	0.05	074.0	0.24	550.0	019.1	0.75	
Clearcell, n	112		78		56	22		112		78		56	22		
NSEG	17.8	0.42	17.6	0.75	18.8	14.6	0.06	5.3	0.88	5.3	0.79	5.3	5.5	0.84	
KB	943.7	0.23	896.8	0.13	964.1	725.3	0.78	728.0	0.36	739.6	0.89	759.0	690.3	0.46	
	C 2		24		24	2		(2)		24		24	2		
Nuclhous, n	63	0.40	34	0.42	31	3	0.00	63	0.00	34	0.40	31	3	0.00	
NSEG	19.6	0.43	18.6	0.13	18.8	16.7	0.60	5.3	0.66	5.9	0.13	5.5	9.7	0.63	
КВ	1364.7	0.14	1262.3	0.39	1277.4	1106.3	0.94	701.5	0.63	779.1	0.96	624.5	2377.3	0.007	
Overall Pvalue	Hi	stology		Histology		Histolo	ogy*Stage	н	istology	Hi	istology	Histology*Stage			
NSEG		0.17		2.6E-05			0.0003		0.83		0.12		0.07		
КВ		0.09		0.04		0.14			0.42	0.69			0.08		

Supplemental Table 1. Distribution of copy number variation (CNV) by EOC histotype and stage in the 610k array set

HGS=high-grade serous; LGS=low-grade serous; NSEG=number of CNV segments; KB=total length in KB of CNV segments.

^a Model 1 reports regression models with NSEG or KB as the dependent variable and histology as the independent variable, including covariates for age and batch. NSEG was modeled using poisson regression with log-link function. KB was modeled using linear regression.

^b P_{hist} reports the pvalue for the comparison of each histology with the reference group (HGS).

^C Model 2 builds on Model 1 by adding an interaction term for histology and stage. Stage was defined as advanced (stage 3) or not advanced (stage 1 and stage 2). Models were adjusted for age and batch, same as Model 1. Stage was included in model as covariate, but was not significant independent of histology.

^d P_{hist} from Model 2 reports the pvalue for the comparison of each histology with the reference group (HGS) after adjustment for stage and histology*stage covariates.

^e P_{int} reports the pvalue for the comparison of the difference between stages of each histology to the difference in the reference group (HGS).

^f The overall pvalues for variables were calculated with the likelihood ratio test.

	DELETIONS		DUPLICATIONS			
	Mean	a P _{hist}	Mean	a P _{hist}		
HGS <i>, n</i>	303		303			
NSEG	26.8	ref	36.8	ref		
KB	672.2	ref	2393.0	ref		
LGS, n	43		43			
ŃSEG	27.2	0.15	33.7	0.0009		
КВ	659.9	0.83	2132.0	0.13		
Endometrioid, <i>n</i>	30		30			
NSEG	24.8	0.12	37.7	0.62		
КВ	632.5	0.83	2260	0.44		
Clearcell	15		15			
NSEG	26.1	0.97	40.8	0.17		
КВ	667.5	0.62	2705.0	0.34		
Mucinous, <i>n</i>	28		28			
NSEG	24.4	0.02	37.8	0.17		
КВ	700.2	0.88	2396.0	0.73		
	ictology					
	ιστοιοβλ	0.00		0.000		
INSEG		0.02		0.002		
кв		0.99		0.39		

Supplemental Table 2. Distribution of copy number variation (CNV) by EOC histotype in the 2.5M array set

HGS=high-grade serous; LGS=low-grade serous; NSEG=number of CNV segments; KB=total length in KB of CNV segments.

^a P_{hist} reports the pvalue for the comparison of each histology with the reference group (HGS). Regression models for deletion and duplications (separately) were modeled with NSEG or KB as the dependent variable and histology as the independent variable, including covariates for age and batch. NSEG was modeled using poisson regression with log-link function. KB was modeled using linear regression.

^b The overall pvalues for histology were calculated with the likelihood ratio test.

