

BMJ Open is committed to open peer review. As part of this commitment we make the peer review history of every article we publish publicly available.

When an article is published we post the peer reviewers' comments and the authors' responses online. We also post the versions of the paper that were used during peer review. These are the versions that the peer review comments apply to.

The versions of the paper that follow are the versions that were submitted during the peer review process. They are not the versions of record or the final published versions. They should not be cited or distributed as the published version of this manuscript.

BMJ Open is an open access journal and the full, final, typeset and author-corrected version of record of the manuscript is available on our site with no access controls, subscription charges or pay-per-view fees (<u>http://bmjopen.bmj.com</u>).

If you have any questions on BMJ Open's open peer review process please email <u>info.bmjopen@bmj.com</u>

BMJ Open

BMJ Open

Identifying relationships between sleep posture and nonspecific spinal symptoms in adults: A scoping review

Journal:	BMJ Open
Manuscript ID	bmjopen-2018-027633
Article Type:	Research
Date Submitted by the Author:	01-Nov-2018
Complete List of Authors:	Cary, Doug; Curtin University, School of Physiotherapy and Exercise Science; AAP Education, Professional Development Briffa, Kathy; Curtin University, School of Physiotherapy and Exercise Science, Faculty of Health McKenna, Leanda; Curtin University, School of Physiotherapy and Exercise Science, Faculty of Health
Keywords:	sleep posture, sleep position, spinal symptoms, pain, stiffness, education

SCHOLARONE[™] Manuscripts

 Identifying relationships between sleep posture and non-specific spinal symptoms in adults: A scoping review

Corresponding author:

Mr Doug Cary

5 William Street, Esperance Western Australia 6450 Australia

dougcary@westnet.com.au

+61 890715055

Co-authors:

A/Prof Kathy Briffa

School of Physiotherapy and Exercise Science, Faculty of Health, Curtin University,

Kent St, Bentley WA 6102, Australia

Dr Leanda McKenna

School of Physiotherapy and Exercise Science, Faculty of Health, Curtin University, Kent St, Bentley WA 6102, Australia

Word count: 4010

General subject: Research

Subject headings: Rehabilitative Medicine

Keywords: sleep posture, sleep position, spinal symptoms, pain, stiffness, education

Abstract

Objectives: The aims of this scoping review were to (a) determine the body of evidence regarding relationships between sleeping postures and spinal symptoms and (b) provide suggestions as to what sleeping postures can be recommended by clinicians.

Design: Scoping review.

Data sources: PEDro, Embase, Cumulative Index to Nursing and Allied Health Literature, Cochrane Library, Medline, ProQuest, PsycINFO, SportDISCUS and grey literature from inception to April 10, 2018.

Data selection: Using a modified Arksey and O'Malley framework, all English language studies in humans that met eligibility criteria using key search terms associated with sleep posture and spinal symptoms were included.

Data extraction: Data were independently extracted by 2 reviewers and mapped to describe the current state of the literature. Articles meeting the search criteria were critically appraised using the Downs and Black checklist.

Results: From 4186 articles, four articles were identified, of which three were exploratory and one interventional. All studies examined three or more sleep postures, all measured sleep posture using self-report and one study also used infrared cameras. Two studies examined symptoms arising from the lumbar spine, one the cervical spine, and one the whole spine. Waking pain and stiffness were the most common symptoms explored and side lying was generally protective against spinal symptoms.

Conclusions: This scoping review highlights the importance of evaluating sleep posture with respect to waking symptoms. Side lying appears protective of cervical symptoms and possibly spinal symptoms in general, however there is a general paucity of studies from which to draw firm conclusions for all sleep postures. It is recommended future research consider group sizes and population characteristics to achieve research goals, that a validated measure be used to assess sleep posture, that characteristics and location of spinal symptoms are clearly defined and that the side lying posture is subclassified.

Strengths and Limitations of this Study

- This is the first scoping review collating and synthesising the available literature on sleeping posture and non-specific spinal symptoms
- A critical appraisal of evidence assessment was undertaken for each included study
- The lack of studies and small group sizes prevented firm recommendations being provided for all sleep posture

Funding

Author (DC) acknowledges support from Australian Government Research Training Program Scholarship in supporting this research.

Competing Interest

None declared.

Data Sharing Statement

No additional data are available.

Introduction

Cervical and lumbar symptoms are the leading cause of musculoskeletal disability in most countries and most age groups. Of those who report cervical and lumbar pain, the proportion is higher in females for both cervical (59%)(1) and lumbar (52%) pain(2). The prevalence of both cervical and lumbar pain has increased markedly over the past 25 years(cervical 21.1% and lumbar 17.3%), and these rates are expected to continue rising(3). Cervical and lumbar pain contribute to large economic and societal costs and are major sources of work disability, being either the first or second ranked cause of years lived with disability between the ages of 20 and 79 years(3-5). Research indicates that remissions in symptoms are temporary rather than permanent(6, 7) and cervical and lumbar pain becomes chronic in 25 to 60% of cases(8). Identification of modifiable risk factors contributing to the onset and chronicity of cervical and lumbar pain and other symptoms, is critical(9) to improve the management of cervical and lumbar pain.

A potentially modifiable risk factor that aggravates spinal symptoms, is sleep posture. Sleep is considered essential for human mental and physical recovery. Yet, every night some people go to bed, only to wake with spinal symptoms not present the prior evening, while others with existing spinal symptoms, wake with exacerbations of their symptoms(10, 11). For example, in young air force personnel, 33% experienced their most intense spinal pain during the evening and on first waking(10). It has been postulated that poor sleep posture may be a factor in the development of both waking cervical(12-14) and lumbar symptoms(15, 16).

Habitual sleep postures may influence the amount of load applied to spinal tissues when sleeping. When upright, compressive load due to gravity and muscle contraction(17, 18) is likely to be far less during the day than during sleep, creating a low compression environment. In a 25-year review on the fundamentals of spinal biomechanics, it was noted that spinal movements decrease under a superimposed compression load. The author postulated this was due to increased anular stiffness and increased zygopophyseal joint (ZPJ) contact(19). Conversely, when lying down, the sources of spinal compression are minimal, creating a low compression environment, potentially allowing an increased range of spinal movement. The combination of increased range and asymmetrical loading posture may result in altered and/or additional loading of viscoelastic collagenous restraints like the ZPJ capsule and ligaments(20). Viscoelastic tissues are vulnerable to sustained or repeated low elongation loads, and undergo predictable mechanical and viscoelastic changes. Ligaments in feline spines exposed to 60 minutes of repeated low load, demonstrate a significant increase in the expression of pro-inflammatory chemicals. compared with control ligaments from the same spine, indicating acute inflammation and tissue degradation in ligaments subjected to the cyclic loading(21). Additionally, sustained non-symmetrical sleep postures can induce structural spinal changes in humans(22, 23). Sleep postures have been shown to be modifiable(15, 24) and identification of modifiable risk factors related to spinal pain, have been highlighted as a priority in managing disabling lumbar pain(25).

Some sleep postures, such as prone, are clinically believed to increase load on spinal tissues, reducing recovery and provoking waking spinal symptoms(16, 26, 27). While some sleep research has examined the role sleep posture may have on spinal symptoms(11, 15, 28), there has been no synthesis of the literature in regards to sleep posture and spinal symptoms.

Methods

Search Framework

This scoping review was developed using the methodological framework proposed by previous authors(29), further refined by other independent authors and institutes(30-32) and reported in line with key PRISMA-ScR guidelines(33).

Research Question

Following an individual review of the literature and a group meeting, an authors' consensus was reached to determine the following research question; is there a relationship between sleep posture and spinal symptoms?

Aim and Objectives

The aim of this scoping review was to gain a clear understanding of the current knowledge base in relation to the identified research question. To achieve this aim, an iterative process involving electronic meetings and communication between authors was used to determine the following research objectives:

- Identify what study designs and participant populations have been studied to answer the research question.
- Identify the types of specific methodology used in the body of evidence to address the research question.
- Identify common results, conclusions and recommendations from the body of evidence regarding the research question.

Eligibility Criteria

Eligibility criteria were based upon the population, intervention, comparison and outcome (PICO) framework. A draft list of eligibility criteria was initially determined following the independent screening of relevant articles by two reviewers. Criteria were then developed iteratively between two reviewers and a finalised list of criteria were uploaded to Covidence(34), as a reference for data charting reviewers.

Inclusion Criteria

For inclusion in this scoping review, the prior research needed to study participants 18 years or older, with either pain, stiffness or bothersomeness in the cervical, thoracic or lumbar spine. Any observational or interventional study examining the relationship between sleep posture and spinal symptoms was considered. Articles that either compared sleep posture change (e.g., before and after an intervention) or had no comparator (e.g., epidemiological) were included. Articles needed to use a subjective or objective measure for symptoms and sleeping posture.

Exclusion Criteria

Articles were excluded if they involved animals, cadavers or included participants diagnosed with sleep apnoea, spinal stenosis, migraine, red flag pathologies (e.g., neoplasm, inflammatory conditions, fractures or infections); participants with pain of known non-spinal origin (e.g., kidney disease, post-operative pain, temporomandibular joint, shoulder pain); participants with neurological conditions (e.g., multiple sclerosis, cerebrovascular accident); or participants that were unable to move freely in bed (e.g., using continuous positive airway pressure therapy or in the last trimester of pregnancy). Articles were excluded if they did not isolate the intervention when a group of interventions were implemented (e.g., spinal injection and sleeping posture) or if they compared sleep systems (e.g., mattress, base and or pillow) or changes in sleep systems but did not report the change in sleep posture. Further, articles using actigraphy to measure movement or articles that only examined the quality or efficacy of sleep were excluded. Finally, editorials, opinion-based articles, review articles (systematic or narrative) and articles not written in English were excluded.

Patient and Public Involvement

Patients and the public were not involved in this scoping review.

Search Terms and Strategy

The population, intervention, comparison and outcome (PICO) framework was used to assist in the collation of all elements relevant to clinical research questions. Population: Terms used for the search strategy were chosen to be representative of the areas and symptoms, likely to be experienced by a population with non-specific spinal symptoms. Non-specific symptoms are those not related to fracture, infection, inflammatory disease, tumor or spinal stenosis. Intervention: Terms representative of interventions aimed at changing sleep posture in association with spinal symptoms were considered for inclusion, while other terms not associated with spinal

BMJ Open

symptoms e.g. apnoea were excluded. Comparison: Terms were considered that were indicative of any type of comparison. Outcome: Any terms to indicate the subjective measure of pain, stiffness or bothersomeness or objective measure used to evaluate sleep posture, were considered.

Identified key search terms were then used in the search strategy to identify all relevant articles. An initial search was conducted in two of the four databases, recommended(35) for physiotherapy related topics; PEDro, and Embase (via Ovid) from inception to December 2017. The initial search was used to determine if the search terms and strategy were appropriate, and informed the development of the final search terms and strategy.

The final search strategy was conducted using the search terms and Boolean logic as described in <u>Supplementary File Search Strategy for the Scopus Database</u> and adapted for eight electronic databases (PEDro, Embase, Cumulative Index to Nursing and Allied Health Literature, Cochrane Library, Medline, ProQuest, PsycINFO, SportDISCUS) with the assistance of a health sciences information specialist. Grey literature (espace, Google Scholar (top 100 references scanned for relevance), and Web of Science) was searched for difficult to locate or unpublished material that had not already been included. The final step involved manual searching the reference sections of relevant articles and publications by key authors for additional articles, not identified in the original search.

Study Selection

All search results were imported into the reference management software package, Endnote X8(36) and duplicates removed. Remaining results were imported into Covidence(34) and additional duplicates removed. Using Covidence, two reviewers independently performed Level 1 (title and abstract) and Level 2 (full text) screening, based on the eligibility criteria. Differences of opinion in which articles progressed to the next level, were first resolved with discussion between reviewers and if necessary, with input from a third reviewer.

Data Charting

The data charting form was developed and revised iteratively between reviewers to ensure data relevant to the three research objectives were collected. A definitions and instructions document was developed to ensure that data was collected consistently by the independent reviewers. The data charting form was then independently pilot tested in duplicate on a random sample of four potential articles. Following identification of articles for inclusion in this review, data were independently charted in duplicate using a data charting form created in Excel and based on the three research objectives. An attempt was made to contact authors of eligible articles where authors reported that data relevant to our scoping review had been collected but was not publicly available, and to clarify points relevant to our data charting.

Quality of Evidence

Non-assessment of methodological quality and the risk of bias is consistent with current guidelines on conducting a scoping review(30, 32). However, a focus of this scoping review was on methodology; therefore, a methodological assessment of quality was included. The Downs and Black checklist(37) was chosen, as it has documented criterion validity, face and content validity, intra-rater (r = .88) and interrater reliability (r = .75) and guidelines for use(38). A modified version of the Downs and Black checklist(39), where a dichotomous score for power (question 27) was used. As a result, the maximum score for randomised trials was 28 and non-randomised trials 25. The Downs and Black checklist was independently completed for each article in duplicate. Differences in scoring were first resolved by consensus between reviewers and if required, by a third independent reviewer. Study limitations noted by authors were collected to compliment the Downs and Black checklist.

Results

Search Results

An overview of the article identification process is provided in the PRISMA flow diagram in Figure 1. Articles excluded due to wrong outcomes, were those that did not include a measure of sleep posture or only examined sleep posture and not symptoms, tested a sleeping system (e.g., mattress or pillow) in relation to spinal symptoms but not posture, or studied sleep posture in relation to sleep quality. Articles excluded due to wrong study design included treatment guidelines, opinion and editorial piece and summaries.

