## Supplementary information

Fas signaling-mediated  $T_H 9$  cell differentiation favors bowel inflammation and antitumor functions

Shen et al.

Supplementary figures 1 to 9

Supplementary tables 1 to 3



Supplementary Figure 1: Fas signaling promotes  $T_H9$  cell differentiation in vitro. (a) Naïve CD4<sup>+</sup>CD62L<sup>hi</sup>CD44<sup>lo</sup> T cells were sorted from WT and Fas<sup>lpr</sup> mice and differentiated into T<sub>H</sub>0 and T<sub>H</sub>9 cells for 3 days. Real-time PCR analysis of the expression of the indicated genes in T<sub>H</sub>0 and T<sub>H</sub>9 cells. (b-d) Naïve CD4<sup>+</sup> T cells from WT mice transfected with NC siRNA or Fas siRNA for 24 h, western blotting evaluation of the Fas protein levels (**b**), or were differentiated into  $T_H9$  cells for another 4 days. Flow cytometric analysis of the frequency of IL-9<sup>+</sup> cells among the CD4<sup>+</sup> T cells (left) and the corresponding statistical analysis (right) (c) and ELISA measurement of IL-9 cytokines in supernatants from T<sub>H</sub>9 cells (d). (e-h) Naïve T cells from WT mice with or without CFSE labeling were differentiated into T<sub>H</sub>9 cells under T<sub>H</sub>9-skewing conditions for 3 days. Flow cytometric analysis of apoptotic cells (left) and the corresponding statistical analysis (right) (e), flow cytometric analysis of proliferative  $T_H9$  cells according to CFSE dilution (left) and the corresponding statistical analysis (right) (f), flow cytometric analysis of apoptotic cells after the restimulation of differentiated T<sub>H</sub>9 cells with plate-bound anti-CD3 and anti-CD28 antibodies for another 24 h (left) and the corresponding statistical analysis (right) (g), and ELISA measurement of IL-9 cytokines in supernatants from restimulated T<sub>H</sub>9 cells (h). (i-k) Naïve WT CD4<sup>+</sup> T cells were differentiated into T<sub>H</sub>0, T<sub>H</sub>1, T<sub>H</sub>2, T<sub>H</sub>9, T<sub>H</sub>17 cells and Tregs for 3 days. Real-time PCR analysis of Fas (i) and Fasl (i) genes in  $T_{\rm H}9$  cells, statistical analysis of the ratio of Fas gene levels to Fasl gene levels (k). (l) Flow cytometric analysis of the frequency of IL-9<sup>+</sup> cells among the CD4<sup>+</sup> T cells differentiated from naïve WT CD4<sup>+</sup> T cells with or without anti-FasL for 4 days. (m) Flow cytometric analysis of the frequency of IL-9<sup>+</sup> cells among the CD4<sup>+</sup> T cells differentiated from naïve CD4<sup>+</sup> T cells from WT or *Fasl<sup>gld</sup>* mice with or without FasL expressing vector transfection for 4 days. NS, not significant; \*P < 0.05, \*\*P < 0.01 and \*\*\*P < 0.001 (unpaired Student's t test: a, c-m or one-way ANOVA test: a). Representative results from three independent experiments are shown (mean and s.d.).

Shen et al.



