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Transparent Methods 

Antibodies  

The following antibodies were used: rabbit anti-GFP antibody (MBL Life Science, 598), 

rabbit anti-ANKHD1 antibody (Atlas Antibodies, HPA008718), mouse anti-EEA1 

antibody (BD Biosciences, 610456), rabbit anti-EEA1 (Cell Signaling Technology, 

3288), mouse anti-GAPDH antibody (Santa Cruz Biotechnology, sc-166574), mouse 

anti-GM130 antibody (BD Biosciences, 610822), mouse anti-Bcl-2 antibody (BD 

Biosciences, 610538), mouse anti-Calnexin antibody (Santa Cruz Biotechnology, sc-

23954), mouse anti-mCherry antibody (Novus, NBP1-96752), mouse anti-Rab5 

antibody (Santa Cruz Biotechnology, sc-46692), mouse anti-LAMP1 antibody (Santa 

Cruz Biotechnology, sc-20011), and mouse anti-Tom20 antibody (Santa Cruz 

Biotechnology, sc-17764). 

 

Plasmids  

Glutathione S-transferase (GST)-tagged human ANKHD1 fragments of 195–1418 aa 

(ARD25) were amplified by PCR using the following primers: 5’-

GAAGATCTGCAGAAAACAGCCACAATG-3’ and 5’-

GAAGATCTTTAGTCTTTAGCCTTCACAATG-3’. They were then inserted into the 

pCold vector (TaKaRa Bio) at the BamH1 restriction site.  

To prepare the pVenus×3 vector, EGFP in the pEGFP-N3 vector was replaced 

with Venus×3. The vector backbone of the pEGFP-N3 vector was amplified by the 

following primers: 5’-TAAAGCGGCCGCGACTCTAG-3' and 5’-

GGTGGCGATGGATCCCGGG-3’. Each Venus cDNA was amplified by the following 

primers:  

5’-CCGGGATCCATCGCCACCATGGTGAGCAAGGGCGAG-3’ and 5’- 

GGCAGATCTGAGTCCGGACTTGTACAGCTCGTCCATG -3’.  

5’- TCCGGACTCAGATCTGCCACCGCGGTGAGCAAGGGCGAGGAG-

3’ and 5’-CGCGGTGGCGATGGATCCGCTCTTGTACAGCTCGTCCATGC-3’.  

5’-GCGGATCCATCGCCACCGCGGTGAGCAAGGGCGAGGAGC-3’ and 

5’-CTAGAGTCGCGGCCGCTTTACTTGTACAGCTCGTCCATGC-3’.  

These four fragments were assembled using the Gibson Assembly Master Mix 

(New England BioLabs). 



 

 

The pVenus×3-ANKHD1 plasmid was prepared by assembly using Gibson 

Assembly Master Mix. The five cDNA fragments included cDNA of full-length 

ANKHD1, three Venus cDNAs, and the backbone of pEGFP-N3 vector. The backbone 

of pEGFP-N3 vector was amplified by PCR with the primers: 5’-

TAAAGCGGCCGCGACTCTAG-3’ and 5’-

ATCAGTCAGCATGGTGGCAGATCTGAGTCCGGTAGCGC-3’.  

The three Venus sequences were amplified by PCR with the following 

primers: 5’-

TCTCAAATATGTCAACAGCGGATCCATCGCCACCGCGGTGAGCAAGGGCG-3’ 

and 5’-GGCAGATCTGAGTCCGGACTTGTACAGCTCGTCCATG-3’, 5’-

TCCGGACTCAGATCTGCCACCGCGGTGAGCAAGGGCGAGGAG-3’ and 5’-

CGCGGTGGCGATGGATCCGCTCTTGTACAGCTCGTCCATGC-3’, 5’-

AGCGGATCCATCGCCACCGCGGTGAGCAAGGGCGAGGAGC-3’ and 5’-

CTAGAGTCGCGGCCGCTTTACTTGTACAGCTCGTCCATGC-3’. 