FIGURE 1 PRISMA FLOW DIAGRAM (SEPARATE FILE)

Author	Study Design	Population Type	Sample Size (Gender)	Age <i>M</i> (<i>SD</i>)
Abanobi et al., 2015	Case controlled	Welders in Owerri, Nigeria	100 (male = 100)	35 (9)
Cary et al., 2016	Cross sectional	Population of convenience in Esperance, Western Australia	15 (male = 7)	44 (17)
Desouzart et al., 2016	Controlled pilot	Elderly participants in physical activity program at Polytechnic Institute of Leiria, Portugal	20 (male = 0)	62 (4)
Gordon, Grimmer and Trott, 2007a Gordon, Grimmer and Trott, 2007b	Epidemiologic al	Every third household in Port Lincoln in South Australia	812 (male = 261)	Female 61 (10) Male 59 (11

Table 1. Mapping of Study Design and Population Characteristics

Notes. M = Mean, SD = Standard deviation

Study Design and Population Characteristics

The designs of the four included studies were mixed (Table 1). One study included information that was presented in two separate articles(11, 40).

Methodology: Sleep Posture Measurement

All studies examined participants in their domestic environment (Table 2) and described as a minimum the three common sleep postures; supine, side lying and prone. One study described four sleep postures, dividing side lying into two sleep postures and named them supportive side lying and ³/₄ side lying(41). Another described five postures, adding "upright" and "varies", to the common three sleep postures(11). One study used three different postures, but combined side lying and prone for analysis, due to small number of prone sleepers, of whom none reported lumbar pain(42). All studies used self-report questionnaires to assess sleep posture. Studies focused on different time points when questioning about sleep posture. Two specifically focused on night and waking posture; "in what sleep posture do you usually go to sleep", "in what sleep posture do you usually wake up" and "in what sleep posture do you spend most of the night"(11)(p. 7), and "which posture most closely resembles the posture you are lying in when you fall asleep?" and "which posture most closely resembles the posture you are lying in when you wake

up?"(41)(Appendix 1.). The other two studies were non-specific, "usual sleep posture" (42) (p. 335) and "informal questionnaire for ... sleeping position" (15) (p. 237). In addition to using self-report, the authors of one study used an objective method of assessment, twin camera infrared video recording, to verify sleep posture(41).

siti authors t .ed video recoi

Page 11 of 28

BMJ Open

Author	Sleep Environmen t	Standard three sleep postures	Number of sleep postures	Sleep posture outcome measurement	Anatomical Area	Symptom Type	Symptom(s) Characteristics	Symptom Outcome Measurement
Abanobi et al., 2015	Domestic	Y	3	SR	Lumbar	Pain	Past and present history	Questionnaire - face to face interview
Cary et al., 2016	Domestic	Y	4	SR + Video recording	Cervical, Lumbar, Both, Other	Pain, Stiffness	Frequency (month) Waking symptoms	Questionnaire written
Desouzart et al., 2016	Domestic	Y	3	SR	All spine	Pain	Intensity	Questionnaire written - pai VAS
Gordon, Grimmer and Trott, 2007	Domestic	Y	5	SR	Cervical	Pain, Stiffness, HA, Shoulder blade/arm pain	Frequency (week), duration Waking symptoms	Questionnaire - structured telephone interview

Notes. NS = Not stated, Y = Yes, SR = Self-report, HA = Headache, VAS = Visual analogue scale

Table 2. Mapping of Sleep Posture Measurement and Symptoms

5 Methodology: Measurement of Symptoms

The anatomical location, characteristics and method of measuring spinal symptoms are presented in Table 2. One study included non-spinal symptoms (e.g., hip and legs) classified as "other" (41). All studies examined pain (with two studies examining additional symptoms), but differed in regards to examining intensity, frequency, period of symptoms and diurnal/nocturnal presence. In one study, participants answered a "question on LBP history, such as present and past low back history" (42) (p. 333) and another asked participants "the frequency and location of morning symptoms of spine pain and stiffness that occurred during the past month"(41)(p. 2). In the other two studies, one described the frequency and duration of morning pain and stiffness over the prior week, but not intensity(11) while the other used a visual analogue scale (VAS) to measure pain intensity "at moment of response" but not frequency or duration(15)(p. 237).

18 Methodology: Interventions and Follow-ups

Only participants in the treatment group of the intervention study(15) received sleep posture education. Those with dorsal or lumbar symptoms were advised to sleep supine, those with cervical symptoms were advised to sleep in side lying and prone sleepers were advised to adopt either of the prior recommended sleep postures. Participants were also educated about the use of pillows and how to get up and lie down. The control group received no instruction and neither group received further contact until reassessment. The intervention phase lasted 4 weeks. A significant reduction in pain was reported in the treatment group but not the control group. However, sleep posture was not objectively confirmed at baseline or after the intervention period.

9 2

29 Results, Conclusions and Recommendations

Results from all studies reported trends or significant associations between spinal pain and certain sleep postures (Table 3). The authors from three studies reported increased symptoms, one associated with supine(42) one upright(11) and the other prone or $\frac{3}{4}$ side lying(41) sleep postures. The authors from two studies reported significantly decreased symptoms, one with side lying(11) and the other a combination of side lying and supine(15). In the intervention study the authors reported (M = mean, SD = standard deviation) a significant reduction in pain VAS (M

BMJ Open

1
2
3
4
5
6
7
, 8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
23
24
25
26
27
28
29
30
31
32
33
34
35
36
30 37
38
39
40
41
42
43
44
45
46
47
48
49
49 50
50 51
52
53
54
55
56
57
58
59

60

Table 3 Mapping of Results, Conclusions and Recommendations

37 = 3.00, SD = 1.63, p = .009) for the intervention group but not the control group (M = 38 3.90, SD = 3.21, p = .472)(15). Between groups comparisons were not reported, 39 possibly because it was a pilot study. We used an online calculator(43) to determine 40 effect size and confidence intervals between groups, using baseline to post 41 intervention data. Baseline to post intervention change was used because a 42 significant difference between groups existed at baseline. This identified an overlap 43 in effect size confidence intervals between groups, indicating a probable lack of 44 significance between groups, based on the proportion of overlap in effect size 45 confidence intervals(44).

46 Conclusions from authors of all four studies, were that sleep posture could increase 47 or decrease spinal pain, and that addressing sleep posture could reduce the development of spinal pain. Using self-report, side lying was reported as protective 48 49 of spinal symptoms(11, 15) and participants that slept in supported side lying were 50 found to have less symptoms than those sleeping in $\frac{3}{4}$ side lying or prone(41). In 51 regards to supine, one study found supine increased the likelihood of lumbar pain by 1.9 times(42), another study recommended supine in combination with side lying 52 53 sleep postures to reduce lumbar pain(15) and a third reported supine was not 54 significantly protective of cervical waking symptoms(11).

Author	Results	Conclusions	Recommendations
Abanobi et al., 2015	Prone and side lying groups combined. "Sleeping with back (face up) increases the risk of developing low back pain by 1.9 times." (p. 355) (95% CI 4.31- 8.56)^^ p = .31.	"The result showed the possibility of reducing the burden of LBP by appropriate training and improvement in habits such asbad sleeping postures." (p. 336)	Not provided
Cary et al., 2016	"The time spent in each of the sleeping postures expressed as a percentage of the time spent asleep, did not differ significantly according to the level of morning symptoms" (p. 5) Independent Samples Kruskal-Wallis Test p = .17.	"participants that spent greater periods of time in SSL, had less mornings of symptoms per month than those that slept in ³ / ₄ SL or prone." (p. 5)	Not provided
Desouzart et al., 2016	No between group comparison reported, unlikely to be significant. See text for more details.	"It may be concluded that the indication of the ideal way to lie down, which corresponds to a recommended sleeping posture with the ideal position to place the pillows, as well as the ideal way to get up." (p. 239)	Ideal sleep posture, pillow us and way to get up, as per experimental group, "is an added value for the prevention and decrease of the pain and/or discomfort in the spin- in active seniors." (p. 239)

Gordon,	"Subjects who reported sleeping mostly in an upright	"on the basis of this resea
Grimmer and	position were significantly more likely to report all waking	side lying can be confider
Trott, 2007a	symptoms but this finding may be related to the medical	recommended as the bes
Gordon,	status of those who adopt this sleep position." (p. 6)	sleep position in terms of
Grimmer and	Waking cervical pain OR 2.5 (95% CI 1.1-5.5), cervical	minimising waking sympto
Trott, 2007b	stiffness OR 2.6 (95% CI 1.1-5.8), headache OR 2.2	(p. 6)
	(95% CI 1.0-5.0), scapular/arm pain OR 2.5 (95% CI 1.1-	"need for health professio
	5.3).	to consider individual's sle
	"Supinewas not found in this study to be significantly	position and waking symp
	protective of waking symptoms, when compared to other	history, as part of clinical
	sleep positions." (p. 6) Waking cervical pain OR 1.4 (95%	reasoning for treatment, a
	CI 0.8-2.5) and cervical stiffness OR 0.9 (95% CI 0.5-1.6).	when developing a
	"Pronewas not significantly associated with waking	management plan for pati
	symptom" (p. 6) Cervical pain OR 1.5 (95% CI 0.7-3.2)	with troublesome waking
	and cervical stiffness OR 1.1 (95% CI 0.5-2.6).	symptoms." (p. 6)
	"Side sleep position was significantly protective of waking	
	cervical and scapular/arm pain" (p. 6) Waking cervical	
	pain OR 0.6 (95% CI 0.4-0.9) and scapular/arm pain OR	
	0.7 (95% CI 0.5-0.9).	

Notes. LBP = Low back pain, SSL = Supported side lying, ³/₄ SL = ³/₄ side lying, VAS = Visual analogue scale, OR = Odds ratio, CI = Confidence interval

^^ The CI was recalculated as it was suspected wrong due a typographical error. The recalculated value was 0.431

 Two studies recommended clinicians consider sleep posture to reduce cervical(11)and lumbar symptoms(15).

Quality of Evidence and Author Reported Limitations

The quality of evidence is summarised in Table 4. The Downs and Black checklist contains 27 questions distributed over five domains; reporting (aims, sampling and methods); external validity (generalisability); internal validity (study design, selection bias, performance and reporting bias); confounding; and power (37). Using the Downs and Black checklist as the appraisal tool, evidence levels have previously been categorised as strong (> 75%), moderate (50 - 74%), limited (25 - 49%) and poor quality (< 24%)(45). Questions 4, 8, 9, 13, 14, 15, 19, 23, 24, and 26 (see Table 4 for details) were not applicable to study designs that did not include an intervention group and were therefore excluded from the three exploratory studies(11, 41, 42). Question 27 was applicable for all but the cross sectional study(41). In the reporting subsection, questions one to 10, studies were well documented with one different applicable question not completed by each study, enabling readers to draw unbiased

assessments of each study's findings. Questions 11 to 13 (external validity), were poorly reported, with all studies failing to quantify the proportion of participants that were asked, relative to the proportion of participants that were accepted into studies. All studies reported using either random(11, 15, 42) or consecutive sampling(41). Internal validity, questions 14 to 20, examined measurement bias and apart from question 15 were well documented. In all studies, no attempt was made to blind researchers measuring the outcome variables. However, in one exploratory study the interview method precluded the need for blinding of interviewers(11). All the remaining questions were well documented, except for question 25 which examined confounding factors. This was poorly documented except for one study(40), in which a multivariate analysis was reported in a subsequent study, using the same data. The body of evidence in this scoping review is rated as moderate to strong quality.