Supplemental Table 3. Comparison of rare (<1%) germline Copy Number Variation (CNV) burden between ovarian cancer cases and controls

		61	0K array	/		2.5M array						
	Cases	Controls	Unadjusted		Adjusted ^a		Cases	Controls	Unadjusted		Adjusted ^b	
	N=1368	N=1450	OR	P-value	OR	P- value	N=449	N=343	OR	P-value	OR	P-value
All Rare CNV												
N (%)	1365 (99.8%)	1447 (99.8%)	1.00	0.58	1.02	0.0004	449 (100%)	343 (100%)	0.98	0.16	0.98	0.18
Range	1-61	1-57					4-50	2-36				
Mean	11.5	11.7					13.7	13.2				
Deletions												
N (%)	1344 (98%)	1434 (99%)	1.00	0.82	1.02	0.004	448 (99.8%)	340 (99%)	0.97	0.08	0.97	0.08
Range	1-61	1-56					1-49	1-29				
Mean	8.9	8.8					7.6	7.1				
Duplications												
N (%)	1122 (82%)	1243 (86%)	1.04	0.008	1.04	0.03	449 (100%)	343 (100%)	1.01	0.67	1.01	0.64
Range	1-32	1-17					1-23	1-15				
Mean	2.6	2.9					6.1	6.1				

a Adjusted for site, age (diagnosis or enrollment), and batch.

b Adjusted for age (diagnosis or enrollment). GWAS was conducted at one site and batch was not included as covariate in the model (P>0.10).

Rare CNV Burden. We estimated the influence of rare (carrier frequency <1%) copy number changes on EOC risk using a global burden test. The number of rare CNV calls in a given individual was compared between cases and controls using logistic regression performed in SAS 9.4. We analyzed the effects of site, age, and experimental batch on CNV burden as these are known sources of bias and included variables associated with CNV burden (P < 0.10) as covariates in the risk model. Burden comparisons were made for all rare CNV calls, rare deletions alone, and rare duplications alone.

				610k				2.5M				
Analysis	_	CNV				N (%)			N (%)			
Set	Locus	Туре	Gene	CNVR (KB)	Controls	All Cases	HGS Cases	CNVR (KB)	Controls	All Cases	HGS Cases	
610k	1p36.33	Del	DVL1	Chr1:943468-1706160 (763)	84 (6)	65 (5)	7 (2)	Chr1: 1385211- 1453373 (68)	7 (2)	5 (1)	5 (2)	
	1p13.3	Del	Intergenic	Chr1:111370372- 111391381 (21)	40 (3)	49 (4)	23 (6)	Chr1: 111380720- 111387723 (7)	1 (.3)	3 (.7)	0	
	8p21.2	Del	DOCK5	Chr8:24931313- 25101936 (171)	168 (12)	113 (8)	27 (7)	Chr8: 24972808- 24990418 (18)	36 (10)	52 (12)	36 (12)	
	12p11.21	Dup	RP11-428G5.5	Chr12:31975730- 32068877 (93)	32 (2)	32 (2)	19 (5)	Chr12: 32001515- 32061988 (60)	11 (3)	9 (2)	6 (2)	
	19q13.2	Del	CYP2A7	chr19:41341589- 41433931 (92)	29 (2)	49 (4)	24 (6)	Chr19: 41350895- 41389625 (39)	23 (7)	22 (5)	13 (4)	
	19q13.42	Dup	LILRA6	chr19:54731679- 54845802 (114)	17 (1)	39 (3)	15 (4)	Chr19: 54722595- 54847587 (125)	98 (29)	125 (28)	84 (28)	
2.5M	2q34	Del	ERBB4	Chr2: 213164837- 213200920 (36)	4 (.3)	6 (.4)	3 (.7)	chr2:213187034- 213191389 (4)	18 (5)	8 (2)	3 (1)	
	5p15.2	Del	Intergenic	Chr5: 12401130- 12907694 (507)	10 (.7)	10 (.7)	5 (.7)	Chr5:12812336- 12888815 (76)	36 (10)	70 (16)	55 (18)	

Supplemental Table 5. Risk-associated CNVR and corresponding CNVR catalogued in the Database of Genomic Variants (DGV)