The ANKHD1 cDNA was amplified by PCR with the following primers: 5’- 

GAAGATCTGCCACCATGCTGACTGATAGCGGAGG and 

GAAGATCTGTTGACATATTTGAGATGC-3’. The amplified cDNA sequence was 

inserted into the pMD20-T vector using Mighty TA-cloning Kit (TaKaRa Bio) and then 

extracted by BglII digestion.  

To prepare the siRNA resistant constructions of ANKHD1, five silent 

mutations were induced in each target sequence of three siRNAs: 5′-

GGTGGAAACAGCGACTCTGATAAC-3′, 5′-

GTGACACCCAACTCTTTGTCCACCAG-3′, and 5′-

AGCAGCTGTGCGTGACAAACACCCGG-3′. 
 

Protein purification  

Plasmids for expression of GST-fused protein were transformed into Rosetta2 cells 

(Novagen). The cells were cultured in Luria broth (LB) medium at 37°C, and the 

proteins were overexpressed using 1 mM isopropyl β-D-1-thiogalactopyranoside 

overnight at 12°C. The cells were collected and then lysed in a buffer containing 10 mM 

Tris-HCl (pH 7.5), 150 mM NaCl, 1 mM EDTA, 0.5% Triton X-100 (8 mM), 2 mM 2-

mercaptoethanol, and 1 mM phenylmethylsulfonyl fluoride using an ultrasonic 



 

 

homogenizer. The lysate was centrifuged and the supernatant was incubated with the 

glutathione-sepharose 4B beads. The beads were washed four times using 

approximately 10-fold dilutions in 10 mM Tris-HCl (pH 7.5), 150 mM NaCl, 1 mM 

EDTA, and 1 mM dithiothreitol (DTT), and protein was collected by cleavage from the 

GST tag by precision protease at 4°C overnight. 

 

Preparation of liposomes  

PC (Sigma-Aldrich, P3841), PE (Sigma-Aldrich, P7693), PS (Sigma-Aldrich P5660), 

and porcine brain Folch fractions (Avanti) were dissolved in chloroform and mixed 

using defined weigh ratios to 0.2 mg/ml concentration of total lipid. Rhodamine-PE 

(Avanti, 810150) was incorporated at 0.2%. The lipids were dried under nitrogen gas 

and subsequently maintained under vacuum for 20 min to remove residual chloroform. 

The dried lipids were suspended in buffer containing 10 mM Tris-HCl (pH 7.5), 150 

mM NaCl, and 1 mM EDTA and then incubated for 1 hr at 37°C. In Figure S10, 

liposomes were extruded 11 times with 800 nm polycarbonate filters using an extruder 

(Avanti).  

 

Liposome sedimentation assay  

The protein aggregates were removed by ultracentrifugation before incubation with 

liposomes. The prepared liposomes (0.2 mg/ml) were incubated with the proteins in 

buffer containing 10 mM Tris-HCL (pH 7.5), 150 mM NaCl, 1 mM EDTA, and 0.5 mM 

DTT for 30 min at room temperature. After incubation, these reaction solutions were 

centrifuged at 109000 × g for 20 min to examine the vesiculation and at 245000× g for 

20 min to examine the membrane binding at room temperature in a TLA-100 rotor 

(Beckman). The supernatant and the pellet fractions were separated, and SDS-PAGE 

sample buffer was added into these fractions to the same volume, and then analyzed by 

SDS-PAGE. The fluorescence of rhodamine-PE was measured using an FLA-8000 

fluorescence image analyzer (Fuji-Film). The band intensities were quantified by 

ImageJ software. 

 

Electron microscopy  

Proteins were incubated with liposomes (0.2 mg/ml) prepared as described above in a 



 

 

buffer containing 10 mM Tris-HCl (pH 7.5), 150 mM NaCl, and 1 mM EDTA. After 

incubation for 20 min at 25°C, a formvar-coated grid was put on the reaction mixture, 

washed with 100 mM HEPES (pH 7.5), and then stained with 0.5% uranyl acetate for 

30 s. The grid was observed by transmission electron micrography using a model H-

7100 microscope (Hitachi). 