 BMJ Open

Section	Qu	estions	Abanobi et al., 2015	Cary et al., 2016	Desouzart et al., 2016	Gordon, Grimmer and Trott, 2007
Reporting	1	Is the hypothesis/aim/objective of the study clearly described?	Y	Y	Y	Y
	2	Are the main outcomes to be measured clearly described in the Introduction or Methods section?	N	Y	Y	Y
	3	Are the characteristics of the patients included in the study clearly described?	Y	N	Y	x
	4	Are the interventions of interest clearly described?	х	Х	Y	x
	5	Are the distributions of principal confounders in each group of subjects to be compared clearly described?	*Ү	х	*Ү	*Y
	6	Are the main findings of the study clearly described?	Y	Y	Y	Y
	7	Does the study provide estimates of the random variability in the data for the main outcomes?	Y	Y	Y	Y
	8	Have all important adverse events that may be a consequence of the intervention been reported?	x	x	N	x
	9	Have the characteristics of patients lost to follow-up been described?	x	Х	Y	x
	1 0	Have actual probability values been reported (e.g., 0.035 rather than <0.05) for the main outcomes except where the probability value is less than 0.001?	Y	Y	Y	N
External Validity	1 1	Were the subjects asked to participate in the study representative of the entire population from which they were recruited?	Y	Y	N	Y
	1	Were those subjects who were prepared to participate representative of the entire population from which they were recruited?	U	N	N	N

BMJ Open

	1 3	Were the staff, places, and facilities where the patients were treated, representative of the treatment the majority of patients receive?	x	x	Y	X
Internal Validity: Bias	1 4	Was an attempt made to blind study subjects to the intervention they have received?	x	x	U	x
	1 5	Was an attempt made to blind those measuring the main outcomes of the intervention?	x	x	N	x
	1 6	If any of the results of the study were based on "data dredging", was this made clear?	Y	Y	Y	Y
	1 7	In trials and cohort studies, do the analyses adjust for different lengths of follow-up of patients, or in case-control studies, is the time period between the intervention and outcome the same for cases and controls?	Y	x	Y	X
	1 8	Were the statistical tests used to assess the main outcomes appropriate?	Y	Y	Y	Y
	1 9	Was compliance with the intervention/s reliable?	х	X	U	X
	2 0	Were the main outcome measures used accurate (valid and reliable)?	Y	Y	Y	Y
Internal Validity: Confounding	2 1	Were the patients in different intervention groups (trials and cohort studies) or were the cases and controls (case-control studies) recruited from the same population?	Y	x	Y	Y
	2 2	Were study subjects in different intervention groups (trials and cohort studies) or were the cases and controls (case-control studies) recruited over the same period of time?	Y	X	Y	X
	2 3	Were study subjects randomised to intervention groups?	x	x	Y	x
	2	Was the randomised intervention assignment concealed from both patients and health care staff until recruitment was complete and irrevocable?	x	x	U	x

For peer review only - http://bmjopen.bmj.com/site/about/guidelines.xhtml

		2 5	Was there adequate adjustment for confounding in the analyses from which the main findings were drawn?	N	N	N	Y
		2 6	Were losses of patients to follow-up taken into account?	x	Х	Y	x
	Power	2 7	Did the study have sufficient power to detect a clinically important effect where the probability value for a difference being due to chance is less than 5%?	N	X	N	N
	Score	-		14/17	9/12	19/28	12/14
	Percentage			82	75	68	86
	<i>Notes</i> . N = No = 0	, Y = Y	Yes = 1, *Y = 2 points, U = Unable to determine = 0, X = Not applicable (see Quality of Eviden	ce section)			
84			Yes = 1, *Y = 2 points, U = Unable to determine = 0, X = Not applicable (see Quality of Evident				
85							
86							
87							
88							
			For peer review only - http://bmjopen.bmj.com/site/about/guideline	es.xhtml			

Authors identified reliance on self-report to examine sleep posture(15) and symptoms(40) as a limitation. Authors identified small sample sizes, as limiting their ability to draw firm conclusions from the obtained results(11, 15). Authors identified restricted time as a limitation, for the period available for data collection(42), and for participants to learn a new sleeping habit(15). Limitations as reported by authors are described in <u>Supplementary File Author Reported Limitations</u>.

Discussion

To our knowledge, this scoping review is the first to establish the body of evidence regarding the research question; relationships between sleeping posture and spinal symptoms. Generally, there was limited available research. In regards to Objective 1; research designs and populations studied for the research question, a variety of study designs, participant populations and sample sizes were used. One study was a controlled pilot trial. With regards to Objective 2; methods used to address the research question, sleep was assessed in a domestic environment in all studies, with self-report used to measure sleep posture in all studies. Pain was the most common outcome measure of symptoms. In respect to Objective 3; common conclusions regarding the research question, most authors recommended side lying as the sleep posture least likely to provoke spinal symptoms, be they cervical or lumbar. Studies included in this scoping review were of moderate quality as assessed using the Downs and Black critical appraisal tool.

The study designs identified in this scoping review were appropriate to use for the research question. The variety of study designs prevented data pooling and a scoping review remained the most appropriate approach to synthesise the research. The average age and gender ratios used in studies were representative of both cervical and lumbar pain populations, however, the results of the included studies need to be interpreted with caution. There was a strong gender bias in two studies(15, 42), and a restricted age of included participants in one study(15). In general, small sample sizes were used. The type of study designs and patient populations identified in this scoping review have provided preliminary information regarding relationships between sleep posture and spinal symptoms, but there were not enough studies to adequately answer our research question.

BMJ Open

The most common adult sleep postures are side lying, supine and prone (26, 46, 47), which were the postures examined by the studies in this review. Side lying is the sleep posture that greater than 60% of European adults adopt for the majority of the night(26, 46, 47). For this reason, one study divided side lying into two sleep postures, based upon symmetry and plausible spinal load. These authors identified a trend that participants spending more time in symmetrical side lying reported less morning symptoms than those in asymmetrical side lying(41). Although all studies in this review utilised self-report to report sleep posture, some authors identified this as a limitation (11, 15, 41) and inaccuracy associated with sleep posture self-report can be as high as 33% (48, 49). It therefore seems prudent to not rely purely on self-report and clinicians would have higher confidence when advising people with pain about sleep posture, if research included both self-report and a valid and reliable measure of sleep posture, such as included in one study(41).

The anatomical features of the cervical and lumbar spine are different and it is plausible that sleeping postures could affect each area differently. For example, studies in this review indicated sleeping in supine was associated with lumbar symptoms(42), but not associated with cervical symptoms(11). Pain was measured in all studies, which is appropriate given cervical and lumbar pain are leading contributors across all age groups and countries to musculoskeletal disability(3). However, characteristics like intensity, frequency or the onset time of pain were not consistently measured and are important to better understand the overall impact pain is having on daily function(50). With regards to the relationship between sleep posture and time of onset of spinal symptoms, only half of the studies examined waking symptoms(11, 41). Waking spinal symptoms are rarely present every morning, which may be due to an individual's variation in sleep posture and spinal symptoms, it would be important that spinal symptoms are recorded on first waking and over several days.

Spinal pain is a major and growing global health problem with increasing rates of disability(3). For the past 20 years there has been a strong biomedical focus on patho-anatomy as the cause of spinal pain. However, in the case of lumbar pain, only 8-15% of cases has a specific tissue identified as the cause(51). Concurrently, there has been an escalation in imaging, opioid prescription, injections and surgery, with questionable benefit(52-54) and higher risks(8, 55). Changing physical risk

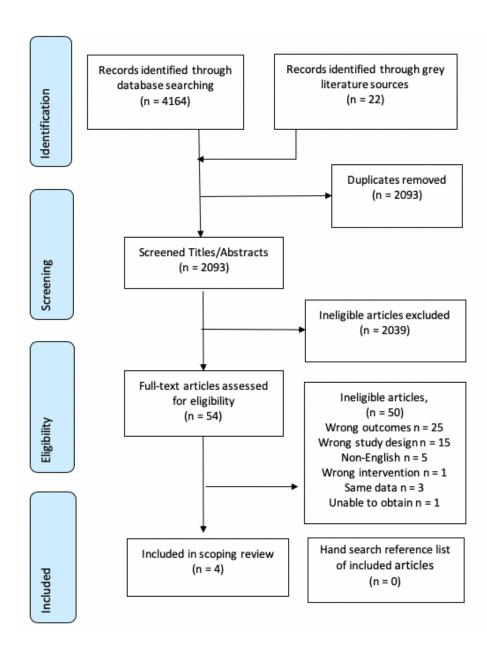
factors like type of movement pattern(56), level of strength and conditioning(57, 58) and sustained or repeated postures(59, 60), are relatively risk free, cost effective and show great potential. Sleep posture is an example of a sustained physical risk factor that is modifiable(61, 62). Clinical recommendations from this review include considering sleep posture when developing management plans for people with waking spinal symptoms(11) and education to change symptomatic sleep postures (42). With regards to recommending a sleep posture to minimise spinal symptoms, this review finds that the side lying posture was the most consistent in protecting the cervical spine(11), and that side lying and supine were the sleep postures recommended for those with lumbar spinal pain(15).

It is recommended that future research uses group sizes large enough to achieve statistical goals and that study sample demographics are representative of those in the general population with cervical and lumbar pain. As side lying appears to be associated with less cervical and possibly spinal symptoms generally, it would be worthwhile further exploring whether subtypes of side lying postures are more appropriate than others. Further research should use a validated measure of sleep posture. To better understand the effect of sleep posture on spinal symptoms, symptom location, a variety of outcome measures with associated characteristics should be included and an emphasis is placed on symptom timing (e.g., first thing in the morning). Sleep posture is potentially modifiable following education(15). Education is a non-invasive and low-cost intervention and should be further explored with larger scale studies.

Author Contributors

DC, LM and KB designed the study. DC and LM collected data and conducted data analysis. DC wrote the manuscript. DC, and LM undertook interpretation of findings and were involved in drafting the manuscript and revising it critically. All authors gave final approval to this manuscript.

References


5	
6	1 Côté P, Cassidy J, Carroll L, et al. The annual incidence and course of neck pain in the general
7	population: A population-based cohort study. Pain 2004;112:267-73. doi:10.1016/j.pain.2004.09.004
	2 Hoy D, Bain C, Williams G, et al. A systematic review of the global prevalence of low back pain.
8	
9	Arthritis & Rheumatology 2012;64:2028-37. doi:10.1002/art.34347
10	3 Hurwitz E, Randhawa K, Yu H, et al. The Global Spine Care Initiative: A summary of the global
11	burden of low back and neck pain studies. <i>European Spine Journal</i> 2018:1-6.
12	doi:org/10.1007/s00586-017-5432-9
13	4 Ekman M, Johnell O, Lidgren L. The economic cost of low back pain in sweden in 2001. Acta
14	
15	Orthopaedica 2005;76:275-84. doi:10.1080/00016470510030698
16	5 Wasiak R, Kim J, Pransky G. Work disability and costs caused by recurrence of low back pain:
17	Longer and more costly than in first episodes. <i>Spine</i> 2006;31:219-25.
18	doi:10.1097/01.brs.0000194774.85971.df
19	6 Croft P, Lewis M, Papageorgiou A, et al. Risk factors for neck pain: A longitudinal study in the
20	general population. <i>Pain</i> 2001;93:317-25. doi:10.1016/S0304-3959(01)00334-7
21	
22	7 Hestbaek L, Leboeuf-Yde C, Kyvik K, et al. The course of low back pain from adolescence to
23	adulthood: Eight-year follow-up of 9600 twins. <i>Spine</i> 2006;31:468-72.
24	doi:10.1097/01.brs.0000199958.04073.d9
	8 Manchikanti L, Singh V, Datta S, et al. Comprehensive review of epidemiology, scope, and impact
25	of spinal pain. Pain Physician 2009;12:35-70.
26	9 Croft P, Dunn K, Raspe H. Course and prognosis of back pain in primary care: The epidemiological
27	
28	perspective. <i>Pain</i> 2006;122:1-3. doi:10.1016/j.pain.2006.01.023
29	10 Desouzart G, Vilar E, Melo F, et al., editors. Human bed interaction: A methodology and tool to
30	measure postural behavior during sleep of the air force military. 3rd International Conference on
31	Design, User Experience, and Usability; 2014 June; Heraklion, Greece.
32	11 Gordon S, Grimmer K, Trott P. Sleep position, age, gender, sleep quality and waking cervico-
33	thoracic symptoms. Internet Journal of Allied Health Sciences and Practice 2007;5.
34	
35	12 Corrigan B, March L. Cervical spine dysfunction: A pain in the neck. Patient Management
36	1984;8:48-53.
37	13 Gordon S, Trott P, Grimmer K. Waking cervical pain and stiffness, headache, scapular or arm pain:
38	Gender and age effects. Australian Journal of Physiotherapy 2002;48. doi:10.1016/S0004-
39	9514(14)60277-4
40	14 McKenzie R. The cervical and thoracic spine: Mechanical diagnosis and therapy. Waikanae: Spinal
41	
42	Publications; 1990.
43	15 Desouzart G, Matos R, Melo F, et al. Effects of sleeping position on back pain in physically active
44	seniors: A controlled pilot study. <i>Work</i> 2016;53:235-40. doi:10.3233/WOR-152243
45	16 Gracovetsky S. The resting spine: A conceptual approach to the avoidance of spinal reinjury
46	during rest. <i>Physical Therapy</i> 1987;67:549-53.
47	17 Dolan P, Earley M, Adams M. Bending and compressive stresses acting on the lumbar spine
48	
	during lifting activities. Journal of Biomechanics 1994;27:1237-48. doi:10.1016/0021-9290(94)90277-
49	1
50	18 Kingma I, Baten C, Dolan P, et al. Lumbar loading during lifting: A comparative study of three
51	measurement techniques. Journal of Electromyography and Kinesiology 2001;11:337-45.
52	doi:10.1016/0021-9290(94)90277-1
53	19 Oxland T. Fundamental biomechanics of the spine: What we have learned in the past 25 years
54	
55	and future directions. <i>Journal of Biomechanics</i> 2016;49:817-32. doi:10.1016/j.jbiomech.2015.10.035
56	20 Adams M, Hutton W. The relevance of torsion to the mechanical derangement of the lumbar
57	spine. <i>Spine</i> 1981;6:241-8.
58	21 Solomonow M. Neuromuscular manifestations of viscoelastic tissue degradation following high
59	and low risk repetitive lumbar flexion. <i>Journal of Electromyography and Kinesiology</i> 2012;22:155-75.
60	doi:10.1016/j.jelekin.2011.11.008
	UUI.10.1010/J.JCICNII.2011.11.000