Supplementary Figure 2: Fas signaling enhances generation of IL-9-producing cells by activating Ca<sup>2+</sup>-dependent NF- $\kappa$ B. (a) Flow cytometric analysis of the frequency of IL-9<sup>+</sup> cells among the CD4<sup>+</sup> T cells after naïve CD4<sup>+</sup> T cells were stimulated with 10 µg ml<sup>-1</sup> ISO or Jo2 with or without the pan-caspase inhibitor z-VAD-fmk at 1 µM, under T<sub>H</sub>9-skewing conditions for 4 days. (**b-d**) Naïve WT and Faslpr CD4<sup>+</sup> T cells were differentiated into T<sub>H</sub>9 cells under T<sub>H</sub>9-skewing conditions. Real-time PCR analysis of II2 gene in the cells after 24 h (b), flow cytometric analysis of the frequency of IL-9<sup>+</sup> cells among the CD4<sup>+</sup> T cells differentiated with IL-2 (c) or anti-IL-2 (d) after 4 days. (e, f) Western blotting analysis of the indicated phosphorylated (e) and TF (f) proteins in WT or Fas<sup>lpr</sup> CD4<sup>+</sup> T cells or WT CD4<sup>+</sup> T cells stimulated with 10  $\mu$ g ml<sup>-1</sup> ISO or Jo2 under T<sub>H</sub>9-skewing conditions for 15 min (e) or 24 h (f). (g) Flow cytometric analysis of  $Ca^{2+}$  flux in naïve CD4<sup>+</sup> T cells stimulated with 10 µg ml<sup>-1</sup> ISO or Jo2 under T<sub>H</sub>9-skewing conditions over time. (h) Western blotting analysis of p-PLC $\gamma$ 1 in WT or Fas<sup>lpr</sup> CD4<sup>+</sup> T cells stimulated with 10  $\mu$ g ml<sup>-1</sup> Jo2 under T<sub>H</sub>9-skewing conditions at the indicated time points. (i, j) Flow cytometric analysis of  $Ca^{2+}$  flux (i) or the frequency of IL-9<sup>+</sup> cells (j) in the naïve CD4<sup>+</sup> T cells stimulated with 10 µg ml<sup>-1</sup> ISO or Jo2 with the PLC inhibitor U73122 at 0.1 µM or the irreversible PLC inhibitor manoalide at 10 µM under T<sub>H</sub>9-skewing conditions over time (i) or for 4 days (j). NS, not significant; \*\*P < 0.01 and \*\*\*P < 0.001 (unpaired Student's t test). Representative results from three independent experiments are shown (mean and s.d.).



Supplementary Figure 3: Tyr224 and Tyr274 in Fas contribute to the Zap-70-dependent activation of PLC $\gamma$ 1. (a, b) Immunofluorescence staining of Fas and Zap-70 (a) and western blotting detection of phosphorylated Zap-70 (b) in naïve the CD4<sup>+</sup> T cells stimulated with 10 µg ml<sup>-1</sup> ISO or Jo2 under T<sub>H</sub>9-skewing conditions for 5 min. (c, d) Real-time PCR (n = 3) (c) or western blotting (d) measurement of Zap-70 gene or protein levels, respectively, in naïve the CD4<sup>+</sup> T cells transfected with *Zap70* siRNA for 24 h. (e, f) Western blotting detection of phosphorylated PLC $\gamma$ 1 (e) or flow cytometric analysis of the frequency of IL-9<sup>+</sup> cells (n = 2-3) (f) in naïve CD4<sup>+</sup> T cells transfected with *Zap70* siRNA followed by 10 µg ml<sup>-1</sup> ISO or Jo2 stimulation under T<sub>H</sub>9-skewing conditions for 5 min (e) or 4 days (f). (g) Immunofluorescence staining of Fas and Zap-70 in HEK293 cells transfected with Zap-70 and the corresponding *Fas* expression plasmids for 24 h. (h) Flow cytometric analysis of the frequency of IL-9<sup>+</sup> cells in the naïve *Fas<sup>lpr</sup>* CD4<sup>+</sup> T infected with the indicated *Fas* expression retroviruses followed by 10 µg ml<sup>-1</sup> ISO or Jo2 stimulation under T<sub>H</sub>9-skewing conditions for 4 days (n = 3). Scale bar = 2 µm. NS, not significant; \**P* < 0.05, \*\**P* < 0.01 and \*\*\* *P* < 0.001 (unpaired Student's *t* test: c, f and h). Representative results from three independent experiments are shown (mean and s.d.).



Supplementary Figure 4: p38 inhibits Fas signaling-mediated induction of IL-9-producing T cells by decreasing NFAT1 activation. (a) Western blotting analysis of p38 $\alpha$  in the naïve CD4<sup>+</sup> T cells after transfection with *p38* $\alpha$  siRNA for 24 h. (b) Flow cytometric analysis of the frequency of IL-9<sup>+</sup> cells among the CD4<sup>+</sup> T cells after the naïve CD4<sup>+</sup> T cells were transfected with *p38* $\alpha$  siRNA for 24 h and then stimulated with 10 µg ml<sup>-1</sup> ISO or Jo2 under T<sub>H</sub>9-skewing conditions for 4 days. (c) Western blotting analysis of p-p65 proteins in the naïve CD4<sup>+</sup> T cells stimulated with 10 µg ml<sup>-1</sup> ISO or Jo2 under T<sub>H</sub>9-skewing conditions. (d) Western blotting analysis of p-NFAT1 proteins in WT or *Fas<sup>lpr</sup>* CD4<sup>+</sup> T cells with or without 0.4 µM SB203580 under T<sub>H</sub>9-skewing conditions for 15 min. NS, not significant; \*\*\**P* < 0.001 (unpaired Student's *t* test: b). Representative results from three independent experiments are shown (mean and s.d.) (n = 3).