 

Crosslinking analysis 

Proteins were incubated with or without liposomes (0.2 mg/ml) in buffer containing 10 

mM HEPES (pH 8.0), 150 mM NaCl, 1 mM EDTA, and 0.5 mM DTT for 30 min at 

room temperature. The mix solution was incubated with BS(PEG)5 (Thermo Fisher 

Scientific, 21581) for 30 min at room temperature. The reaction was quenched by 

adding SDS-PAGE sample buffer and then analyzed by SDS-PAGE. 

 

Transfection and siRNA treatment  

HeLa, HEK293T, Caki-1, U2OS, and DLD1 cells were cultured in Dulbecco’s modified 

Eagle’s medium containing 10% fetal bovine serum with penicillin and streptomycin at 

37°C in an atmosphere of 5% CO2. One day before transfection, 5×104 cells were 

seeded in wells of 6-well dishes. The cells were transfected using Lipofectamine 3000 

(Invitrogen). After 24 hr of transfection, the cells were analyzed. 

Knockdown of ANKHD1 was performed with stealth RNAi (Invitrogen). The 

siRNA sequences were 5’-CAGGUGGGAAUAGUGAUUCAGAUAA-3’, 5’-

GAAGUGACUCCUAAUUCCUUGUCAA-3’, and 5’-

CAGUCAGCAACUGUGUGUCACUAAU-3’. These siRNAs were mixed and 

transfected using Lipofectamine 3000. The stealth RNAi siRNA Negative Control 

(Invitrogen) was also transfected as a control. One day before transfection of siRNA, 

5×104 cells were seeded in wells of 6-well dishes, and then siRNA was transfected into 

the cells. After 48 hr of transfection, the cells were analyzed. 

 

Immunostaining 

HeLa cells were fixed in 4% paraformaldehyde for 10 min, permeabilized in a buffer 

containing 0.1% Triton X-100, 50 mM Tris-HCl (pH 7.5), and 100 mM NaCl for 10 

min, and then blocked in 1% bovine serum albumin, 50 mM Tris-HCl (pH 7.5), and 100 



 

 

mM NaCl for 1 hr. The cells were incubated with primary antibody in buffer containing 

1% BSA, 50 mM Tris-HCl (pH 7.5), and 100 mM NaCl for 1 hr. After washing with 

PBS, the cells were incubated with secondary antibodies conjugated with Alexa Fluor 

488 and 568 in buffer containing 1% BSA, 50 mM Tris-HCl (pH 7.5), and 100 mM 

NaCl for 1 hr. The cells were washed using PBS and mounted in ProLong Diamond 

Antifade Mountant (Invitrogen). 

 All fluorescence images were acquired by confocal microscopy (FV1000D, 

Olympus). A 100× immersion objective lens (NA 1.40, Olympus) was used for live cell 

and fixed cell imaging. Z-stack images were captured at 0.4 µm intervals. 

 

Live cell imaging  

Mitochondria were stained with 200 nM Mitotracker Red CM-H2Xros (Molecular 

Probes, M7513) at 37°C in an atmosphere of 5% CO2 for 45 min. Lysosomes were 

stained using 75 nM Lysotracker Red DND-99 (Molecular Probes, L7528) at 37°C in an 

atmosphere of 5% CO2 for 1 hr. Live cells were observed by confocal microscopy at 

37°C in the 5% CO2 atmosphere. 

 

Quantification of organelle area  

The number of puncta, average area, and total area of organelles per cell were calculated 

from images with the focal plane in the vicinity of coverslips, where the area of the cell 

is the largest, using ImageJ software. Images of the organelles were converted into 

binary images and set in equal thresholds in each experiment. Then, the minimal 

particles size was set to 0.04 µm2 and evaluated by the Analyze Particles function in the 

ImageJ software. 

 

Quantification of colocalization in cells 

The percentages of colocalization per cell in Figure 3, Figure S6, and Figure S7 were 

calculated using the Colocalization Threshold function in the ImageJ software. 