7

9

3 22 Hill S, Goldsmith J. Biomechanics and prevention of body shape distortion. *Tizard Learning* 4 Disability Review 2010;15:15-32. doi:10.5042/tldr.2010.0166 5 23 Waugh A, Hill S. Body shape distortion: Promoting postural care at night. Learning Disability 6 Practice 2009;12:25-9. 24 Murayama R, Kubota T, Kogure T, et al. The effects of instruction regarding sleep posture on the 8 postural changes and sleep quality among middle-aged and elderly men: A preliminary study. 10 Bioscience Trends 2011;5:111-9. doi:10.5582/bst.2011.v5.3.111 11 25 Buchbinder R, Tulder M, Öberg B, et al. Low back pain: A call for action. The Lancet 12 2018;391:2384-8. doi:10.1016/S0140-6736(18)30488-4 13 26 De Koninck J, Lorrain D, Gagnon P. Sleep positions and position shifts in five age groups: An 14 ontogenetic picture. Sleep 1992;15:143-9. doi:10.1093/sleep/15.2.143 15 27 Goldman S. Nocturnal neuropathic pain in diabetic patients may be caused by spinal stenosis. 16 Diabet Medicine 2005;22:1763-5. doi:10.1111/j.1464-5491.2005.01746.x 17 28 Desouzart G, Filgueiras E, Melo F, et al., editors. Human body-sleep system interaction in 18 19 residence for university students: Evaluation of interaction patterns using a system to capture video 20 and software with observation of postural behaviors during sleep. 5th International Conference on 21 Applied Human Factors and Ergonomics; 2014 July; Kraków, Poland. 22 29 Arksey H, O'Malley L. Scoping studies: Towards a methodological framework. International 23 Journal of Social Research Methodology 2005;8:19-32. doi:10.1080/1364557032000119616 24 30 Khalil H, Peters M, Godfrey C, et al. An evidence-based approach to scoping reviews. Worldviews 25 on Evidence-Based Nursing 2016;13:118-23. doi:10.1111/wvn.12144 26 31 Levac D, Colquhoun H, O'Brien K. Scoping studies: Advancing the methodology. Implementation 27 Science 2010;5:9. doi:10.1186/1748-5908-5-69 28 29 32 Peters M, Godfrey C, Khalil H, et al. Guidance for conducting systematic scoping reviews. 30 International Journal of Evidence Based Healthcare 2015;13:141-6. 31 doi:10.1097/XEB.000000000000000000 32 33 Tricco A, Lillie E, Zarin W, et al. PRISMA extension for scoping reviews (PRISMA-ScR): Checklist and 33 explanation. Annals of Internal Medicine 2018. doi:10.7326/M18-0850 34 34 Covidence. Melbourne Australia: Veritas Health Innovation; 2018. 35 35 Michaleff Z, Costa L, Moseley A, et al. CENTRAL, PEDro, PubMed, and EMBASE are the most 36 comprehensive databases indexing randomized controlled trials of physical therapy interventions. 37 38 *Physical Therapy* 2011;91:190-7. doi:10.2522/ptj.20100116 39 36 EndNote. X8 ed. Philadelphia USA: Clarivate Analytics; 2018. 40 37 Downs S, Black N. The feasibility of creating a checklist for the assessment of the methodological 41 guality both of randomised and non-randomised studies of health care interventions. Journal of 42 Epidemiology & Community Health 1998;52:377-84. doi:10.1136/jech.52.6.377 43 38 Olivo S, Macedo L, Gadotti I, et al. Scales to assess the quality of randomized controlled trials: A 44 systematic review. Physical Therapy 2008;88:156-75. doi:10.2522/ptj.20070147 45 39 Korakakis V, Whiteley R, Tzavara A, et al. The effectiveness of extracorporeal shockwave therapy 46 in common lower limb conditions: A systematic review including quantification of patient-rated pain 47 48 reduction. British Journal of Sports Medicine 2018;52:387-407. doi:10.1136/bjsports-2016-097347 49 40 Gordon S, Grimmer K, Trott P. Understanding sleep quality and waking cervico-thoracic 50 symptoms. Internet Journal of Allied Health Sciences and Practice 2007;5:1-12. 51 41 Cary D, Collinson R, Sterling M, et al. Examining the relationship between sleep posture and 52 morning spinal symptoms in the habitual environment using infrared cameras. Journal of Sleep 53 Disorders: Treatment and Care 2016;5. doi:10.4172/2325-9639.1000173 54 42 Abanobi O, Ayeni G, Ezeugwu C, et al. Risk-disposing habits of lowback pain amongst welders and 55 panel beaters in Owerri, south-east Nigeria. Indian Journal of Public Health 2015;6:332-7. 56 57 doi:10.5958/0976-5506.2015.00164.3 58 43 Monitoring CfEa. Effect Size Calculator 2018 [Available from: https://www.cem.org/effect-size-59 calculator. 60 44 Cumming G, Finch S. Inference by eye: Confidence intervals and how to read pictures of data. American Psychologist 2005;60:170-80.

1	
2	
3	45 Hignett S. Intervention strategies to reduce musculoskeletal injuries associated with handling
4	patients: A systematic review. <i>Occupational Environmental Medicine</i> 2003;60:e6-e.
5	doi:0.1136/oem.60.9.e6
6	46 Haex B. Back and bed: Ergonomic aspects of sleeping: Boca Raton: CRC Press; 2005.
7	
8	47 Gordon S, Grimmer K, Trott P. Self reported versus recorded sleep position: An observational
9	study. The Internet Journal of Allied Health Science and Practice 2004;2:1-10.
10	48 Yu C. Why is self-report of sleep position sometimes unreliable? <i>Sleep and Hypnosis</i> 2018;20:105-
11	13. doi:10.5350/Sleep.Hypn.2017.19.0140
12	49 Kaplowitz K, Blizzard S, Blizzard D, et al. Time Spent in Lateral Sleep Position and Asymmetry in
13	Glaucoma. Investigative Ophthalmology & Visual Science 2015;56:3869-74. doi:10.1167/iovs.14-
14	16079
15	50 Gordon S, Grimmer-Somers K. Your pillow may not guarantee a good night's sleep or symptom-
16 17	free waking. Physiotherapy Canada 2010;63:183-90. doi:10.3138/ptc.2010-13
18	51 Waddell G. The back pain revolution. 2 ed. Edinburgh: Churchill Livingstone; 2004.
19	52 Atlas S, Keller R, Wu Y, et al. Long-term outcomes of surgical and nonsurgical management of
20	sciatica secondary to a lumbar disc herniation: 10 year results from the Maine Lumbar Spine Study.
21	
22	<i>Spine</i> 2005;30:927-35. doi:10.1097/01.brs.0000158954.68522.2a
23	53 Friedly J, Chan L, Deyo R. Increases in lumbosacral injections in the Medicare population: 1994 to
24	2001. Spine 2007;32:1754-60. doi:10.1097/BRS.0b013e3180b9f96e
25	54 Runciman W, Hunt T, Hannaford N, et al. CareTrack: Assessing the appropriateness of health care
26	delivery in Australia. Medical Journal of Australia 2012;197:100-5. doi:10.5694/mja12.10510
27	55 Luo X, Pietrobon R, Hey L. Patterns and trends in opioid use among individuals with back pain in
28	the United States. Spine 2004;29:884-90.
29	56 O'Sullivan P. Diagnosis and classification of chronic low back pain disorders: Maladaptive
30	movement and motor control impairments as underlying mechanism. Manual Therapy 2005;10:242-
31	55. doi:10.1016/j.math.2005.07.001
32	57 Gabel C, Mokhtarinia H, Hoffman J, et al. Does the performance of five back-associated exercises
33	relate to the presence of low back pain? A cross-sectional observational investigation in regional
34	Australian council workers. BMJ open 2018;8:e020946. doi:10.1136/bmjopen-2017-020946
35 36	58 Micheo W, Baerga L, Miranda G. Basic principles regarding strength, flexibility, and stability
37	exercises. <i>PM&R</i> 2012;4:805-11. doi:10.1016/j.pmrj.2012.09.583
38	59 Solomonow M, Baratta R, Banks A, et al. Flexion relaxation response to static lumbar flexion in
39	males and females. <i>Clinical Biomechanics</i> 2003;18:273-9. doi:10.1016/S0268-0033(03)00024-X
40	60 Solomonow M, Zhou B, Lu Y, et al. Acute repetitive lumbar syndrome: A multi-component insight
41	
42	into the disorder. <i>Journal of Bodywork and Movement Therapies</i> 2012;16:134-47.
43	doi:10.1016/j.jbmt.2011.08.005
44	61 Cartwright R, Ristanovic R, Diaz F, et al. A comparative study of treatments for positional sleep
45	apnea. Sleep 1991;14:546-52.
46	62 van Maanen J, de Vries N. Long-term effectiveness and compliance of positional therapy with the
47	sleep position trainer in the treatment of positional obstructive sleep apnea syndrome. Sleep
48	2014;37:1209-15. doi:10.5665/sleep.3840
49	
50	
51	
52	
53	
54	
55	
56 57	
57 59	
58 59	
59	

PRISMA Flow diagram

Supplementary File: Search Strategy for Scopus Database

Search Strategy for the Scopus Database (adapted for other databases)

Date	7/4/2018					
Strategy	#1 AND #2 AND #3	#1 AND #2 AND #3 NOT #4				
Rule	Domain	Search Terms				
#1	Area of symptoms	lumbar or "low back pain" or cervical or "neck pain" or "musculoskeletal pain" or "spinal pain"				
#2	Posture	postur* or position* or prone or supine or lateral or side lying				
#3	Sleep	sleep* or slumber* or nighttime or nocturnal or bed				
#4	Exclusions	apnoea or apnea or CPAP				

or per terier ont

For peer review only - http://bmjopen.bmj.com/site/about/guidelines.xhtml

Supplementary File: Author Reported Limitations

Author Reported Limitations

,	
Author	Comments
Abanobi et al., 2015	"Inability to compare the effect of duration of habits and age at onset of habit" (p. 336) "Limited time set aside for the surveillance exercise" (p. 336)
Cary et al., 2016	"Mismatch in time frame of measurement" (p. 6). Recording of sleep posture occurred over 2 nights but participants questioned about symptoms over prior 1 month.
Desouzart et al., 2016	Due to the population studied it was "not possible to use a homogenous sample and larger number of participants." (p. 239)
	"The four weeks may not have been sufficient to create habits in participants, however, and because of the time limitations of this study, it was not possible to have a longer time." (p. 239)
	"results are based on the statements of the participants" (p. 239)
Gordon, Grimmer and Trott, 2007	"As small subject numbers constrained confidence in the findings, further research is required into the contributors to waking symptoms. for upright sleepers" (p. 6)

BMJ Open

BMJ Open

Identifying relationships between sleep posture and nonspecific spinal symptoms in adults: A scoping review

Journal:	BMJ Open
Manuscript ID	bmjopen-2018-027633.R1
Article Type:	Research
Date Submitted by the Author:	01-Apr-2019
Complete List of Authors:	Cary, Doug; Curtin University, School of Physiotherapy and Exercise Science, Faculty of Health; AAP Education, Clinical Education Briffa, Kathy; Curtin University, School of Physiotherapy and Exercise Science, Faculty of Health McKenna, Leanda; Curtin University, School of Physiotherapy and Exercise Science, Faculty of Health
Primary Subject Heading :	Rehabilitation medicine
Secondary Subject Heading:	General practice / Family practice, Evidence based practice, Communication
Keywords:	sleep position, spinal symptoms, pain, stiffness, education, sleep posture

1		
2 3		
4	1	
5 6 7	2	
7 8 9	3	Identifying relationships between sleep posture and non-specific spinal symptoms in
9 10 11	4	adults: A scoping review
12 13	5	
14 15	6	
16 17	7	Corresponding author:
18 19	8	Mr Doug Cary
20 21 22	9	5 William Street, Esperance Western Australia 6450 Australia
23 24	10	dougcary@westnet.com.au
25 26	11	+61 890715055
27 28	12	
29 30 31	13	Co-authors:
32 33	14	A/Prof Kathy Briffa
34 35	15	School of Physiotherapy and Exercise Science, Faculty of Health, Curtin University,
36 37	16	Kent St, Bentley WA 6102, Australia
38 39	17	Dr Leanda McKenna
40 41 42	18	School of Physiotherapy and Exercise Science, Faculty of Health, Curtin University,
42 43 44	19	Kent St, Bentley WA 6102, Australia
45 46	20	
47 48	21	
49 50	22	
51 52	23	General subject: Research
53 54 55	24	Subject headings: Rehabilitative Medicine
55 56 57	25	Keywords: sleep posture, sleep position, spinal symptoms, pain, stiffness, education
58 59 60	26	

|--|

27 Abstract

28 **Objectives:** The objectives of this scoping review were to identify (a) study designs

29 and participant populations (b) types of specific methodology and (c) common

30 results, conclusions and recommendations from the body of evidence regarding our

31 research question; is there a relationship between sleep posture and spinal

32 symptoms.

33 **Design**: Scoping review.

34 Data sources: PEDro, Embase, Cumulative Index to Nursing and Allied Health
 35 Literature, Cochrane Library, Medline, ProQuest, PsycINFO, SportDISCUS and grey
 36 literature from inception to April 10, 2018.

37 **Data selection:** Using a modified Arksey and O'Malley framework, all English

38 language studies in humans that met eligibility criteria using key search terms
 39 associated with sleep posture and spinal symptoms were included.

40 **Data extraction:** Data were independently extracted by 2 reviewers and mapped to 41 describe the current state of the literature. Articles meeting the search criteria were 42 critically appraised using the Downs and Black checklist.

Results: From 4186 articles, four articles were identified, of which three were
exploratory and one interventional. All studies examined three or more sleep
postures, all measured sleep posture using self-report and one study also used
infrared cameras. Two studies examined symptoms arising from the lumbar spine,
one the cervical spine and one the whole spine. Waking pain and stiffness were the
most common symptoms explored and side lying was generally protective against
spinal symptoms.

