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A Notation

Notation, used throughout this work is summarised in Table 1.

Notation Description

N The set of notes
n,m Notes, n,m ∈ N
P The set of perfumes
p, q Perfumes, p.q ∈ P
Kp The set of notes in perfume p
Kn The set of perfumes containing note n

M
Perfumes with M or more ratings are considered to have reliable ratings.
We chose M = 92 for this work. (was m)

Vp The number of reviews (‘votes’) for perfume p
Rp The average of the individual ratings for a perfume p

R̄(M) The mean average rating Rp over all perfumes with at least m ratings
Wp The weighted rating for perfume p
G, G The perfume-note network and associated adjacency matrix
H, H The enhancement network and associated adjacency matrix

Table 1: Table of notation used in this paper

There are many ways to quantify success based on customer ratings. First for each perfume
p we count the number of votes Vp. Each individual reviewer i states if they ‘love’, ‘like’ or
‘dislike’ a perfume, a score Rpi which is not available to us. The web site converts this into an
average rating Rp between one and five for that perfume and this is the information we have.

To perform permutation tests, we split the set of perfumes into two: one set of perfumes
P(pop) which contain a specified note n(pop), while the remaining perfumes without the note of
interest are the subset P(reg). We can then create two collections of ratings Vp, R

(pop) (R(reg))
with the ratings Vp of perfumes containing n(pop) (without n(pop)).

P(pop) = {p|(p, n(pop)) ∈ E} , P(reg) = {p|(p, npopular) 6∈ E} , (A.1)

R(pop) = {Vp|p ∈ P(pop)} , R(reg) = {Vp|p ∈ P(reg)} , (A.2)

where E is the set of edges in the perfume-note network G.
To avoid the problem that a perfume with one or two perfect ratings can dominate the

lists of top perfumes, we use a standard formula to rescale the ratings producing our ‘weighted
rating’ Wp. This uses the number of ratings Vp given to a perfume and the mean rating for
perfumes with a ‘reasonable’ average ratings equal or larger than M , which is a parameter we
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have to fix. So suppose P(M) is the set of perfumes with ratings equal to or greater than M

P(M) = {p|Rp ≥M} (A.3)

The mean average rating R̄(M) is then defined as

R̄(M) =
1

N (M)

∑
p∈P(M)

VpRp , N (M) =
∑

p∈P(M)

Vp (A.4)

so N (M) is the total number of votes given to perfumes with at least M votes each.
To avoid problems with perfumes of a few ratings, low Vp, having extreme average rat-

ing values Rp, we use then use a weighted score Wp. This can be defined using a Bayesian
interpretation.

Suppose that all ratings are normally distributed with the same standard deviation σ but
with different means, each mean corresponding to the rating for a perfume. It makes sense to
choose our prior distribution to be a Normal distribution too but we are free to set the mean
and standard deviation for this prior. A reasonable mean to choose is the average rating over
all perfumes, R̄(M). The standard derivation of this prior is going to be the expected error in
this mean assuming we make M measurements, i.e. σprior = σ/

√
M . Here M is not necessarily

the total number of ratings for all perfumes and instead we treat M as a parameter we can set.
We have already stated that the ratings are assumed to be Normal distributed so the likelihood
distribution is also a normal, with mean given by Rp, the current average rating for perfume p,
and standard deviation for this average rating equal to σp = σ/

√
Vp since we have Vp votes for

perfume p. We want the expected distribution for the current average rating Rp, the posterior
distribution. Combining a normally distributed prior with a normally distributed likelihood
distribution can be done exactly using Bayes theorem (for example see Bailer-Jones (2017), Eq.
4.40) and we find that the posterior distribution is also a Normal distribution with mean given
by the sum of means weighted by the inverses of the variances. That is the expected mean of
the posterior distribution is Wp where

Wp =
(σp)

−2

(σp)−2 + (σprior)−2
Rp +

(σprior)
−2

(σp)−2 + (σprior)−2
R̄(M) =

VpRp +M R̄(M)

Vp +M
. (A.5)

This weighted score (sometimes known loosely as a ‘Bayesian Rating’) has often been attributed
as being the basis for many online contexts such as the IMDb movie rating site, but most modern
sites do not disclose their current method.