Supplementary Figure 5: FasL-T<sub>H</sub>9 exacerbate murine IBD via IL-9. (a-c) Weight (n = 5) (a), colonic length (b) and hematoxylin-eosin staining of colonic tissue sections (c) of 2.5% DSS (w/v)-induced IBD mice that received an intravenous transfer of  $2 \times 10^{6}$  WT-T<sub>H</sub>9 or  $Fas^{lpr}$ -T<sub>H</sub>9. (d) Flow cytometric detection of apoptosis and proliferation of CFSE<sup>+</sup> WT-T<sub>H</sub>9 or  $Fas^{lpr}$ -T<sub>H</sub>9 in mLNs of 2.5% DSS (w/v)-induced IBD mice that received an intravenous transfer of  $1 \times 10^{7}$  CFSE-labeled WT-T<sub>H</sub>9 or  $Fas^{lpr}$ -T<sub>H</sub>9 for 5 days (n = 3). (e-g) Weight (n = 5) (e), colonic length (f) and hematoxylin-eosin-stained colonic tissue sections (g) of 2.5% DSS (w/v)-induced IBD  $Il9r^{-/-}$  mice that received an intravenous transfer of  $2 \times 10^{6}$  cT<sub>H</sub>9 or FasL-T<sub>H</sub>9. Scale bar = 200 µm. NS, not significant; \**P* < 0.05, \*\**P* < 0.01 and \*\*\**P* < 0.001 (unpaired Student's *t* test: **a**, **b** (right), **d**, **e** and **f** (right). 1, compared with WT-T<sub>H</sub>9; 2, compared with  $Fas^{lpr}$ -T<sub>H</sub>9; and 3, compared with  $Fas^{lpr}$ -T<sub>H</sub>9. Representative results from three independent experiments are shown (mean and s.d.).



Supplementary Figure 6: Fas signaling is involved in the antitumor activity of T<sub>H</sub>9 cells. (a) Real-time PCR analysis of the indicated genes in Fas<sup>+</sup>CD4<sup>+</sup> and Fas<sup>-</sup>CD4<sup>+</sup> T cells from the lung-draining lymph nodes of mice that received an intravenous injection of B16F10 melanoma cells for 16 days (n = 6). (b) Flow cytometric analysis of the frequency of IFN- $\gamma^+$  cells among the CD8<sup>+</sup> T cells in TILs from WT mice reconstituted with bone marrow cells from WT or *Fas<sup>lpr</sup>* mice for 2 months, followed by subcutaneous injection of LLC-OVA lung tumor cells for 20 days (n = 3). (c) ELISA measurement of IFN- $\gamma$  secreted by OVA<sub>257-264</sub>-stimulated TILs from the mice described in b (n = 4). (d) Lung tumor foci of WT mice 16 days after an intravenous injection of LLC-OVA cells with NT or transfer of OT-II cT<sub>H</sub>9 or FasL-T<sub>H</sub>9 1 and 6 days later (n = 5). (e, f) Tumor growth (e) and survival (f) of WT mice that received a subcutaneous injection of LLC-OVA cells followed by NT or an intravenous injection of 2 × 10<sup>6</sup> OT-II cT<sub>H</sub>9 or FasL-T<sub>H</sub>9 1 and 6 days later (n = 5). NS, not significant; \**P* < 0.05, \*\**P* < 0.01 and \*\*\**P* < 0.001 (unpaired Student's *t* test: **a-e** or log-rank test: **f**). Compared with cT<sub>H</sub>9 in **e** and **f**. Representative results from three independent experiments are shown (mean and s.d.).

**Supplementary Figure 7** 



Supplementary Figure 7: Low-dose SB203580 treatment has no obvious side effects *in vivo*. (a) Tumor growth of nu/nu mice that received a subcutaneous injection of LLC-OVA cells followed by an intraperitoneal injection of SB203580 (0.5 mg kg<sup>-1</sup>) every other day (n = 5). (b) Liquid chromatography monitoring of the concentration of SB203580 in murine plasma at the indicated time points after an intraperitoneal injection of low- or high-dose SB203580. (c) CCK-8 measurement of LLC-OVA cell viability following treatment with the indicated dose of SB203580 for 24 h (n = 3). (d-f) Assessment of weight (n = 3) (d), serum alanine transaminase and creatinine (n = 3) (e), and representative pictures of hematoxylin-eosin staining (f) of mice received an intraperitoneal treatment with low (0.5 mg kg<sup>-1</sup>) or high (10 mg kg<sup>-1</sup>) dose SB203580 every other day from day 0. Scale bar = 50 µm. NS, not significant; \*\*\**P* < 0.001 (unpaired Student's *t* test: **a** and **c-e**). Representative results from three independent experiments are shown (mean and s.d.).