50 **Conclusions**: This scoping review highlights the importance of evaluating sleep 51 posture with respect to waking symptoms and has provided preliminary information 52 regarding relationships between sleep posture and spinal symptoms. However, there 53 were not enough high-quality studies to adequately answer our research question. It 54 is recommended future research consider group sizes and population characteristics to achieve research goals, that a validated measure be used to assess sleep 55 56 posture, that characteristics and location of spinal symptoms are clearly defined and 57 that the side lying posture is subclassified.

1 2		
3 4	58	Strengths and Limitations of this Study
5 6 7	59 60	 This is the first scoping review collating and synthesising the available literature on sleeping posture and non-specific spinal symptoms
8 9	61	A critical appraisal of evidence assessment was undertaken for each included study
10 11 12 13	62 63	 The lack of studies and small group sizes prevented firm recommendations being provided for all sleep posture
14 15	64	Funding
16 17	65	Author (DC) acknowledges support from Australian Government Research Training
18 19 20	66	Program Scholarship in supporting this research.
20 21 22	67	Competing Interest
23 24	68	None declared.
25 26 27	69	Data Sharing Statement
28 29	70	No additional data are available.
30 31 32	71	Introduction
33 34	72	Cervical and lumbar symptoms like pain, are the leading cause of musculoskeletal
35 36	73	disability in most countries and most age groups (1). Of those who report cervical
37	74	and lumbar pain, the proportion is higher in females for both cervical (59%)(2) and
38 39	75	lumbar (52%) pain(3). The prevalence of both cervical and lumbar pain has
40 41	76	increased markedly over the past 25 years (cervical 21.1% and lumbar 17.3%), and
42	77	these rates are expected to continue rising(1). Cervical and lumbar pain contribute to
43 44	78	large economic and societal costs and are major sources of work disability, being
45 46	79	either the first or second ranked cause of years lived with disability between the ages
47 48	80	of 20 and 79 years(1, 4, 5). Research indicates that remissions in symptoms are
49	81	temporary rather than permanent(6, 7) and cervical and lumbar pain becomes
50 51	82	chronic in 25 to 60% of cases(8). Other types of symptoms like stiffness and
52 53	83	bothersomeness, still important to patients are less well investigated (9, 10).
54 55	84	Identification of modifiable risk factors contributing to the onset and chronicity of
56	85	cervical and lumbar pain and other symptoms, is critical(11) to improve the
57 58 59 60	86	management of cervical and lumbar pain.

BMJ Open

Page 4 of 30

A potentially modifiable risk factor that aggravates spinal symptoms, is sleep posture. Sleep is considered essential for human mental and physical recovery. Yet, every night some people go to bed, only to wake with spinal symptoms not present the prior evening, while others with existing spinal symptoms, wake with exacerbations of their symptoms(12, 13). For example, in young air force personnel, 33% experienced their most intense spinal pain during the evening and on first waking(12). It has been postulated that poor sleep posture may be a factor in the development of both waking cervical (14-16) and lumbar symptoms (17, 18). Habitual sleep postures may influence the amount of load applied to spinal tissues when sleeping. Compressive load due to gravity and muscle contraction(19, 20) is likely to be far more during the day than during the night. In a 25-year review on the fundamentals of spinal biomechanics, it was noted that spinal movements decreased under a superimposed compression load. The author postulated this was due to increased anular stiffness and increased zygopophyseal joint (ZPJ) contact(21). Conversely, when lying down, the sources of spinal compression are minimal, creating a low compression environment, potentially allowing an increased range of spinal movement. The combination of increased range and asymmetrical loading posture may result in altered and/or additional loading of viscoelastic collagenous restraints like the ZPJ capsule and ligaments(22). Viscoelastic tissues are vulnerable to sustained or repeated low elongation loads, and undergo predictable mechanical and viscoelastic changes. Ligaments in feline spines exposed to 60 minutes of repeated low load, demonstrate a significant increase in the expression of pro-inflammatory chemicals, compared with control ligaments from the same spine, indicating acute inflammation and tissue degradation in ligaments subjected to the cyclic loading(23). Additionally, sustained non-symmetrical sleep postures can induce structural spinal changes in humans(24, 25). Sleep postures have been shown to be modifiable(17, 26) and identification of modifiable risk factors related to spinal pain, have been highlighted as a priority in managing disabling lumbar pain(27). Some sleep postures, such as prone, are clinically believed to increase load on

- ⁵⁷ 117 spinal tissues, reducing recovery and provoking waking spinal symptoms(18, 28, 29).
 ⁵⁸ 118 While some sleep research has examined the role sleep posture may have on spinal

BMJ Open

3 4	119	symptoms(13, 17, 30), there has been no synthesis of the literature in regards to
5 6 7 8 9 10 11 12 13 14	120	sleep posture and spinal symptoms.
	121	Methods
	122	Search Framework
	123	This scoping review was developed using the methodological framework proposed
15 16	124	by previous authors(31), further refined by other independent authors and
17 18	125	institutes(32-34) and reported in line with key PRISMA-ScR guidelines(35).
19 20 21 22 23	126	Research Question
	127	Following an individual review of the literature and a group meeting, an authors'
24 25	128	consensus was reached to determine the following research question; is there a
26 27 28 29 30 31 32 33	129	relationship between sleep posture and spinal symptoms?
	130	Aim and Objectives
	131	The aim of this scoping review was to gain a clear understanding of the current
	132	knowledge base in relation to the identified research question. To achieve this aim,
34 35	133	an iterative process involving electronic meetings and communication between
36 37	134	authors was used to determine the following research objectives:
 38 39 40 41 42 43 44 45 46 47 48 49 40 	135 136	 Identify what study designs and participant populations have been studied to answer the research question.
	137 138	 Identify the types of specific methodology used in the body of evidence to address the research question.
	139 140	 Identify common results, conclusions and recommendations from the body of evidence regarding the research question.
	141	Eligibility Criteria
50 51	142	Eligibility criteria were based upon the population, intervention, comparison and
52 53 54 55 56	143	outcome (PICO) framework. A draft list of eligibility criteria was initially determined
	144	following the independent screening of relevant articles by two reviewers. Criteria
	145	were then developed iteratively between two reviewers and a finalised list of criteria
57 58 59 60	146	were uploaded to Covidence(36), as a reference for data charting reviewers.

147 Inclusion Criteria

For inclusion in this scoping review, the prior research needed to study participants 18 years or older, with either pain, stiffness or bothersomeness in the cervical, thoracic or lumbar spine. Any observational or interventional study examining the relationship between sleep posture and spinal symptoms was considered. Articles that either compared sleep posture change (e.g., before and after an intervention) or had no comparator (e.g., epidemiological) were included. Articles needed to use a subjective or objective measure for symptoms and sleeping posture.

155 Exclusion Criteria

Articles were excluded if they involved animals, cadavers or included participants diagnosed with sleep apnoea, spinal stenosis, migraine, red flag pathologies (e.g., neoplasm, inflammatory conditions, fractures or infections); participants with pain of known non-spinal origin (e.g., kidney disease, post-operative pain, temporomandibular joint, shoulder pain); participants with neurological conditions (e.g., multiple sclerosis, cerebrovascular accident); or participants that were unable to move freely in bed (e.g., using continuous positive airway pressure therapy or in the last trimester of pregnancy). Articles were excluded if they did not isolate the intervention when a group of interventions were implemented (e.g., spinal injection and sleeping posture) or if they compared sleep systems (e.g., mattress, base and or pillow) or changes in sleep systems but did not report the change in sleep posture. Further, articles using actigraphy to measure movement or articles that only examined the quality or efficacy of sleep were excluded. Finally, editorials, opinion-based articles, review articles (systematic or narrative) and articles not written in English were excluded.

48 49 171 Patient and Public Involvement 50

- ⁵¹₅₂ 172 Patients and the public were not involved in this scoping review.
- ⁵⁴ 173 Search Terms and Strategy
- ⁵⁷ 174 The population, intervention, comparison and outcome (PICO) framework was used
- ⁵⁹ 175 to assist in the collation of all elements relevant to clinical research questions.
- ⁶⁰ 176 Population: Terms used for the search strategy were chosen to be representative of

Page 7 of 30

BMJ Open

the areas and symptoms, likely to be experienced by a population with non-specific spinal symptoms. Non-specific symptoms are those not related to fracture, infection, inflammatory disease, tumor or spinal stenosis. Intervention: Terms representative of interventions aimed at changing sleep posture in association with spinal symptoms were considered for inclusion, while other terms not associated with spinal symptoms e.g. apnoea were excluded. Comparison: Terms were considered that were indicative of any type of comparison. Outcome: Any terms to indicate the subjective measure of pain, stiffness or bothersomeness or objective measure used to evaluate sleep posture, were considered.

186 Identified key search terms were then used in the search strategy to identify all
187 relevant articles. An initial search was conducted in two of the four databases,
188 recommended(37) for physiotherapy related topics; PEDro, and Embase (via Ovid)
189 from inception to December 2017. The initial search was used to determine if the
190 search terms and strategy were appropriate, and informed the development of the
191 final search terms and strategy.

The final search strategy was conducted using the search terms and Boolean logic as described in Supplementary File Search Strategy for the Scopus Database and adapted for eight electronic databases (PEDro, Embase, Cumulative Index to Nursing and Allied Health Literature, Cochrane Library, Medline, ProQuest, PsycINFO, SportDISCUS) with the assistance of a health sciences information specialist. Grey literature (espace, Google Scholar (top 100 references scanned for relevance), and Web of Science) was searched for difficult to locate or unpublished material that had not already been included. The final step involved manual searching the reference sections of relevant articles and publications by key authors for additional articles, not identified in the original search.

$_{9}^{\circ}$ 202 Study Selection

All search results were imported into the reference management software package,
 Endnote X8(38) and duplicates removed. Remaining results were imported into
 Covidence(36) and additional duplicates removed. Using Covidence, two reviewers
 independently performed Level 1 (title and abstract) and Level 2 (full text) screening,
 based on the eligibility criteria. Differences of opinion in which articles progressed to

the next level, were first resolved with discussion between reviewers and ifnecessary, with input from a third reviewer.

210 Data Charting

The data charting form was developed and revised iteratively between reviewers to ensure data relevant to the three research objectives were collected. A definitions and instructions document was developed to ensure that data was collected consistently by the independent reviewers. The data charting form was then independently pilot tested in duplicate on a random sample of four potential articles. Following identification of articles for inclusion in this review, data were independently charted in duplicate using a data charting form created in Excel and based on the three research objectives. An attempt was made to contact authors of eligible articles where authors reported that data relevant to our scoping review had been collected but was not publicly available, and to clarify points relevant to our data charting.

222 Quality of Evidence

Non-assessment of methodological quality and the risk of bias is consistent with current guidelines on conducting a scoping review(32, 34). However, a focus of this scoping review was on methodology; therefore, a methodological assessment of quality was included. The Downs and Black checklist(39) was chosen, as it has documented criterion validity, face and content validity, intra-rater (r = 0.88) and inter-rater reliability (r = 0.75) and guidelines for use(40). A modified version of the Downs and Black checklist(41), where a dichotomous score for power (question 27) was used. As a result, the maximum score for randomised trials was 28 and for non-randomised trials it was 25. The Downs and Black checklist was independently completed for each article in duplicate. Differences in scoring were first resolved by consensus between reviewers and if required, by a third independent reviewer. Study limitations noted by authors were collected to compliment the Downs and Black checklist.

Author	Study Design	Population Type	Sample Size (Gender)	Age <i>M</i> (<i>SD</i>)
Abanobi et al., 2015	Epidemiologic al: Case controlled	Welders in Owerri, Nigeria	100 (male = 100)	35 (9)
Cary et al., 2016	Epidemiologic al: Cross sectional	Population of convenience in Esperance, Western Australia	15 (male = 7)	44 (17)
Desouzart et al., 2016	Controlled pilot	Elderly participants in physical activity program at Polytechnic Institute of Leiria, Portugal	20 (male = 0)	62 (4)
Gordon, Grimmer and Trott, 2007	Epidemiologic al: Cross sectional	Every third household in Port Lincoln in South Australia	812 (male = 261)	Female 61 (1 Male 59 (11)

Table 1. Mapping of Study Design and Population Characteristics

Notes. *M* = Mean, *SD* = Standard deviation

236 Results

237 Search Results

An overview of the article identification process is provided in the PRISMA flow diagram in Figure 1. Articles excluded due to wrong outcomes, were those that did not include a measure of sleep posture or only examined sleep posture and not symptoms, tested a sleeping system (e.g., mattress or pillow) in relation to spinal symptoms but not posture, or studied sleep posture in relation to sleep quality. Articles excluded due to wrong study design included treatment guidelines, opinion and editorial piece and summaries.

- 48 245 FIGURE 1 PRISMA FLOW DIAGRAM (SEPARATE FILE)
- ⁵⁰₅₁ 246 Study Design and Population Characteristics
 - 247 The designs of the four included studies were mixed (Table 1).

