Copyright WILEY-VCH Verlag GmbH & Co. KGaA, 69469 Weinheim, Germany, 2018.

Supporting Information

for Global Challenges, DOI: 10.1002/gch2.201800031

High-Performance Virus Removal Filter Paper for Drinking Water Purification

Olof Gustafsson, Levon Manukyan, and Albert Mihranyan*

Supporting Information

High Performance Virus Removal Filter Paper for Drinking Water Purification

Olof Gustafsson, Levon Manukyan, Albert Mihranyan

CP-DSC. Typical heat flow curves from CP-DSC analysis of the nanocellulose filter papers are presented in Figure S1.

Figure S1. Typical heat flow curves as a function of temperature for nanocellulose filter papers of thicknesses 9 μ m and 29 μ m acquired from DSC with water as liquid and a heating rate of 0.7 K/min.

Two peaks are distinguishable in the figure for both thicknesses; i.e. one peak for melting of bulk water around 0.5 $^{\circ}$ C and another peak for melting of water confined in pores around - 1 $^{\circ}$ C.

SWW Filtration. The V_{max} analysis is based on the linearized form of the flux decay model, with pore constriction as the fouling mechanism, expressed in Equation S1.

$$\frac{1}{Q} = \frac{1}{Q_0} + \left(\frac{1}{V_{max}}\right)t\tag{S1}$$

Q is the measured flux over time *t*, and Q_o is the initial flux. V_{max} is the maximum throughput volume before complete clogging of the filter structure occurs. V_{max} is given from the slope when 1/Q is plotted against *t*, and is a result of extrapolation of the experimental flux data.

In Figure S3 and S4 the resulting V_{max} analysis of the flux data presented in Figure 5 and 6 is shown. For negative slopes, V_{max} was reported as not available (N/A), due to a resulting negative value for V_{max} .

Figure S2. Typical curves from V_{max} analysis for filtration of SWW through nanocellulose filter papers of thicknesses a) 9 µm and b) 29 µm. Solid curves indicate observed values of the inverted flux at overhead pressures 1 bar and 3 bar. The dashed curves are linear regression fits for analysis of V_{max} according to Equation S1. The TSS content in the SWW was 0.251 mg/L.

Figure S3. Typical curves from V_{max} analysis for filtration of SWW through nanocellulose filter papers of thicknesses a) 9 µm and b) 29 µm. Solid curves indicate observed values of the inverted flux at overhead pressures 1 bar and 3 bar. The dashed curves are linear regression fits for analysis of V_{max} according to Equation S1. The TSS content in the SWW was 2.51 mg/L.

Table S1. Results from V_{max} analysis for filtration of SWW through nanocellulose filter papers. The TSS content in the SWW was 0.251 mg/L.

Filter paper thickness [µm]	Filtration overhead pressure [bar]	Slope of linear fit [1/V _{max}]	V _{max} [L m ⁻²]
9	1	1.0 · 10 ⁻⁴	1.0 · 10 ⁴
	1	4.7 · 10 ⁻⁶	2.1 · 10 ⁵
	1	-2.7 · 10 ⁻⁶	N/A
9	3	8.1 · 10 ⁻⁵	$1.2\cdot 10^4$
	3	4.3 · 10 ⁻⁵	$2.3 \cdot 10^4$
	3	-7.8 · 10 ⁻⁵	N/A

29	1	-1.9 · 10 ⁻⁵	N/A
	1	9.3 · 10 ⁻⁵	1.1 · 10 ⁴
	1	-4.7 · 10 ⁻⁴	N/A
29	3	-7.7 · 10 ⁻⁵	N/A
	3	-2.0 · 10 ⁻⁴	N/A
	3	-4.2 · 10 ⁻⁵	N/A

Table S2.	Results from	V_{max} analysis f	or filtration	of SWW	through 1	nanocellulose	filter pa	pers.
The TSS c	content in the	SWW was 2.5	1 mg/L.					

	6		
Filter paper thickness [µm]	Filtration overhead pressure [bar]	Slope of linear fit [1/V _{max}]	<i>V_{max}</i> [L m ⁻²]
9	1	-5.0 · 10 ⁻⁶	N/A
	1	-8.3 · 10 ⁻⁵	N/A
	1	4.4 · 10 ⁻⁵	$2.3\cdot 10^4$
9	3	-3.5 · 10 ⁻⁵	N/A
	3	5.9 · 10 ⁻⁵	$1.7 \cdot 10^4$
	3	1.1 · 10 ⁻⁵	$9.3\cdot 10^4$
29	1	-1.2 · 10 ⁻⁴	N/A
	1	-2.9 · 10 ⁻⁴	N/A
	1	-4.6 · 10 ⁻⁴	N/A
29	3	1.9 · 10 ⁻⁵	$5.1 \cdot 10^4$
	3	2.3 · 10 ⁻⁵	$4.3 \cdot 10^4$
	3	-4.0 · 10 ⁻⁶	N/A

Filtration of Latex Nanoparticles in SWW. Typical curves from the V_{max} analysis from filtrations of 30 nm latex particles in SWW is presented in Figure S4. The linear fittings showed good correlations to experimental data in the V_{max} analysis for both filter thicknesses and pressures, as seen from the R²-values in Figure S4. This would indicate that pore constriction is the fouling mechanism during filtration of the latex particles in the filter paper.

Figure S4. Typical curves from V_{max} analysis for filtration of 30 nm latex particles in SWW through nanocellulose filter papers of thicknesses a) 9 µm and b) 29 µm. Solid curves indicate observed values of the inverted flux at overhead pressures 1 bar and 3 bar. The dashed curves are linear regression fits for analysis of V_{max} according to Equation S1.