In our work we use M = 92 as this ensured that the mean number of votes for perfumes
with at least M ratings was one standard deviation bigger than the mean number of votes for
all perfumes.

B Launch date

We have a launch date for 7635 perfumes, about 72% of the perfumes in our data. The dates
have been binned, mostly in decades except for the two earliest bins where there are fewer
data points. The results are shown in Table 2. The majority of these perfumes in our dataset
were launched relatively recently, with around 95% launched in the last twenty years. Over the
last sixty years, the number of perfumes with at least one rating in our data falls off roughly
exponentially with age, ∼ exp(y/9.9) where y is the number of years since the perfume was
launched, roughly 10% less each year we go back1.

1Alternatively the form ∼ exp(7.1− y/8.5) + 1.0 also gives a reasonable fit which illustrates the accuracy of
these fits.
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Launch date
interval

Number of perfumes
with ratings

Number of perfumes
with ≥ 92 ratings

1533-1899 27 8
1900-1919 16 7
1920-1929 29 13
1930-1939 26 4
1940-1949 17 4
1950-1959 18 9
1960-1969 28 9
1970-1979 82 26
1980-1989 175 57
1990-1999 538 164
2000-2009 2386 609
2010-2017 4851 645

Total 8193 1555

Table 2: Popularity of perfumes by launch date. The data is sparse for very old perfumes so
the time ranges are larger in that case. Otherwise, we combined perfumes into bins by decade.

C Price

We found prices for 978 of our perfumes, about 9.2% of the total and we quote results in British
Pounds per 100ml.

The number of perfumes falls sharply as the increases, the number per price unit, v, falling
roughly as ∼ exp(v/70). Bins are in units of £50/100ml except for the most expensive perfumes
where larger bins were needed. Results are shown in Table 3.

Price interval Number of perfumes
£/ 100ml with ratings with ≥ 92 ratings

0-49 516 170
50-99 238 106

100-149 98 47
150-199 35 20
200-249 19 10
250-299 13 7
300-399 14 10
400-700 5 3
Total 938 373

Table 3: Price intervals used to bin perfumes. The data is sparse for very expensive perfumes
so there the price range is increased. Otherwise, we combined perfumes into bins of width £50
or 100ml.
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D Network Definitions and Properties

Sets of vertices

We use two networks in our work based on perfumes and notes as nodes. A perfume will be
denoted with an index p and the full set of perfumes is P = {p1, p2, ..., pNp}, where Np = |P| is
the total number of perfumes in the dataset. Similarly, notes are denoted with indices n and
the full set of notes is N = {n1, n2, ..., nNn} where Nn = |N |. The set of notes in perfume p
are denoted by Kp while Kn is the set of perfumes containing note n.

Perfume-Note Network

The perfume-note network, G, is a bipartite graph. We have two types of nodes: perfumes
p ∈ P and notes n ∈ N . An edge is present between a note and a perfume only if that note
is an ingredient of that perfume. The adjacency matrix, Gpn of the perfume-note network is
therefore

Gpn =

{
1 if note n is in perfume p
0 if note n is not in perfume p

. (D.1)

In this perfume-note network G, the neighbours of perfume p is the set Kp defined above,
so the degree of the node associated with perfume p is kp = |Kp| =

∑
nGpn. Likewise, in

this network, the node the note n has a set Kn of perfumes as nearest neighbours and degree
kn = |Kn| =

∑
pGpn.

In our network, we have 10,599 perfume nodes and 990 note nodes with 89,388 edges. The
network is given in Vasiliauskaite and Evans (2018). The degree distributions are shown in Fig.
1.

For the perfume nodes, we found that there are just seven perfumes that have ingredient
lists of thirty or more perfumes while just 176 perfumes have twenty or more notes as their
ingredients. By way of comparison, a normal distribution with the same number of perfumes
having the ingredient lists of the same length as found in the data, we would expect just one
perfume to have a list of length nineteen and none to have twenty or more notes in their
ingredient lists. So while the distribution of the degree of perfume nodes does have a noticeable
tail for large kp, it is not too extreme. This is to be expected as there is a limit to how many
ingredients you can put into a single perfume and for them all to play a significant role.