⁵⁶₅₇ 248 *Methodology: Sleep Posture Measurement*

- ⁵⁹ 249 All studies examined participants in their domestic environment (Table 2) and
 - 250 described as a minimum the three common sleep postures; supine, side lying and

prone. One study described four sleep postures, dividing side lying into two sleep postures and named them supportive side lying and $\frac{3}{4}$ side lying(42). Another described five postures, adding "upright" and "varies", to the common three sleep postures(13). One study used three different postures, but combined side lying and prone for analysis, due to small number of prone sleepers, of whom none reported lumbar pain(43). All studies used self-report questionnaires to assess sleep posture. Studies focused on different time points when questioning about sleep posture. Two specifically focused on night and waking posture; "in what sleep posture do you usually go to sleep", "in what sleep posture do you usually wake up" and "in what sleep posture do you spend most of the night"(13)(p. 7), and "which posture most closely resembles the posture you are lying in when you fall asleep?" and "which posture most closely resembles the posture you are lying in when you wake up?"(42). The other two studies were non-specific, "usual sleep posture"(43)(p. 335) and "informal questionnaire for ... sleeping position" (17)(p. 237). In addition to using self-report, the authors of one study used an objective method of assessment, twin camera infrared video recording, to verify sleep posture(42).

	Sleep Environmen t	Standard three sleep postures	Number of sleep postures	Sleep posture outcome measurement	Anatomical Area	Symptom Type	Symptom(s) Characteristics	Symptom Outcome Measurement
Abanobi et al., 2015	Domestic	Y	3	SR	Lumbar	Pain	Past and present history	Questionnaire - face to face interview
Cary et al., 2016	Domestic	Y	4	SR + Video recording	Cervical, Lumbar, Both, Other	Pain, Stiffness	Frequency (month) Waking symptoms	Questionnaire written
Desouzart et al., 2016	Domestic	Y	3	SR	All spine	Pain	Intensity	Questionnaire written - pair VAS
Gordon, Grimmer and Trott, 2007	Domestic	Y	5	SR	Cervical	Pain, Stiffness, HA, Shoulder blade/arm pain	Frequency (week), duration Waking symptoms	Questionnaire - structured telephone interview

271 Methodology: Measurement of Symptoms

The anatomical location, characteristics and method of measuring spinal symptoms are presented in Table 2. One study included non-spinal symptoms (e.g., hip and legs) classified as "other" (42). All studies examined pain (with two studies examining additional symptoms), but differed in regards to examining intensity, frequency, period of symptoms and diurnal/nocturnal presence. In one study, participants answered a "question on LBP history, such as present and past low back history" (43) (p. 333) and another asked participants "the frequency and location of morning symptoms of spine pain and stiffness that occurred during the past month" (42)(p. 2). In the other two studies, one described the frequency and duration of morning pain and stiffness over the prior week, but not intensity(13) while the other used a visual analogue scale (VAS) to measure pain intensity "at moment of response" but not frequency or duration(17)(p. 237).

⁸ 284 *Methodology: Interventions and Follow-ups*

Only participants in the treatment group of the intervention study(17) received sleep posture education. Those with dorsal or lumbar symptoms were advised to sleep supine, those with cervical symptoms were advised to sleep in side lying and prone sleepers were advised to adopt either of the prior recommended sleep postures. Participants were also educated about the use of pillows and how to get up and lie down. The control group received no instruction and neither group received further contact until reassessment. The intervention phase lasted 4 weeks. A significant reduction in pain was reported in the treatment group but not the control group. However, sleep posture was not objectively confirmed at baseline or after the intervention period.

49 295

Results, Conclusions and Recommendations

Results from all studies reported trends or significant associations between spinal pain and certain sleep postures (Table 3). The authors from three studies reported increased symptoms, one associated with supine(43) one upright(13) and the other in prone or ³/₄ side lying(42) sleep postures. The authors from two studies reported significantly decreased symptoms, one with side lying(13) and the other a combination of side lying and supine(17). In the intervention study the authors

Page 13 of 30

	Table 3 N	lapping of Results, Co	onclusions and Recomme	endations					
	Author	Results	Conclusions	Recommendations					
	Abanobi et al., 2015	Odds ratios for LBP were in relation to a combined group of prone and side lying sleeping. "Sleeping with back (face up) increases the risk of developing low back pain by 1.9 times." (p. 355) (95% CI 0.43-8.56)^^	"The result showed the possibility of reducing the burden of LBP by appropriate training and improvement in habits such asbad sleeping postures." (p. 336)	Not provided					
302	reported a	reported a significant reduction in pain VAS for the intervention group but not the							
303	control gro	control group (17). Between groups comparisons were not reported, possibly							
304	because it	because it was a pilot study. We used an online calculator(44) to determine an effect							
305	size with 95% confidence intervals between groups, using baseline to post								
306	intervention data in two steps. Baseline to post intervention change was used								
307	because a significant difference between groups existed at baseline. Firstly, a pooled								
308	standard deviation for each group was calculated for change from baseline to final								
309	measure.	hen this pooled stand	lard deviation from each	group was used to					
310	calculate th	ne between group effe	ct size and 95% confider	nce interval (see Table 3).					
311	The resulta	ant confidence interval	indicates that significant	differences between					
312	groups was	s unlikely. To calculate	e an effect size for Cary e	et.al. (42), the independent					
313	samples Jo	onckheere-Terpstra te	st (45) was used to calcu	llate a z-score, which was					
314	then conve	rted into an effect size	e (r _j) (46).						
315	Conclusior	s from authors of all f	our studies, were that sle	ep posture could increase					
316	or decreas	e spinal pain, and that	t addressing sleep postur	re could reduce the					
317	developme	nt of spinal pain. Usin	g self-report, side lying w	vas reported as protective					
318	of spinal sy	mptoms(13, 17) and	participants that slept in s	supported side lying were					
319	found to ha	ave less symptoms that	an those sleeping in $\frac{3}{4}$ sid	de lying or prone(42). In					
320	regards to	supine, one study fou	nd supine increased the	likelihood of lumbar pain b					
321	1.9 times(4	3), another study reco	ommended supine in com	nbination with side lying					
322	sleep post	ures to reduce lumbar	pain(17) and a third repo	orted supine was not					
323	significantl	y protective of cervica	I waking symptoms(13).						

Cary et al., 2016	"The time spent in each of the sleeping postures expressed as a percentage of the time spent asleep, did not differ significantly according to the level of morning symptoms" (p. 5) Independent Samples Jonckheere-Terpstra Test; supine $r_j = 0.03$; SSL $r_j = 0.00$; ³ / ₄ SL $r_j = 0.34$; prone $r_j = 0.31$.	"participants that spent greater periods of time in SSL, had less mornings of symptoms per month than those that slept in ¾ SL or prone." (p. 5)	Not provided
Desouzart et al., 2016	No between group comparison reported. Between group effect size calculated to be 0.81 (95% CI -0.11 to 1.72).	"It may be concluded that the indication of the ideal way to lie down, which corresponds to a recommended sleeping posture with the ideal position to place the pillows, as well as the ideal way to get up." (p. 239)	Ideal sleep posture, pillow use and way to get up, as per experimental group, "is an added value for the prevention and decrease of the pain and/or discomfort in the spine in active seniors." (p. 239)
Gordon, Grimmer and Trott, 2007	symptoms of interest comp other positions." (p. 6) Wal Cl 1.1-5.5), cervical stiffne headache OR 2.2 (95% Cl OR 2.5 (95% Cl 1.1-5.3). "Supinewas not found in protective of waking sympt sleep positions." (p. 6) Wa Cl 0.8-2.5) and cervical sti "Pronewas not significant symptom" (p. 6) Cervical p and cervical stiffness OR 1 "Subjects who reported that side were significantly less pain compared with subj	more likely to report all waking pared to subjects who slept in king cervical pain OR 2.5 (95% as OR 2.6 (95% CI 1.1-5.8), 1.0-5.0), scapular/arm pain this study to be significantly coms, when compared to other king cervical pain OR 1.4 (95% ffness OR 0.9 (95% CI 0.5-1.6). tly associated with waking ain OR 1.5 (95% CI 0.7-3.2) .1 (95% CI 0.5-2.6). at they slept mostly on their likely to report waking cervical ects who slept in any other rvical pain OR 0.6 (95% CI 0.4-	"on the basis of this research side lying can be confidently recommended as the best sleep position in terms of minimising waking symptoms. (p. 6) "need for health professionals to consider individual's sleep position and waking symptom history, as part of clinical reasoning for treatment, and when developing a management plan for patients with troublesome waking symptoms." (p. 6)

Notes. LBP = Low back pain, SSL = Supported side lying, $\frac{3}{4}$ SL = $\frac{3}{4}$ side lying, VAS = Visual analogue scale, OR = Odds ratio, CI = Confidence interval, $r_{j=}$ effect size r for Jonckheere-Terpstra Test

^^ The CI was recalculated as it was suspected wrong due a typographical error. The original value was 0.431

10 325 and lumbar symptoms(17).

12
13326Quality of Evidence and Author Reported Limitations

The quality of evidence is summarised in Table 4. The Downs and Black checklist contains 27 questions distributed over five domains; reporting (i.e., aims, sampling and methods); external validity (i.e., generalisability); internal validity (i.e., study design, selection bias, performance and reporting bias); confounding; and power (39). Using the Downs and Black checklist as the appraisal tool, evidence levels have previously been categorised as strong (> 75%), moderate (50 - 74%), limited (25 - 49%) and poor quality (< 24%)(47). Questions 4, 8, 9, 13, 14, 15, 19, 23, 24, and 26 (see Table 4 for details) were not applicable to study designs that did not include an intervention group and were therefore excluded from the three exploratory studies(13, 42, 43). Question 27 was applicable for all but the cross sectional study(42). In the reporting subsection, questions one to 10, studies were well documented with one different applicable question not completed by each study, enabling readers to draw unbiased assessments of each study's findings. Questions 11 to 13 (external validity), were poorly reported, with all studies failing to quantify the proportion of participants that were asked, relative to the proportion of participants that were accepted into studies. All studies reported using either random(13, 17, 43) or consecutive sampling(42). Internal validity, questions 14 to 20, examined measurement bias and apart from question 15 were well documented. In all studies, no attempt was made to blind researchers measuring the outcome variables. However, in one exploratory study the interview method precluded the need for blinding of interviewers(13). All the remaining questions were well documented, except for question 25 which examined confounding factors. This was poorly documented except for one study(48), in which a multivariate analysis was reported in a subsequent study, using the same data. The body of evidence in this scoping review is rated as moderate to strong quality.

BMJ Open

Section	Qu	estions	Abanobi et al., 2015	Cary et al., 2016	Desouzart et al., 2016	Gordon, Grimmer and Trott, 2007
Reporting	1	Is the hypothesis/aim/objective of the study clearly described?	Y	Y	Y	Y
	2	Are the main outcomes to be measured clearly described in the Introduction or Methods section?	N	Y	Y	Y
	3	Are the characteristics of the patients included in the study clearly described?	Y	N	Y	x
	4	Are the interventions of interest clearly described?	x	х	Y	x
	5	Are the distributions of principal confounders in each group of subjects to be compared clearly described?	*Ү	x	*Ү	*Y
	6	Are the main findings of the study clearly described?	Y	Y	Y	Y
	7	Does the study provide estimates of the random variability in the data for the main outcomes?	Y	Y	Y	Y
	8	Have all important adverse events that may be a consequence of the intervention been reported?	x	x	N	x
	9	Have the characteristics of patients lost to follow-up been described?	x	x	Y	x
	1 0	Have actual probability values been reported (e.g., 0.035 rather than <0.05) for the main outcomes except where the probability value is less than 0.001?	Y	Y	Y	N
External Validity	1 1	Were the subjects asked to participate in the study representative of the entire population from which they were recruited?	Y	Y	N	Y
	1 2	Were those subjects who were prepared to participate representative of the entire population from which they were recruited?	U	N	N	N

For peer review only - http://bmjopen.bmj.com/site/about/guidelines.xhtml

 BMJ Open

	1 3	Were the staff, places, and facilities where the patients were treated, representative of the treatment the majority of patients receive?	x	X	Y	X
Internal Validity: Bias	1 4	Was an attempt made to blind study subjects to the intervention they have received?	x	x	U	x
	1 5	Was an attempt made to blind those measuring the main outcomes of the intervention?	x	x	N	x
	1 6	If any of the results of the study were based on "data dredging", was this made clear?	Y	Y	Y	Y
	1 7	In trials and cohort studies, do the analyses adjust for different lengths of follow-up of patients, or in case-control studies, is the time period between the intervention and outcome the same for cases and controls?	Y	X	Y	X
	1 8	Were the statistical tests used to assess the main outcomes appropriate?	Y	Y	Y	Y
	1 9	Was compliance with the intervention/s reliable?	x	x	U	x
	2 0	Were the main outcome measures used accurate (valid and reliable)?	Y	Y	Y	Y
Internal Validity: Confounding	2 1	Were the patients in different intervention groups (trials and cohort studies) or were the cases and controls (case-control studies) recruited from the same population?	Y	x	Y	Y
	2 2	Were study subjects in different intervention groups (trials and cohort studies) or were the cases and controls (case-control studies) recruited over the same period of time?	Y	x	Y	x
	2 3	Were study subjects randomised to intervention groups?	x	x	Y	x
	2	Was the randomised intervention assignment concealed from both patients and health care staff until recruitment was complete and irrevocable?	x	Х	U	X

1 2 3 4 5 6 7 8 9 10 11 12 13 14	
14	
16	
17 18	
19	353
20 21	354
22 23	355
24	
25	356
26 27	357
28	
29 30	
31	
32 33	
34	
35 36	
30 37	
38 39	
39 40	
41	
42 43	
44	
45 46	
τU	

	2	Was there adequate adjustment for confounding in the analyses from which the main	N	N	N	Y
	5	findings were drawn?				
	2	Were losses of patients to follow-up taken into account?	X	X	Y	X
	6					
Power	2	Did the study have sufficient power to detect a clinically important effect where the	N	X	Ν	N
	7	probability value for a difference being due to chance is less than 5%?				
Score			14/17	9/12	19/28	12/14
Percentage			82	75	68	86
) and poor quality (< 24%) (47).				