Colocalization represented the overlap with green and red channel intensities above a 

threshold and indicates the pixels that have both channels. The percentages of 

colocalization were calculated as the number of pixels that had both channels / total 

number of pixels of each channel. Fluorescence images were set in equal thresholds in 



 

 

each experiment. 

 

Statistical analysis  

Statistical differences were analyzed using paired two tailed Student’s t-test in Figure 1, 

Figure 2B, Figure 5, Figure 6, Figure 7B, Figure S4, Figure S6B and Figure S10. 

Unpaired two tailed Student’s t-test were performed in Figures 2D-2E, Figures 2G-2H, 

Figure 2J, Figure 2L, Figure 3, Figure 4, Figures 7D-7F, Figure 8, Figure S5, Figures 

S6D-S6H, Figure S8, and Figure S9. P-values and the number of repeated experiments 

are described in the figures and figure legends. All error bars represent standard error.  



 

 

Supplemental Figure Legends. 

Figure S1. Domain structure of 18 ARDs containing fragments and these EST 

frequencies, Related to Figure 1. 

(A) Illustration of the ankyrin repeat proteins. The 18 ARD fragments, surrounded by 

red lines, were used in Figure 1.  

(B) Average EST frequencies (TPM: Transcripts per million) of 18 ARDs containing 

fragments among 78 organs/health states/developmental stages in the Unigene database 

(https://www.ncbi.nlm.nih.gov/unigene).  

 

Figure S2. Phylogenetic tree of ankyrin repeats from human 18 ARD proteins, 

Related to Figure 1. 

Phylogenetic tree of ankyrin repeats from human 18 ARD proteins is shown. The amino 

acid sequences of the ankyrin repeats within each protein are compared in the highly 

transcribed human 18 ARD proteins (Figure S1). Red and blue indicate ANKHD1 and 

ANKRD17, respectively. 

 

Figure S3. Phylogenetic tree of ankyrin repeats from all human proteins, Related 

to Figure 1. 

Phylogenetic tree of ankyrin repeats of all human proteins from SMART 

(http://smart.embl-heidelberg.de) is shown. The amino acid sequences of ankyrin 

repeats within each protein are compared in all human proteins. Red indicates 

ANKHD1. The names of proteins other than ANKHD1 are not shown. 

 

Figure S4. Localization of ANKHD1 on EEA1-positive early endosomes in 

HEK293T, Caki-1, U2OS, and DLD1 and increased EEA1-positive early 

endosomes in ANKHD1-depleted cells, Related to Figure 2 and Figure 3. 

(A) Effects of ANKHD1 knockdown on the levels of endogenous EEA1 in HEK293T, 

Caki-1, U2OS, and DLD1 cells treated with control or ANKHD1 siRNA. The whole-

cell lysates were subjected to western blotting with anti-EEA1 antibody. GAPDH was 

examined as the loading control. Data represent the mean of four independent 

experiments. Error bars represent SE. *P < 0.05 and **P < 0.01. Statistical significance 



 

 

was determined with the Student’s t-test. 

(B) Confocal microscopy images of endogenous ANKHD1 (green) and EEA1 (red) in 

HEK293T, Caki-1, U2OS, and DLD1 cells. Arrows indicate colocalization of 

endogenous ANKHD1 and EEA1. Scale bars, 10 µm. Scale bars in magnification, 2 µm.  

 

Figure S5. The total area and number of EEA1-positive early endosomes at each 

focal plane in HeLa cells, Related to Figure 2. 

(A) The z-stack images of EEA1 in HeLa cells. The lower panel shows the z section at 

the yellow line at the upper panel. The z-stack images were taken at 0.4 µm intervals for 

the measurement of EEA1 puncta in each focal plane. At the lower panel, the z axis was 

enlarged five times. 

(B-C) The total area (B) and the number (C) of EEA1 puncta per cell in each focal plane 

were measured by ImageJ software. Confocal slices were taken at 0.4 µm intervals. 