			Risk-associate	ed CNVR	DGV ^a			Human CNV Map			
Locus	CNV Type	Gene(s)	CNVR (KB)	% Carriers ^c	CNVR (KB) ^b	Studies/ Samples Tested	% Carriers	CNVR (KB)	Туре	No. Studies	No. Carriers
1p36.33	Del	DVL1	Chr1:943468- 1706160 (763)	5%	chr1:1226063- 1314437 (88)	2/12755	0.20%	chr1:521413- 1708649 (1187)	Gain+ Loss	17	821
1p13.3	Del	Intergenic	Chr1:111370372- 111391381 (21)	3%	chr1:111374093- 111395110 (11)	14/19349	10.8%	chr1:111375574- 111389642 (14)	Loss	8	211
8p21.2	Del	DOCK5	Chr8:24931313- 25101936 (171)	10%	chr8:24971559- 24992365 (21)	17/19453	8.2%	chr8:24971559- 24992365 (21)	Loss	11	676
12p11.21	Dup	RP11-428G5.5	Chr12:31975730- 32068877 (93)	2%	chr12:31982559- 32081411 (99)	6/17251	1.4%	NA	NA	NA	NA
19q13.2	Del	CYP2A7	chr19:41341589- 41433931 (92)	3%	chr19:41352371- 41397661 (45)	8/16665	3%	chr19:41337301- 41394407 (57)	Gain+ Loss	6	450
19q13.42	Dup	LILRA6	chr19:54731679- 54845802 (114)	2%	chr19:54716840- 54748342 (32)	10/17552	5.6%	chr19:54718938- 54761735 (43)	Gain+ Loss	12	561
2q34	Del	ERBB4	chr2:213187034- 213191389 (4)	3%	chr2:213183409- 213194322 (4.6%)	13/8095	4.6%	chr2:213183409- 213192660 (9)	Loss	7	78
5p15.2	Del	Intergenic	Chr5:12812336- 12888815 (76)	13%	chr5:12810778- 12820827 (10)	11/4193	40.9%	chr5:12809645- 12821242 (12)	Loss	7	502

a DGV Gold Standard Variants, largest study was selected and reported.

b Human CNV Map among presumably healthy individuals of various ethnicities. Developed from DGV content based on high-resolution studies only.

c Carriers from study (160k, 2.5Mk) where CNVR was associated with risk. 2q34 and 5p15 are relative to 2.5M set and all others are 610k set.

Supplemental Table 6. Mixed type CNVR merging and alternative logistic regression models for all EOC susceptibility

					_	Alternative Regression Models ^b								
Arrow	Locus		N Del/Dup			Deletion		Duplication		Mixed Type				
Anay		Gene	Case	Control	CNVR (KB) ^a	P-value	OR (95% CI)	P-value	OR (95% CI)	P-value	OR (95% CI)			
610k	8p21.2	DOCK5	113/0	168/0	Chr8: 25061807- 25079502 (18)	0.004	0.69 (0.54-0.88)	NA	NA	NA	NA			
	19q13.2	CYP2A7	49/3	29/9	chr19:41349732- 41393760 (44)	0.01	1.83 (1.15-2.92)	0.12	0.35 (0.09-1.30)	0.07	1.48 (0.96-2.23)			
	19q13.42	LILRA6	14/37	26/17	chr19:54731679- 54743217 (12)	0.09	0.57 (0.30-1.09)	0.004	2.35 (1.32-4.19)	0.26	1.27 (0.84-1.92)			
2.5M	2q34	ERBB4	8/0	18/0	chr2:213187034- 213191389 (4)	0.009	0.32 (0.14-0.76)	NA	NA	NA	NA			

^a CNVR were constructed by merging deletion and duplication segments into a singular CNVR. The primary analysis constructed deletion and duplication CNVR separately and therefore the region boundaries may differ. Overall, smaller regions were constructed due to more extensive trimming of long segments that were (now) present in <10% of subjects.

^b Each column lists the CNV group that was compared to diploid reference group. Mixed type was defined as any CNV (deletion or duplication). Models were adjusted for the first principal component (PC). PCs were constructed from copy number matrix of CNVR. PC's differed from primary analysis PCs constructed on deletion or duplication regions alone and thus estimates vary even when CNVR size, counts, and type are the same as primary analysis.

						Alternative Regression Models ^b							
Arroy			N Del/Dup			De	Deletion		Duplication		ed Type		
Anay	Locus	Gene			CNVR (KB) ^a	P-value	OR (95% CI)	P-value	OR (95% CI)	P-value	OR (95% CI)		
610k	1p36.33	DVL1	7/4	82/6	Chr1:1106473- 1356550 (250)	0.002	0.29 (0.13-0.63)	0.16	2.47 (0.69-8.82)	0.009	0.43 (0.23-0.80)		
	1p13.3	Intergenic	23/0	40/0	Chr1: 111374827- 111391381 (17)	0.009	2.02 (1.19-3.42)	NA	NA	NA	NA		
	8p21.2	DOCK5	27/0	168/0	Chr8: 25061807- 25074361 (13)	0.004	0.53 (0.35-0.81)	NA	NA	NA	NA		
	12p11.21	RP11-428G5.5	0/19	3/32	Chr12: 31997981- 32063002 (65)	0.97	NE	0.01	2.14 (1.20-3.82)	0.02	1.96 (1.11-3.46)		
	19q13.2	CYP2A7	24/1	29/9	chr19:41349732- 41393760 (44)	9.6E-05	3.01 (1.73-5.23)	0.38	0.39 (0.05-3.12)	9.8E-04	2.40 (1.42-4.01)		
	19q13.42	LILRA6	3/14	26/17	chr19:54731679- 54743217 (12)	0.12	0.38 (0.12-1.27)	0.004	2.90 (1.42-5.94)	0.29	1.36 (0.77-2.42)		
2.5M	2q34	ERBB4	3/0	18/0	chr2:213187034- 213191389 (4)	0.006	0.17 (0.05-0.60)	NA	NA	NA	NA		
	5p15.2	Intergenic	55/0	36/0	Chr5: 12812336- 12822959 (11)	0.005	1.92 (1.42-2.79)	NA	NA	NA	NA		