The degree distribution for the note nodes is, on the other hand, clearly fat-tailed with an
equivalent normal distribution giving nodes of degrees between about 55 and 125 only. The
most popular note is Musk used in 4768 perfumes, 44% of perfumes, the tenth most popular
Mandarin Orange is in 1795 perfumes (17%). So it appears that like many other sets of similar
objects (e.g. baby name popularity (Hahn and Bentley, 2003), dog breed popularity (Herzog
et al., 2004)), there is a ‘rich-get-richer’ phenomena unlimited by any practical constraint
leading to a fat tailed distribution in the note popularity.

Enhancement Network

Our second network representation is a directed, weighted network which we call the enhance-
ment network H.

To understand why we create we first consider perfumes with exactly the same ingredient
listA couple of explanations for these come to mind. First they could be almost identical in
terms of their smell. However, the second possibility is that the concentrations of individual
ingredients are not at all similar. These may govern the final smell of the perfume so this pair of
perfumes may not smell the same in practice. For instance, two perfumes can be composed of 3
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Figure 1: Degree distribution of perfumes (panel A) and notes (panel B) in the perfume-note
network G.

ingredients: musk, rose and vanilla, however ratios are, 5:2:2 and 2:5:2. The first perfume ought
to smell more “musky” and the second one more “rosey”. However, the detailed compositions
are invariably closely guarded secrets and as we do not have precise comparisons from users in
our data, we can not distinguish these two cases . There is an obvious analogy here with food
recipes. The amount of chilli and the type of chilli used in a recipe can have a drastic effect
on the user experience. However, like us, most food recipe network studies do not include the
quantities of ingredients in their analysis.

However, we can attempt to make deductions about notes through comparisons between
similar perfumes in another way. We can look at pairs of perfumes where one perfume has
exactly the same ingredients as the second perfume except for the addition of one extra note.
Our reasoning is that adding one extra note to a list of ingredients could ruin a perfume.
For instance, a small drop of violet could easily overpower the entire composition, despite the
amount of it in the combination being small. However, we must assume that the expert ‘Nose’
who created the perfume with an extra ingredient included for a good reason. So if our rating
for the perfume with the extra note is higher than the perfume without the extra note, we will
assume that the extra ingredient enhances the other notes.We will assume that the addition of
an extra ingredient to a set of notes is well thought of and significantly affecting the composition
overall. Our enhancement network will encode these comparisons.

Of course we still do not know if in any two perfumes differing by one note the proportions
of ingredients are similar. So we will use a weighted network to capture how often we find
a given enhancement. In this way we will try to use the large amount of data to build up a
statistically significant picture.

Formally, we define our enhancement network H as follows. Each node is a note n ∈ N .
To define the edges, consider two perfumes that are almost identical: one perfume q has kq
notes, the set of notes Kq, and the second perfume p has the same kq notes plus one additional
note which we call the difference note ndiff. That is perfume p contains the notes in the set
Kp = Kq ∪ {ndiff}. Provided the number of votes of the first perfume is smaller than that of
the latter, Rq < Rp, the note ndiff must be enhancing the composition. We therefore draw
an edge from the difference note node ndiff to the nodes representing the other notes in the
two perfumes, the notes in common to both Kq. We then add one to the weight to each edge
running from the node representing ndiff to the other nodes, those in Kq.

The adjacency matrix may be written formally as follows

Hmn =
∑

p,q∈P|p 6=q

GpnGpmGqmδ(Np ∩Nq,Nq)δ(Np\Nq, n)Θ(Vp, Vq) . (D.2)

Here δ(A,B) is an indicator function which is 1 if A = B and 0 otherwise. The notation is a
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cumbersome way of stating that perfume q has notes Nq, containing note m, while perfume p
has the same notes plus one more, note n (n = ndiff the difference note), so that Np = n ∪Nq.
To enforce the requirement that the rating of perfume p is higher than perfume q, Vp > Vq,
we use the indicator function Θ(A,B) which is 1 if A > B and 0 otherwise. Note the edge as
described above is considered to be directed from note n to note m.

