Expanded View Figures

Figure EV1. Characterization of Yb body components.

- A Western blotting was performed using anti-SoYb and anti-Vret monoclonal antibodies produced in this study. β-tubulin is shown as a loading control.
- B Subcellular localization of GFP-Shu and Shu-GFP transiently expressed in OSCs by transfection. Nuclei are shown in blue. Scale bar: 5 µm.
- C Western blotting shows the levels of Yb body protein components in OSCs upon depletion of each component (kd). β -tubulin is shown as a loading control.
- D Immunofluorescence analysis shows Yb, SoYb, and Vret colocalized to Yb bodies. Colocalization of Armi with Yb was previously shown [16]. Nuclei are shown in blue. Scale bar: 5 µm.
- E Immunofluorescence analysis in Shu kd OSCs. Yb, Armi, SoYb, and Vret were detected at Yb bodies upon Shu depletion. Nuclei are shown in blue. Scale bar: 5 μ m. The level of *Shu* mRNAs in Shu kd OSCs is shown on the right. Bars and error bars represent means \pm SEM values of three independent experiments. *P* value was calculated by *t*-test. ****P* < 0.001.

Figure EV1.

A Yb protein

1	MEPIGDLQVP SFKVVSGG	T FTYASPKSGA	ASLDFLAHTL	RKREANTEKT	ILICQQNFEA	
61	ERLKFELAER DVNTILLP	PH GAMVGQVLLL	WSKGYINQAL	ILCDGMLEHL	GVVEANLVIH	Hel-C
121	TTLPELNKFE ERLKWLSI	SA RNAEMLVITP	CDEENEKEGK	GETEPEIVQQ	RMPLKVDALN	
181	SMQLYEIKEN TPPTSSED	K AEADVLLSAA	TPATIPNDNK	EQEINLSVED	ATVKLLASFE	
241	LGSTDSAAVD ESSPAAAKI	N APVYSPFVTE	NPTKSLDAEF	QELVKSFKVQ	NVFKNMNLPP	
301	PPSVSIEEPV SSASASDY	RH QIDTTSLDSI	RTVKDSPASL	AVVPFSAGGI	TYNNYGVLGW	
361	SRHAVVPCYG LTEAPDIS	I IRRAMQQMGV	ARSRARAV <u>O</u> R	FAWPHVSLGK	SVLVVGNLQI	
421	GKTWSYLPTV CQRSHEDL	OR RPDVGRGPTC	IFVCPNQGQG	KQIERWMSTL	LCLLGSASGF	
481	EDVVTHWDKT QLVDIVRRI	K KPVGILLTSV	DLLLQLLNHN	PVGSIFDAQA	VKCIAL <u>D</u> NLN	RNA helicase
541	DMVRVLPNDT MKLLQRLP	M FQLTQNKCQL	LVSGRIWHTD	LMVQHILPLM	PDVLVLFDDA	
601	LEASVYGGVQ LDVRVVAD	EP EKIEHLKALI	AERRNFANEP	AVMVCSNSTE	VLLLRRSLQA	
661	IGVNAHICVS EACYSNVAL	W LRQSPSGLLL	VTDDVVPRLK	CGKIPLLIHY	SFASMWARFK	
721	NRFSLFYANL KSPTTRPV	SVVFAKPTDL	ENIWKLCDFY	MKHKLPRPGH	LLGILSQRRL	
781	EEQPTSRSLC HQMAAFGDO	CL RHKCMYRHVM	WRDEVLPPDH	YPKNGLIRFL	VLVCYSPAAL	
841	AVRLSDQFPT AIRFLNFP	IS DLGERVQRHY	ELEANRHMHP	NPVPGEMAVV	KNINRYERVH	eTud
901	IVSVESNVMV LVQLLDTS	TE CFSYKTSQLY	SCDKIFKDSP	REAMDLRILG	LQPESLDRIW	
961	PDDARNLVRK DFFRRTHN	KR NRQFHAVVQS	AIHRTIFVRN	IYDDEGNDLL	SFVINRFRSH	
1021	QDECCQLKLD AMVMSSKDO	CP YM 1042				

Figure EV2. Characterization of Yb.

- A Amino acid sequence of Yb (CG2706). The Hel-C, RNA helicase, and eTud domains are indicated in orange, light blue, and dark blue colors, respectively. The potential IDR (for detail, see Fig EV3D) is underlined with a dotted line. Two residues, GIn399 and Asp537, which were mutated to alanine in Ref. [12], are underlined with blue bars.
- B WT Yb associates with the Hel-C domain in vivo.

Figure EV3. Yb bodies are unnecessary for producing non-transposon-repressing genic piRNAs.

A Western blotting shows the levels of WT Yb and mutants expressed in the cells in Fig 3A.

- B Immunofluorescence analysis showing that the expression of Δ Hel-C restored nuclear localization of endogenous Piwi in Yb-depleted OSCs. Nuclei are shown in blue. Scale bar: 5 μ m.
- C Scatterplots showing reproducibility of piRNA-seq. Orange and blue dots indicate the number of normalized piRNA reads mapped uniquely to transposons in the reverse orientation and coding genes in the sense orientation, respectively. Three genes with low reproducibility (shown in gray) were omitted from further analysis.

Figure EV4. Yb bodies show characteristics of phase separation.

- A PONDR-FIT shows a potential IDR in Yb.
- B Amino acid sequence alignment of the N-terminal region of Yb in *D. melanogaster* (CG2076), *D. simulans* (JX64703.1), *D. yakuba* (XP_002100225), and *D. ananassae* (XP_001965435). The Hel-C domain is indicated in orange. Amino acid residues conserved among four *Drosophila* members are highlighted in blue. Tyr23 and Phe129 in Yb in *D. melanogaster* are shown by blue asterisks. The family tree of flies in the *D. melanogaster* group was adapted from Ref. [61].
- C Yb Y23A and F129A mutants barely interacted with WT Yb.
- D Yb Y23A and F129A mutants associated with Armi (left). Formation of Armi/SoYb/Vret complex was hardly affected by the mutants (right).
- E Proposed model for Yb body formation and piRNA biogenesis in OSCs. Homotypic Yb protein (light blue on left) binds *flam* RNA transcripts through their Yb binding sites (red bars). The Yb–Yb association and Yb–RNA interaction lead to the assembly of multivalent Yb bodies. Yb is shown in a trimer form for simplification, although it may multimerize *in vivo*. Yb bodies are often surrounded by mitochondria, on the surface of which piRNA biogenesis factors Zuc, Gasz, and Mino are present. At the interface of the two organelles (piRNA biogenesis site), *flam*-piRNA biogenesis occurs. Piwi bound to *flam*-piRNAs (Piwi-piRISC) is localized to the nucleus and silences transposons cotranscriptionally. Some piRNAs are produced independent of the Yb bodies. This happens when Yb lacks the Hel-C domain, leading to the failure of multivalent Yb body formation. Genic piRNAs may be produced in this way even in normal OSCs. *Flam*-piRNAs repress transposons but genic piRNAs are theoretically unable to target transposons. Piwi bound to genic piRNAs can also be localized to the nucleus, but is useless in transposon repression.

Figure EV4.