Supplementary Figure 8: Working model of Fas-signaling to control  $T_H9$  cell differentiation. Fas signaling promotes  $T_H9$  cell differentiation through PKC- $\beta$ -mediated activation of the canonical NF- $\kappa$ B pathway. At the same time PKC- $\beta$ -activated p38 inactivates NFAT1 and abolishes its cooperative effect on NF- $\kappa$ B, providing a negative feedback to Fas-induced  $T_H9$  cell differentiation.



**Supplementary Figure 9: Gating strategies of flow cytometric analyses.** (a-f) Gating strategies of naïve CD4<sup>+</sup>CD62L<sup>hi</sup>CD44<sup>lo</sup> T cell sorting (a), figures 1a, 1d, 1g, 3b, 3e, 3h, 4a, 4c, 4g and 8a, and supplementary figures 1c, 1i, 2a, 2c, 2d, 2j, 3f and 4b (b), figures 6c and 7c, and supplementary figure 6b (c), supplementary figures 1m and 3h (d), supplementary figures 1f and 5d (e), supplementary figures 1e, 1g and 5d (f).

| Characteristics         |                  |
|-------------------------|------------------|
| Number                  | 36               |
| Age (years)             | $59.39 \pm 7.76$ |
| Male                    | 19               |
| Female                  | 17               |
| Clinical stage          |                  |
| Ι                       | 17               |
| II                      | 5                |
| III                     | 14               |
| Histology               |                  |
| Adenocarcinoma          | 29               |
| Squamous cell carcinoma | 7                |
| Smoking history         |                  |
| Ever/current            | 11               |
| No                      | 25               |
| Adjuvant chemotherapy   |                  |
| Yes                     | 22               |
| No                      | 14               |
| Adjuvant radiotherapy   |                  |
| Yes                     | 12               |
| No                      | 24               |

# Supplementary Table 1: Basic information of lung cancer patients

| Antibodies             | Source                    | Identifier | <b>Dilution ratio</b> |
|------------------------|---------------------------|------------|-----------------------|
| p-STAT1                | Cell Signaling Technology | D4A7       | 1:1000                |
| p-STAT3                | Cell Signaling Technology | D3A7       | 1:1000                |
| p-STAT5                | Cell Signaling Technology | D47E7      | 1:1000                |
| p-STAT6                | Cell Signaling Technology | D8S9Y      | 1:1000                |
| STAT6                  | Cell Signaling Technology | D3H4       | 1:1000                |
| IRF4                   | Cell Signaling Technology | D9P5H      | 1:1000                |
| PU.1                   | Cell Signaling Technology | 9G7        | 1:1000                |
| Gata3                  | Cell Signaling Technology | D13C9      | 1:1000                |
| р-р65                  | Cell Signaling Technology | 93H1       | 1:1000                |
| p65                    | Cell Signaling Technology | D14E12     | 1:1000                |
| p-ΙΚΚα/β               | Cell Signaling Technology | 16A6       | 1:1000                |
| IKKa                   | Cell Signaling Technology | 3G12       | 1:1000                |
| ΙΚΚβ                   | Cell Signaling Technology | 2C8        | 1:1000                |
| р-ІкВа                 | Cell Signaling Technology | 14D4       | 1:1000                |
| ΙκΒα                   | Cell Signaling Technology | 44D4       | 1:1000                |
| р-р38                  | Cell Signaling Technology | D3F9       | 1:1000                |
| p38                    | Cell Signaling Technology | D13E1      | 1:1000                |
| p-Akt                  | Cell Signaling Technology | D9E        | 1:1000                |
| p-ERK                  | Cell Signaling Technology | D13.14.4E  | 1:1000                |
| p-JNK                  | Cell Signaling Technology | G9         | 1:1000                |
| p-Zap-70               | Cell Signaling Technology | 65E4       | 1:1000                |
| Zap-70                 | Cell Signaling Technology | D1C10E     | 1:1000                |
| β-actin                | Cell Signaling Technology | 8H10D10    | 1:1000                |
| goat anti-mouse (HRP)  | Cell Signaling Technology | #7076      | 1:5000                |
| goat anti-rabbit (HRP) | Cell Signaling Technology | #7074      | 1:5000                |
| p-PLCγ1                | Abcam                     | EP1898Y    | 1:3000                |
| ΡLCγ1                  | Abcam                     | EP1898-7Y  | 1:3000                |
| p-NFAT1                | Abcam                     | ab200819   | 1:3000                |
| NFAT1                  | Abcam                     | EPR2973    | 1:3000                |
| Fas                    | Abcam                     | EPR5700    | 1:3000                |