NE=Non-estimable

^a CNVR were constructed by merging deletion and duplication segments into a singular CNVR. The primary analysis constructed deletion and duplication CNVR separately and therefore the region boundaries may differ. Overall, smaller regions were constructed due to more extensive trimming of long segments that were (now) present in <10% of subjects.

^b Each column lists the CNV group that was compared to diploid reference group. Mixed type was defined as any CNV (deletion or duplication). Models were adjusted for the first principal component (PC). PCs were constructed from copy number matrix of CNVR. PC's differed from primary analysis PCs constructed on deletion or duplication regions alone and thus estimates may vary even when CNVR size, counts, and type are the same as primary analysis.

Supplemental Table 8. Differential gene expression by somatic copy number in primary ovarian tumors

Linear regression was used to model SCNA (deletion, diploid, duplication) onto gene expression (log2 transformed FPKM) values.

			SCNA Fol	d Change ^a
Region	Gene	SCNA Pval	Deletion	Duplication
1p13	CEPT1	9.58E-22	2.0	1.2
	DRAM2	1.18E-13	1.9	1.2
	DENND2D	2.75E-11	2.1	1.2
	RBM15	5.39E-11	1.5	1.4
2q34	ERBB4	4.67E-05	4.2	1.2
8p21	GNRH1	5.86E-05	1.7	4.2
12p11	FGD4	3.00E-08	3.7	1.5
	DENND5B	1.01E-03	1.7	1.7
	BICD1	2.40E-04	3.1	1.7
	AMN1	2.72E-04	2.5	1.6
19q13.2	C19orf47	8.37E-62	1.6	3.2
	EGLN2	1.17E-49	1.7	2.7
	CCDC97	4.26E-38	1.7	1.9
	HNRNPUL1	3.54E-36	1.8	1.8
	SERTAD3	8.26E-36	1.5	2.4
	ITPKC	8.22E-35	1.8	2.9
	ADCK4	4.98E-34	1.6	2.9
	SHKBP1	6.72E-32	1.6	3.0
	EXOSC5	2.23E-25	1.8	1.7
	SERTAD1	1.52E-22	1.7	2.2
	BCKDHA	5.43E-21	1.6	1.6
	RAB4B	1.21E-20	1.6	2.2
	NUMBL	6.30E-18	1.5	2.6
	B9D2	3.26E-16	1.6	1.8
	MIA	2.57E-14	1.5	2.2
	TMEM91	6.43E-14	1.6	1.5
	BLVRB	2.05E-13	1.5	2.0
	B3GNT8	1.77E-10	2.0	1.7
	HIPK4	1.33E-05	1.6	3.4
	CYP2S1	7.70E-04	1.6	1.6
	CYP2B7P1	5.78E-03	2.4	1.7
19q13.42	PRPF31	1.21E-30	1.6	2.0
	LENG1	1.31E-28	1.8	1.9
	TFPT	7.13E-27	1.7	2.5
	CNOT3	7.05E-26	1.6	2.1
	NDUFA3	3.83E-14	1.9	2.6
	LENG9	6.51E-14	1.8	1.9
	MYADM	4.09E-11	1.7	1.7
	TMC4	7.81E-08	1.9	2.0
	TARM1	1.89E-03	1.3	3.3
	CACNG8	4.72E-03	4.4	4.5
	TSEN34	9.78E-24	1.7	2.1
	MBOAT7	1 98E-20	1.8	21

 MBOAT7
 1.98E-20
 1.8
 2.1

 a Fold-change is in reference to diploid. All deletions were underregulated (i.e. negative fold-change) and duplications were upregulated (i.e. positive fold-change).