Our enhancement network has 165 nodes (we ignored notes which were never involved in
any enhancement), With 530 edges and a total weight of 1423. The largest weakly connected
component contains 163 nodes and 529 edges (total weight 1422). The average shortest path
length is 1.5 (accounting for the weights of edges).

Of course we could extend this, looking at perfumes which differ by different number of but
in our opinion it is not so clear what is enhancing what in more complicated cases. Likewise our
some examples differing by one note will have ratings ordered the other way round, Vp > Vq.
We might interpret the extra note as diminishing the original recipe. That could be captured
in a diminishment network D with adjacency matrix differing from (D.2) only in the arguments
of the indicator function Θ

Dmn =
∑

p,q∈P|p 6=q

GpnGpmGqmδ(Np ∩Nq,Nq)δ(Np\Nq, n)Θ(Vq, Vp) . (D.3)

It could be natural to consider these two networks together as a signed network with adjacency
matrix Smn = Hmn −Dmn.

Enhancement Network Example

In our work we apply centrality measures to our enhancement network, as discussed in Sec-
tion below. In order for such measures to have meaning, we requires that paths in the enhance-
ment network have some meaning. That is two notes linked by an edge clearly have some sort
of direct relationship, but most centrality measures also use longer paths to indicate a likely if
weaker relationship.

Figure 2: A very simple Perfume-Note network
Gex. Note that the vertical height of the perfume
notes reflects the number of votes they get; the
higher up the page a perfume node is, the more
votes that node has.

To see why we think paths as well as direct link may have meaning in the context of our
enhancement network, we think it is helpful to look at a trivial example. Consider the perfume-
note network Gex given in Figure 2 where

• P1 (perfume 1) contains notes N1, N2 and N3,

• P2 contains notes N2, and N3,

• P3 contains notes N3,

• P4 contains notes N2 and N4,
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• P5 contains note N4,

• P1 has more votes than P2, which has more votes than P3,

• P4 has more votes that P5.

Then the enhancement network Hex derived from Gex contains the following directed links

• from N1 to N2 (from P1 overlap with P2),

• from N1 to N3 (from P1 overlaps with P2 and P3),

• from N2 to N3 (from P2 overlap with P3),

• from N2 to N4 (from P4 overlap with P4).

This is illustrated in Figure 3.

Figure 3: The enhancement network Hex derived from the
perfume-note network Gex shown in Figure 1 where the perfume
votes are as indicated in the caption of Figure 2.

Hence there is a two-step directed path N1 → N2 → N3. Here this two-step path N1 to
N2 to N3 does imply some sort of relationship between the ends, between N1 and N3. After
all there is also a direct link from N1 to N3 derived from the overlap of P1 and P3. This direct
link will mean N3 does contribute strongly to the centrality of N1 though the indirect link will
be a smaller contribution to the centrality score of N1.

Now there is also a second two-step directed path, from N1 to N2 to N4. However, in this
case there is no direct edge from N1 to N4. Without a direct link, N4 will not contribute so
strongly to the centrality of N1 but it be a small contribution.

The interesting point comes when we consider the importance of note N4 in any perfumes
containing note N1. As with any recipe, the precise combination matters, the whole “is more
than the sum of its parts”. There is no direct evidence here that N1 will enhance N4 which is
reflected in the lack of a direct link. This is, however, the the point of a network representation.
The indirect relationship as captured by a path is some sort of indication, a suggestion or
recommendation, that is a direct link between the ends of a path is likely to be a good idea.
Consider a musical example, which is another nice example of a recipe. If N3 and N4 are
musical notes an octave apart, or if N3 and N4 are the same musical note played by different
instruments in a score, then it is a good suggestion to try notes N1 and N4 in a chord since N1
and N2 work well as musical chords.