Page 19 of 30

BMJ Open

Authors identified reliance on self-report to examine sleep posture(17) and symptoms(48) as a limitation. Authors identified small sample sizes, as limiting their ability to draw firm conclusions from the obtained results(13, 17). Authors identified restricted time as a limitation, for the period available for data collection(43), and for participants to learn a new sleeping habit(17). Limitations as reported by authors are described in Supplementary File Author Reported Limitations.

364 Discussion

To our knowledge, this scoping review is the first to establish the body of evidence regarding the research question; relationships between sleeping posture and spinal symptoms. Generally, there was limited available research. In regards to Objective 1; research designs and populations studied for the research question, a variety of study designs and participant populations were used. One study was a controlled pilot trial. With regards to Objective 2; types of specific methodology used to address the research question, sleep was assessed in a domestic environment in all studies, with self-report used to measure sleep posture in all studies. Pain was the most common outcome measure of symptoms. In respect to Objective 3; results, conclusions and recommendations, authors recommended side lying as the sleep posture least likely to provoke cervical or lumbar spinal symptoms. Studies included in this scoping review were of moderate to strong quality as assessed using the Downs and Black critical appraisal tool. Nonetheless, considerably more research including longitudinal studies are required before causal relationships between sleep posture and spinal symptoms could be concluded.

The study designs identified in this scoping review were appropriate to use for the research question. The variety of study designs prevented data pooling and a scoping review remained the most appropriate approach to synthesise the research. The age and gender ratios of included studies were not representative of typical cervical and lumbar pain populations (1-3). Generalisation of the results of the included studies needs to be considered with some caution because of a strong gender bias in two studies(17, 43) and a restricted age of included participants in one study (17). In general, small sample sizes were used. The type of study designs and patient populations identified in this scoping review have provided preliminary information regarding relationships between sleep posture and spinal symptoms, but **BMJ** Open

there were not enough high-quality studies to adequately answer our researchquestion.

The most common adult sleep postures are side lying, supine and prone (28, 49, 50), which were the postures examined by the studies in this review. Side lying is the sleep posture that greater than 60% of European adults adopt for the majority of the night (28, 49, 50). For this reason, one study divided side lying into two sleep postures, based upon symmetry and plausible spinal load. These authors identified a trend that participants spending more time in symmetrical side lying reported less morning symptoms than those in asymmetrical side lying(42). Although all studies in this review utilised self-report to report sleep posture, some authors identified this as a limitation (13, 17, 42) and inaccuracy associated with sleep posture self-report can be as high as 33% (51, 52). It therefore seems prudent to not rely purely on self-report and clinicians would have higher confidence when advising people with pain about sleep posture, if research included both self-report and a valid and reliable measure of sleep posture, such as included in one study(42).

The anatomical features of the cervical and lumbar spine are different and it is plausible that sleeping postures could affect each area differently. For example, studies in this review indicated sleeping in supine was associated with lumbar symptoms(43), but not associated with cervical symptoms(13). Pain was measured in all studies, which is appropriate given cervical and lumbar pain are leading contributors across all age groups and countries to musculoskeletal disability(1). However, characteristics like intensity, frequency or the onset time of pain were not consistently measured and are important to better understand the overall impact pain is having on daily function(53). With regards to the relationship between sleep posture and time of onset of spinal symptoms, only half of the studies examined waking symptoms (13, 42). Waking spinal symptoms are rarely present every morning, which may be due to an individual's variation in sleep posture routine. To better understand the temporal relationships between sleep posture and spinal symptoms, it would be important to record spinal symptoms on first waking. Spinal pain is a major and growing global health problem with increasing rates of disability(1). For the past 20 years there has been a strong biomedical focus on patho-anatomy as the cause of spinal pain. However, in the case of lumbar pain, only 8-15% of cases has a specific tissue identified as the cause(54). Concurrently,

Page 21 of 30

BMJ Open

there has been an escalation in imaging, opioid prescription, injections and surgery, with questionable benefit(55-57) and higher risks(8, 58). Changing physical risk factors like type of movement pattern(59), level of strength and conditioning(60, 61) and sustained or repeated postures(62, 63), are relatively risk free, cost effective and show great potential. Sleep posture is an example of a sustained physical risk factor that is modifiable(64, 65). Clinical recommendations by authors included in this review included considering sleep posture when developing management plans for people with waking spinal symptoms(13) and education to change symptomatic sleep postures (43). With regards to recommending a sleep posture to minimise spinal symptoms, this review finds that the side lying posture for the cervical spine(13), and side lying and supine were the sleep postures recommended by authors for those with lumbar spinal pain(17). However, there is a lack of high-quality studies from which to draw firm recommendations.

Based on the findings of this scoping review we offer the following recommendations to improve the quality of future research. Research samples should be large enough to achieve statistical goals and sample demographics should be representative of those in the broader population with cervical and lumbar pain. Ideally studies should account for confounding factors such as age and gender through study design or statistical analysis. It would be preferable to differentiate spinal symptoms according to location, rather than considering spinal symptoms as a single group, due to differences in spinal anatomy, function and referral of symptoms. It is also recommended to divide spinal symptoms into categories such as pain, stiffness, and bothersomeness, to determine if one or more have greater clinical relevance. Using a valid, objective measure of sleep posture instead of self-report, would also enable determination of time spent in each sleep posture and the number of sleep posture changes. As side lying appears to be associated with less cervical and possibly spinal symptoms generally, it would be worthwhile in future research to confirm this relationship and to further explore whether some subtypes of side lying postures are less provocative of spinal symptoms than others. It would also be informative to consider the temporal aspect of spinal symptoms. That is, recording spinal symptoms on first waking before they are influenced by daytime activities. Sleep posture is potentially modifiable following education(17) and education is a non-

invasive and low-cost intervention which should be further explored in futureresearch using larger scale longitudinal studies.

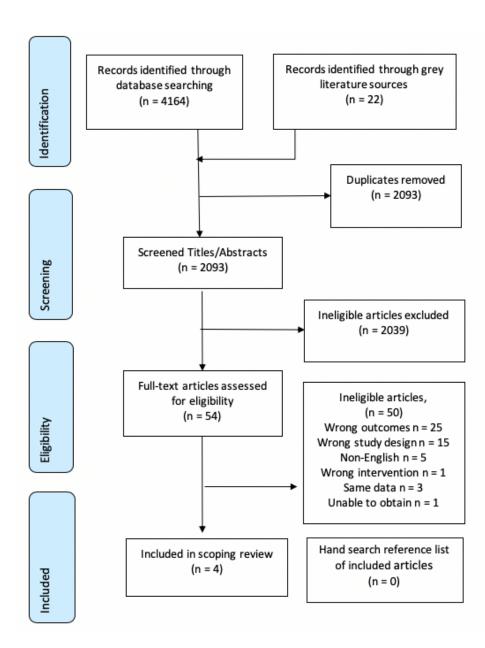
457 Funding

458 DC received PhD. Scholarship funding from Australian Government Research
459 Training Program.

460 Author Contributors

461 DC, LM and KB designed the study. DC and LM collected data and conducted data
462 analysis. DC wrote the manuscript. DC, and LM undertook interpretation of findings
463 and were involved in drafting the manuscript. All authors were involved in revision of
464 the manuscript gave final approval for submission and publication.

1 2		
3 4	465	References
5 6	466	1. Hurwitz E, Randhawa K, Yu H, Côté P, Haldeman S. The Global Spine Care Initiative: A
	467	summary of the global burden of low back and neck pain studies. European Spine Journal. 2018:1-6.
7 8	468	2. Côté P, Cassidy J, Carroll L, Kristman V. The annual incidence and course of neck pain in the
9	469	general population: A population-based cohort study. Pain. 2004;112:267-73.
10	470	3. Hoy D, Bain C, Williams G, March L, Brooks P, Blyth F, et al. A systematic review of the global
11	471	prevalence of low back pain. Arthritis & Rheumatology. 2012;64(6):2028-37.
12	472	4. Ekman M, Johnell O, Lidgren L. The economic cost of low back pain in Sweden in 2001. Acta
13	473	Orthopaedica. 2005;76:275-84.
14 15	474	5. Wasiak R, Kim J, Pransky G. Work disability and costs caused by recurrence of low back pain:
15 16	475	Longer and more costly than in first episodes. Spine. 2006;31:219-25.
17	476	6. Croft P, Lewis M, Papageorgiou A, Thomas E, Jayson M, Macfarlane G, et al. Risk factors for
18	477	neck pain: A longitudinal study in the general population. Pain. 2001;93:317-25.
19	478	7. Hestbaek L, Leboeuf-Yde C, Kyvik K, Manniche C. The course of low back pain from
20	479	adolescence to adulthood: Eight-year follow-up of 9600 twins. Spine. 2006;31:468-72.
21	480	8. Manchikanti L, Singh V, Datta S, Cohen S, Hirsch J. Comprehensive review of epidemiology,
22 23	481	scope, and impact of spinal pain. Pain Physician. 2009;12:35-70.
23 24	482	9. Hodges P, van den Hoorn W, Dawson A, Cholewicki J. Changes in the mechanical properties
25	483	of the trunk in low back pain may be associated with recurrence. Journal of biomechanics.
26	484	2009;42(1):61-6.
27	485	10. Cho Y, Song Y, Cha Y, Shin B, Shin I, Park H, et al. Acupuncture for chronic low back pain.
28	486	Spine. 2013;38(7):549-57.
29	487	11. Croft P, Dunn K, Raspe H. Course and prognosis of back pain in primary care: The
30 31	488	epidemiological perspective. Pain. 2006;122:1-3.
32	489	12. Desouzart G, Vilar E, Melo F, Matos R, editors. Human bed interaction: A methodology and
33	490	tool to measure postural behavior during sleep of the air force military. 3rd International Conference
34	491	on Design, User Experience, and Usability; 2014 June; Heraklion, Greece.
35	492 493	13. Gordon S, Grimmer K, Trott P. Sleep position, age, gender, sleep quality and waking cervico- thoracic symptoms. Internet Journal of Allied Health Sciences and Practice. 2007;5.
36 37	493	14. Corrigan B, March L. Cervical spine dysfunction: A pain in the neck. Patient Management.
38	495	1984;8:48-53.
39	496	15. Gordon S, Trott P, Grimmer K. Waking cervical pain and stiffness, headache, scapular or arm
40	497	pain: Gender and age effects. Australian Journal of Physiotherapy 2002;48.
41	498	16. McKenzie R. The cervical and thoracic spine: Mechanical diagnosis and therapy. Waikanae:
42	499	Spinal Publications; 1990.
43 44	500	17. Desouzart G, Matos R, Melo F, Filgueiras E. Effects of sleeping position on back pain in
44 45	501	physically active seniors: A controlled pilot study. Work: A Journal of Prevention, Assessment &
46	502	Rehabilitation. 2016;53:235-40.
47	503	18. Gracovetsky S. The resting spine: A conceptual approach to the avoidance of spinal reinjury
48	504	during rest. Physical Therapy. 1987;67:549-53.
49 50	505	19. Dolan P, Earley M, Adams M. Bending and compressive stresses acting on the lumbar spine
50 51	506	during lifting activities. Journal of Biomechanics. 1994;27:1237-48.
52	507	20. Kingma I, Baten C, Dolan P, Toussaint H, van Dieën J, de Looze M, et al. Lumbar loading
53	508	during lifting: A comparative study of three measurement techniques. Journal of Electromyography
54	509	and Kinesiology. 2001;11:337-45.
55	510	21. Oxland T. Fundamental biomechanics of the spine: What we have learned in the past 25
56	511	years and future directions. Journal of Biomechanics. 2016;49:817-32.
57 58	512	22. Adams M, Hutton W. The relevance of torsion to the mechanical derangement of the lumbar
58 59	513	spine. Spine. 1981;6:241-8.
60		