# Supplementary Table 2: The antibodies for immunoblotting

# Supplementary Table 3: Primers for real-time PCR

| Gene            | Primers                        |
|-----------------|--------------------------------|
| <i>mActb</i> F  | 5'-CGTTGACATCCGTAAAGACC-3'     |
| <i>mActb</i> R  | 5'-AACAGTCCGCCTAGAAGCAC-3'     |
| mIfng F         | 5'-GAGCTCATTGAATGCTTGGC-3'     |
| mIfng R         | 5'-GCGTCATTGAATCACACCTG-3'     |
| mIl4 F          | 5'-CGAGCTCACTCTCTGTGGTG-3'     |
| mIl4 R          | 5'-TGAACGAGGTCACAGGAGAA-3'     |
| mIl9 F          | 5'-AACAGTCCCTCCCTGTAGCA-3'     |
| mIl9 R          | 5'-AAGGATGATCCACCGTCAAA-3'     |
| <i>mIl17a</i> F | 5'-TGAGCTTCCCAGATCACAGA-3'     |
| <i>mIl17a</i> R | 5'-TCCAGAAGGCCCTCAGACTA-3'     |
| <i>mFoxp3</i> F | 5'-CTCGTCTGAAGGCAGAGTCA-3'     |
| <i>mFoxp3</i> R | 5'-TGGCAGAGAGGTATTGAGGG-3'     |
| <i>mIrf4</i> F  | 5'-CAAAGCACAGAGTCACCTGG-3'     |
| <i>mIrf4</i> R  | 5'-TGCAAGCTCTTTGACACACA-3'     |
| <i>mSfpi1</i> F | 5'-TGCAGCTCTGTGAAGTGGTT-3'     |
| <i>mSfpi1</i> R | 5'-AGCGATGGAGAAAGCCATAG-3'     |
| <i>mTbx21</i> F | 5'-CGTGGAGGTGAATGATGGA-3'      |
| <i>mTbx21</i> R | 5'-TGGCAAAGGGGTTGTTGTCG-3'     |
| <i>mGata3</i> F | 5'-AGGATGTCCCTGCTCTCCTT-3'     |
| <i>mGata3</i> R | 5'-GCCTGCGGACTCTACCATAA-3'     |
| <i>mRorc</i> F  | 5'-GGTGATAACCCCGTAGTGGA-3'     |
| <i>mRorc</i> R  | 5'-CTGCAAAGAAGACCCACACC-3'     |
| <i>mEomes</i> F | 5'-CCACTGGATGAGGCAGGAGATT-3'   |
| <i>mEomes</i> R | 5'-GTCCTCTGTCACTTCCACGATG-3'   |
| mGzmA F         | 5'-ACACGGTTGTTCCTCACTCAAGAC-3' |
| <i>mGzmA</i> R  | 5'-TCAATCAAAGCGCCAGCACAGATG-3' |
| <i>mGzmC</i> F  | 5'- GCAGAGGAGATAATCGGAGGC-3'   |
| <i>mGzmC</i> R  | 5'-GCACGAATTTGTCTCGAACCA-3'    |
| <i>mGzmD</i> F  | 5'-AGGTCCATCAATGACACTAAAGC-3'  |
| <i>mGzmD</i> R  | 5'-TTGCATAGGCGAAAAGTCCAT-3'    |
| <i>mGzmE</i> F  | 5'-CTGTGGAGGCTTCTTGGTTCA-3'    |
| <i>mGzmE</i> R  | 5'-GATGTCACTGAAGAAGGCAGTG-3'   |
| <i>mGzmG</i> F  | 5'-AAGGCCAAGAGAACTAAAGCTG-3'   |
| <i>mGzmG</i> R  | 5'-CACACTGCACACATCCCCT-3'      |
| hActb F         | 5'-CACCATTGGCAATGAGCGGTTC-3'   |
| hActb R         | 5'-AGGTCTTTGCGGATGTCCACGT-3'   |
| <i>hIl9</i> F   | 5'-GACCAGTTGTCTCTGTTTGGGC-3'   |
| <i>hIl9</i> R   | 5'-TTTCACCCGACTGAAAATCAGTGG-3' |