Data represent the mean of 14 cells. All error bars represent SE. *P < 0.05, **P < 0.01, 

and ***P < 0.001. Statistical significance was determined with the Student’s t-test. 

 

Figure S6. Knockdown of ANKHD1 increases the size of Rab5-positive organelles 

and the co-localization of Rab5 with EEA1, Related to Figure 2. 

(A) Amounts of endogenous Rab5 in HeLa cells treated with control or ANKHD1 

siRNA by western blotting.  

(B) Quantification of Rab5 in (A). Data represent the mean of five independent 

experiments. 

(C) Confocal microscopy analysis of endogenous Rab5 in HeLa cells treated with 

control or ANKHD1 siRNA by immunostaining.  

(D-G) The total area (D), the number (E), the size distribution (F), and the average area 

(G) of Rab5 puncta per cell in (C) were measured by ImageJ software. Data represent 

the mean of 30 cells from three independent experiments for control siRNA and 

ANKHD1 siRNA.  

(H) Colocalization percentages of endogenous Rab5 with endogenous EEA1 in 

ANKHD1-depleted cells. Date represent the mean of 7 and 8 cells for control siRNA 

and ANKHD1 siRNA, respectively. 

All error bars represent SE. *P < 0.05, **P < 0.01, and ***P < 0.001. Statistical 



 

 

significance was determined with the Student’s t-test. ns, not significant. Scale bars, 10 

µm. Scale bars in magnification, 2 µm 

 

Figure S7. Localization of ANKHD1 in various organelles, Related to Figure 3. 

(A) Confocal microscopy images of endogenous ANKHD1 (green) and Rab5 (red) in 

HeLa cells. The rectangle in the upper image shows the region of enlargement in the 

lower images.  

(B) Confocal microscopy images of endogenous ANKHD1 (green) and LAMP1 (red) in 

HeLa cells.  

(C) Confocal microscopy images of endogenous ANKHD1 (green) and GM130 (red) in 

HeLa cells.  

(D) Confocal microscopy images of endogenous ANKHD1 (green) and Calnexin (red) 

in HeLa cells.  

(E) Confocal microscopy images of endogenous ANKHD1 (green) and Tom20 (red) in 

HeLa cells.  

(F) Colocalization percentages of endogenous ANKHD1 with Rab5, LAMP1, GM130, 

Calnexin, or Tom20 per cell in (A-E) calculated using ImageJ software. Data represent 

the means of 10 (A), 10 (B), 13 (C), 15 (D), and 12 (E) cells. Error bars represent SE. 

Scale bars, 10 µm. Scale bars in magnification, 2 µm. 

 

Figure S8. Knockdown of ANKHD1 does not affect maturation of early endosomes 

to lysosomes, Related to Figure 2. 

(A) Lysosome morphology stained with Lysotracker was observed in HeLa cells treated 

with control or ANKHD1 siRNA.  

(B-D) Quantification of (B) the number, (C) the average area, and (D) the total area of 

lysosomes per cell in (A). Data represent the means of 26 and 25 cells from three 

independent experiments for control siRNA and ANKHD1 siRNA, respectively.  

All error bars represent SE. Statistical significance was determined with the Student’s t-

test. ns, not significant. Scale bars, 10 µm. 

 

Figure S9. Effect of ANKHD1 fragments on the total area of organelles, Related to 

Figure 5. 



 

 

(A) Amounts of expressed ANKHD1 fragments in HeLa cells expressing EGFP, 

N+ARD15-EGFP, ARD10-EGFP, N+ARD25-EGFP, ARD25-EGFP, or ANKHD1-

EGFP by western blotting.  

(B) Confocal microscopy images of expressed ANKHD1 fragments and endogenous 

EEA1 in HeLa cells expressing EGFP, N+ARD15-EGFP, N+ARD25-EGFP, ARD25-

EGFP, or ANKHD1-EGFP. 

(C-D) The total area (C) and the number (D) of EEA1 puncta per cell in (B) was 

measured using ImageJ software. Data represent the mean of 25, 26, 25, 24, and 26 cells 

from three independent experiments for EGFP, N+ARD15-EGFP, N+ARD25-EGFP, 

ARD25-EGFP, and ANKHD1-EGFP, respectively. 