Of course, we have no proof that indirect links are good recommendations. In our musical
example, a chord N1 and N4 might be terrible because the instrument playing note N4 rather
than N2 just clashes with the instrument playing note N1. The lack of a direct connection
may also be a recommendation in itself, no one has made that connection for a good reason.
What we are aiming to do in our analysis, as always in networks, is to look for many such
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indirect suggestions. Then even if some paths represent poor suggested relationships, we hope
that with many such suggestions, through the network analysis of the many possible paths in
the network, the weight of good indirect relationships will reinforce each other in the way that
many more poor combinations are unlikely to do.

So we assume that paths in our enhancement network can be a useful tool, just as paths
rather than direct links are important in any network context. Clearly, if recipes are more than
the sum of their parts, one might feel that in such contexts (music scores, perfume and food
recipes etc) higher order effects (non-backtracking matrices, hypergraphs, clique overlaps etc)
might provide more effective insights than simple bilateral relationships recorded in ordinary
graphs. But then, that is exactly why we developed our enhancement network; a traditional
network encoding higher order effects (a type of clique overlap) in the original bipartite perfume-
note graph.

Incidentally, this discussion of the enhancement network and its paths also reinforces an
argument why making a projection onto a network of notes alone is worthwhile. In making
this one-mode projection we undoubtedly lose some information. However, the way we do the
projection to create the enhancement network highlights key higher-order network effects in
the original perfume-note network, higher order effects which can be drown out in standard
measurements made on the original perfume-note network.

Once we have decided that paths as well as direct links in the enhancement network contain
useful information then it is natural to use traditional centrality measures on the enhancement
network.

Enhancement Network Centrality Measures

We used centrality measures to analyse the enhancement network. Centrality is a measure of
importance of nodes, given their connections and position within a network. Newman (2010)
explains in detail the majority of main centrality measures. For our purposes, we used weighted
out-degree centrality, out-closeness and reversed PageRank, defined as follows.

Weighted out-degree sn (strength) of a note n in the enhancement network is

sn =
∑
m

Hmn . (D.4)

It is equal to the size of the multiset of notes directly enhanced by note n.
We use out-closeness, cn for note n, in the form proposed by Wasserman and Faust (1994).

Here we count the outward going paths as this captures chains of enhancement.

cn =
|En|

(N − 1)

|En|
fn

, fn =
∑
m∈En

dmn . (D.5)

We define En to be the nodes which are reachable from node n (i.e. notes directly and indirectly
enhanced by note n). So if m ∈ En there is a directed path from node n to node m. For these
directed paths, we define the length of each path to be the sum of the weights along that path.
Then dmn is the length of the shortest path from n to m. The factor 1/(N − 1) is an irrelevant
overall constant but for completeness we note that here we have used N to be the number of
nodes (notes) in the LWCC (largest weakly connected component) of the enhancement network.

A large closeness centrality score is assigned to nodes that have short paths to many nodes in
the network. Thus, out-closeness centrality evaluates the universal notes potential to enhance:
if a note enhances many notes, multiple times, it is assigned a large score.

We also studied reversed PageRank, or PageRank on the enhancement network with reversed
edges. For node n it is defined to be PRn where

PRn =
1

N
(1− α) + α

∑
m

1

kin
m

Hmn PRm , kin
m =

∑
m

Hmn . (D.6)
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PageRank of note n counts the number notes it enhances but weights each enhanced neighbour
by its importance, its PageRank. So the larger the PageRank of a note, the more important it
is in terms of enhancing other notes. PageRank can be understood as a random walk where the
walkers leave nodes m along incoming edges and the probability of a random walker following an
incoming edge to move from m to a neighbouring node n, which is enhancing m, is proportional
to the weight of the edge multiplied by α. There is also a second process, which occurs with
probability (1 − α), where the random walker starts again from a node chosen uniformally at
random from the set of nodes in the graph (a ‘hyperjunp’). The probability of finding a random
walker at a node in the long-time limit is the PageRank score for that node.

Several values for α were tried but we found little difference for α between 0.7 and 0.95.
Therefore, we used the value α = 0.85 which corresponds to the random walkers making on
average 5.67 steps before a hyperjump compared to the the average shortest path length of 2.9.
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