(E) Confocal microscopy analysis of endogenous Calnexin in HeLa cells expressing 

EGFP or N+ARD25-EGFP. 

(F) The total area of Calnexin staining per cell in (E) was measured as in (C). Data 

represent the mean of 22 cells from three independent experiments for EGFP and 

N+ARD25-EGFP. 

(G) Confocal microscopy analysis of mitochondria stained with Mitotracker in HeLa 

cells expressing EGFP or N+ARD25-EGFP. 

(H) The total area of Mitotracker staining per cell in (G) was measured as in (C). Data 

represent the mean of 22 and 21 cells from three independent experiments for EGFP and 

N+ARD25-EGFP, respectively. 

(I) Confocal microscopy analysis of endogenous GM130 in HeLa cells expressing 

EGFP or N+ARD25-EGFP. 

(J-K) The total area (J) of GM130 staining measured as in (C) and the number of Golgi 

fragments (K) per cell in (I) are shown. Data represent the mean of 22 cells from three 

independent experiments for EGFP and N+ARD25-EGFP. 

All error bars represent SE. *P < 0.05 and **P < 0.01. Statistical significance was 

determined using the Student’s t-test. ns, not significant. Scale bars, 10 µm 

 

Figure S10. Vesiculation ability of ANKHD1 in filtered liposome and unfiltered 

liposome is not different, Related to Figure 6. 

(A) Vesiculation by liposome sedimentation assay for N+ARD25 with liposomes 

extruded through a filter of 800 nm and liposomes without extrusion. Protein 



 

 

concentration is 50 nM, 150 nM, or 300 nM. The lipid composition of the liposomes 

was PC : PE : PS : rhodamine-PE at a weight ratio of 4 : 3 : 3 : 0.02.  

(B) Quantification of liposomes in (A). The percentage of Rhodamine-PE fluorescence 

in the supernatant is shown. Data represent the mean of three independent experiments. 

Error bars represent SE. Statistical significance was determined using the Student’s t-

test. ns, not significant. 

 

Figure S11. Structural characteristics of the latter 10 ankyrin repeats of ANKHD1, 

Related to Figure 6. 

(A) Sequence alignment of ankyrin repeats in ANKHD1 by Clustal X. The colors are 

based in the Clustal X program. Red circles indicate arginine and lysine at position 1 

and position 2 in ANKs. 

(B) Structural model of the latter 10 ankyrin repeats (1054-1390 aa) predicted by 

Phyre2 (http://www.sbg.bio.ic.ac.uk/phyre2). 

(C) Surface electrostatistics map of the latter 10 ankyrin repeats (1054-1390 aa) 

generated by Pymol using the model in (B). The amphipathic helix is also illustrated. 

The mutated amino acid residues, K1323, K1324, R1357, and K1358, are indicated. 

(D) The hydrophobic moment of ANKHD1 calculated using Heliquest. The high score 

means that the helix is predicted to be an amphipathic helix. Arrow shows the highest 

hydrophobic moment of 1400-1415 aa in ANKHD1. 

(E) The schematic illustration of the membrane deformation by the dimeric ANKHD1. 
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Figure S5
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ANKHD1 ANK4 304-333 aa T GNT AL T YACAGGF VD I VKVL L NEGAN I E D     30

ANKHD1 ANK5 337-366 aa NGHT PLMEAASAGHVE VARVL L DHGAG I N T     30

ANKHD1 ANK6 371-400 aa F KESAL T L ACYKGHL DMVRF L L EAGADQE H     30

ANKHD1 ANK7 404-433 aa EMHT AL MEACMDGHVE VARL L L DSGAQVNM     30
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ANKHD1 ANK11 534-563 aa GCST PL MEASQEGHL E L VKYL L ASGANVH A     30
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ANKHD1 ANK24 1324-1353 aa KGNT PLWL ASNGGHF DVVQL L VQAGADVD A     30
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