BMJ Open

1

2 3 514 23. Solomonow M. Neuromuscular manifestations of viscoelastic tissue degradation following 4 515 high and low risk repetitive lumbar flexion. Journal of Electromyography and Kinesiology. 5 516 2012;22:155-75. 6 517 24. Hill S, Goldsmith J. Biomechanics and prevention of body shape distortion. Tizard Learning 7 518 Disability Review. 2010;15:15-32. 8 519 25. Waugh A, Hill S. Body shape distortion: Promoting postural care at night. Learning Disability 9 520 10 Practice. 2009;12:25-9. 11 521 26. Murayama R, Kubota T, Kogure T, Aoki K. The effects of instruction regarding sleep posture 12 522 on the postural changes and sleep quality among middle-aged and elderly men: A preliminary study. 13 523 Bioscience Trends. 2011;5(3):111-9. 14 524 27. Buchbinder R, Tulder M, Öberg B, Menezes Costa L, Woolf A, Schoene M, et al. Low back 15 525 pain: A call for action. The Lancet. 2018;391:2384-8. 16 526 28. De Koninck J, Lorrain D, Gagnon P. Sleep positions and position shifts in five age groups: An 17 527 ontogenetic picture. Sleep. 1992;15:143-9. 18 19 528 29. Goldman S. Nocturnal neuropathic pain in diabetic patients may be caused by spinal 20 529 stenosis. Diabetic Medicine. 2005;22:1763-5. 21 530 30. Desouzart G, Filgueiras E, Melo F, Matos R, editors. Human body-sleep system interaction in 22 531 residence for university students: Evaluation of interaction patterns using a system to capture video 23 532 and software with observation of postural behaviors during sleep. 5th International Conference on 24 533 Applied Human Factors and Ergonomics; 2014 July; Kraków, Poland. 25 534 Arksey H, O'Malley L. Scoping studies: Towards a methodological framework. International 31. 26 535 Journal Social Research Methodology. 2005;8:19-32. 27 536 32. Khalil H, Peters M, Godfrey C, McInerney P, Soares C, Parker D. An evidence-based approach 28 29 537 to scoping reviews. Worldviews on Evidence-Based Nursing. 2016;13(2):118-23. 30 538 Levac D, Colquhoun H, O'Brien K. Scoping studies: Advancing the methodology. 33. 31 539 Implementation Science. 2010;5:9. 32 540 Peters M, Godfrey C, Khalil H, McInerney P, Parker D, Soares C. Guidance for conducting 34. 33 541 systematic scoping reviews. International Journal of Evidence Based Healthcare. 2015;13:141-6. 34 542 35. Tricco A, Lillie E, Zarin W, O'Brien K, Colquhoun H, Levac D, et al. PRISMA extension for 35 543 scoping reviews (PRISMA-ScR): Checklist and explanation. Annals of Internal Medicine. 2018. 36 544 Covidence. Melbourne Australia: Veritas Health Innovation; 2018. 37 36. 38 545 37. Michaleff Z, Costa L, Moseley A, Maher C, Elkins M, Herbert R, et al. CENTRAL, PEDro, 39 546 PubMed, and EMBASE are the most comprehensive databases indexing randomized controlled trials 40 547 of physical therapy interventions. Physical Therapy. 2011;91:190-7. 41 548 38. EndNote. X8 ed. Philadelphia USA: Clarivate Analytics; 2018. 42 549 39. Downs S, Black N. The feasibility of creating a checklist for the assessment of the 43 550 methodological quality both of randomised and non-randomised studies of health care 44 551 interventions. Journal of Epidemiology & Community Health. 1998;52:377-84. 45 552 40. Olivo S, Macedo L, Gadotti I, Fuentes J, Stanton T, Magee D. Scales to assess the quality of 46 553 47 randomized controlled trials: A systematic review. Physical Therapy. 2008;88:156-75. 48 554 41. Korakakis V, Whiteley R, Tzavara A, Malliaropoulos N. The effectiveness of extracorporeal 49 555 shockwave therapy in common lower limb conditions: A systematic review including quantification 50 556 of patient-rated pain reduction. British Journal of Sports Medicine. 2018;52:387-407. 51 557 42. Cary D, Collinson R, Sterling M, Briffa K. Examining the relationship between sleep posture 52 558 and morning spinal symptoms in the habitual environment using infrared cameras. Journal of Sleep 53 559 Disorders: Treatment and Care. 2016;5. 54 560 43. Abanobi O, Ayeni G, Ezeugwu C, Ayeni O. Risk-disposing habits of lowback pain amongst 55 561 welders and panel beaters in Owerri, south-east Nigeria. Indian Journal of Public Health. 2015;6:332-56 562 7. 57 58 563 44. Centre for Evaluation and Monitoring. Effect Size Calculator 2018 [Available from: 59 564 https://www.cem.org/effect-size-calculator. 60 565 IBM Corporation. SPSS Statistics for Mac. 25.0 ed. New York: USA: Armonk; 2018. 45.

BMJ Open

1		
2		
3 4	566	46. Field A. Discovering Statistics Using IBM SPSS Statistics. 5 ed. Los Angeles: SAGE Publications;
5	567	2017.
6	568	47. Hignett S. Intervention strategies to reduce musculoskeletal injuries associated with
7	569 570	handling patients: A systematic review. Occupational Environmental Medicine. 2003;60:e6-e.
8	570 571	48. Gordon S, Grimmer K, Trott P. Understanding sleep quality and waking cervico-thoracic
9 10	572	 symptoms. Internet Journal of Allied Health Sciences and Practice. 2007;5:1-12. Haex B. Back and bed: Ergonomic aspects of sleeping: Boca Raton: CRC Press; 2005.
11	572	50. Gordon S, Grimmer K, Trott P. Self reported versus recorded sleep position: An observational
12	574	study. The Internet Journal of Allied Health Science and Practice. 2004;2:1-10.
13	575	51. Yu C. Why is self-report of sleep position sometimes unreliable? Sleep and Hypnosis.
14	576	2018;20:105-13.
15	577	52. Kaplowitz K, Blizzard S, Blizzard D, Nwogu E, Hamill C, Weinreb R, et al. Time spent in lateral
16 17	578	sleep position and asymmetry in glaucoma. Investigative Ophthalmology & Visual Science.
18	579	2015;56(6):3869-74.
19	580	53. Gordon S, Grimmer-Somers K. Your pillow may not guarantee a good night's sleep or
20	581	symptom-free waking. Physiotherapy Canada. 2010;63:183-90.
21	582	54. Waddell G. The back pain revolution. 2 ed. Edinburgh: Churchill Livingstone; 2004.
22	583	55. Atlas S, Keller R, Wu Y, Deyo R, Singer D. Long-term outcomes of surgical and nonsurgical
23 24	584	management of sciatica secondary to a lumbar disc herniation: 10 year results from the Maine
25	585	Lumbar Spine Study. Spine. 2005;30:927-35.
26	586	56. Friedly J, Chan L, Deyo R. Increases in lumbosacral injections in the Medicare population:
27	587	1994 to 2001. Spine. 2007;32:1754-60.
28	588	57. Runciman W, Hunt T, Hannaford N, Hibbert P, Westbrook J, Coiera E, et al. CareTrack:
29 30	589	Assessing the appropriateness of health care delivery in Australia. Medical Journal of Australia.
31	590 591	2012;197:100-5.
32	591 592	58. Luo X, Pietrobon R, Hey L. Patterns and trends in opioid use among individuals with back pain in the United States. Spine. 2004;29:884-90.
33	592 593	59. O'Sullivan P. Diagnosis and classification of chronic low back pain disorders: Maladaptive
34	594	movement and motor control impairments as underlying mechanism. Manual Therapy.
35 36	595	2005;10(4):242-55.
37	596	60. Gabel C, Mokhtarinia H, Hoffman J, Osborne J, Laakso E, Melloh M. Does the performance of
38	597	five back-associated exercises relate to the presence of low back pain? A cross-sectional
39	598	observational investigation in regional Australian council workers. BMJ open. 2018;8:e020946.
40	599	61. Micheo W, Baerga L, Miranda G. Basic principles regarding strength, flexibility, and stability
41 42	600	exercises. PM&R. 2012;4:805-11.
42 43	601	62. Solomonow M, Baratta R, Banks A, Freudenberger C, Zhou B. Flexion relaxation response to
44	602	static lumbar flexion in males and females. Clinical Biomechanics. 2003;18:273-9.
45	603	63. Solomonow M, Zhou B, Lu Y, King K. Acute repetitive lumbar syndrome: A multi-component
46	604	insight into the disorder. Journal of Bodywork and Movement Therapies. 2012;16(2):134-47.
47	605	64. Cartwright R, Ristanovic R, Diaz F, Caldarelli D, Alder G. A comparative study of treatments
48 49	606	for positional sleep apnea. Sleep. 1991;14(6):546-52.
50	607 608	65. van Maanen J, de Vries N. Long-term effectiveness and compliance of positional therapy with the clean position trainer in the treatment of positional obstructive clean appear sundrame
51	608 609	with the sleep position trainer in the treatment of positional obstructive sleep apnea syndrome. Sleep. 2014;37(7):1209-15.
52		JICCP. 2014, 3/(/).1207-13.
53	610	
54 55	<i></i>	
55 56	611	
57		
58		
59		
60		
		25

PRISMA Flow diagram

Supplementary File: Search Strategy for Scopus Database

Search Strategy for the Scopus Database (adapted for other databases)

Date	7/4/2018	
Strategy	#1 AND #2 AND #3	NOT #4
Rule	Domain	Search Terms
#1	Area of symptoms	lumbar or "low back pain" or cervical or "neck pain" or "musculoskeletal pain" or "spinal pain"
#2	Posture	postur* or position* or prone or supine or lateral or side lying
#3	Sleep	sleep* or slumber* or nighttime or nocturnal or bed
#4	Exclusions	apnoea or apnea or CPAP

or per terier ont

For peer review only - http://bmjopen.bmj.com/site/about/guidelines.xhtml

Supplementary File: Author Reported Limitations

Author Reported Limitations

Author	Comments
Abanobi et al., 2015	"Inability to compare the effect of duration of habits and age at onset of habit" (p. 336) "Limited time set aside for the surveillance exercise" (p. 336)
Cary et al., 2016	"Mismatch in time frame of measurement" (p. 6). Recording of sleep posture occurred over 2 nights but participants questioned about symptoms over prior 1 month.
Desouzart et al., 2016	Due to the population studied it was "not possible to use a homogenous sample and larger number of participants." (p. 239)
	"The four weeks may not have been sufficient to create habits in participants, however, and because of the time limitations of this study, it was not possible to have a longer time." (p. 239)
	"results are based on the statements of the participants" (p. 239)
Gordon, Grimmer and Trott, 2007	"As small subject numbers constrained confidence in the findings, further research is required into the contributors to waking symptoms. for upright sleepers" (p. 6)

SECTION

ABSTRACT

TITLE Title

Identify the report as a scoping review.

ITEM PRISMA-ScR CHECKLIST ITEM

1

REPORTED ON

PAGE #

1

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17	1
 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 	
35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50	
50 51 52 53 54 55 56 57 58 59 60	

Structured summary	2	Provide a structured summary that includes (as applicable): background, objectives, eligibility criteria, sources of evidence, charting methods, results, and conclusions that relate to the review questions and objectives.	2
INTRODUCTION			
Rationale	3	Describe the rationale for the review in the context of what is already known. Explain why the review questions/objectives lend themselves to a scoping review approach.	3
Objectives	4	Provide an explicit statement of the questions and objectives being addressed with reference to their key elements (e.g., population or participants, concepts, and context) or other relevant key elements used to conceptualize the review questions and/or objectives.	4
METHODS			
Protocol and registration	5	Indicate whether a review protocol exists; state if and where it can be accessed (e.g., a Web address); and if available, provide registration information, including the registration number.	NA
Eligibility criteria	6	Specify characteristics of the sources of evidence used as eligibility criteria (e.g., years considered, language, and publication status), and provide a rationale.	4
Information sources*	7	Describe all information sources in the search (e.g., databases with dates of coverage and contact with authors to identify additional sources), as well as the date the most recent search was executed.	5
Search	8	Present the full electronic search strategy for at least 1 database, including any limits used, such that it could be repeated.	5
Selection of sources of evidence†	9	State the process for selecting sources of evidence (i.e., screening and eligibility) included in the scoping review.	5-6
Data charting process‡	10	Describe the methods of charting data from the included sources of evidence (e.g., calibrated forms or forms that have been tested by the team before their use, and whether data charting was done independently or in duplicate) and any processes for obtaining and confirming data from investigators.	6
Data items	11	List and define all variables for which data were sought and any assumptions and simplifications made.	Data items extracted are noted in Table 1, 2, 3, 4 and Supplementary File (pg 7, 8, 10, 12-13)
Critical appraisal of individual sources of evidence§	12	If done, provide a rationale for conducting a critical appraisal of included sources of evidence; describe the methods used and only - http://bmjopen.bmj.com/site/about/guideli	6

For peer review only - http://bmjopen.bmj.com/site/about/guidelines.xhtml

SECTION	ITEM	PRISMA-ScR CHECKLIST ITEM	REPORTED OI PAGE #
		how this information was used in any data synthesis (if appropriate).	
Synthesis of	13	Describe the methods of handling and	6
results	13	summarizing the data that were charted.	0
RESULTS		Give numbers of sources of evidence	
Selection of		screened, assessed for eligibility, and	DDIOMA
sources of	14	included in the review, with reasons for	PRISMA Supplementary
evidence		exclusions at each stage, ideally using a	Supplementary
		flow diagram.	Table 1, 2, 3, 4
Characteristics of sources of	15	For each source of evidence, present characteristics for which data were charted	Supplementary
evidence	CI I	and provide the citations.	(pg 7, 8, 10, 12
			Reference list
Critical appraisal within sources of	16	If done, present data on critical appraisal of	12-13
evidence		included sources of evidence (see item 12).	
Results of		For each included source of evidence,	
individual sources	17	present the relevant data that were charted	Table, 1, 2, 3 a
of evidence		that relate to the review questions and objectives.	
Synthesis of		Summarize and/or present the charting	
Synthesis of results	18	results as they relate to the review	Table 1, 2, 3 a
DISCUSSION		questions and objectives.	
		Summarize the main results (including an	
Summary of		overview of concepts, themes, and types of	
evidence	19	evidence available), link to the review	14
		questions and objectives, and consider the relevance to key groups.	
		Discuss the limitations of the scoping review	14.10
Limitations	20	process.	14-16
		Provide a general interpretation of the	
Conclusions	21	results with respect to the review questions and objectives, as well as potential	15
		implications and/or next steps.	
FUNDING			
		Describe sources of funding for the included	
Funding	22	sources of evidence, as well as sources of funding for the scoping review. Describe the	16
		role of the funders of the scoping review.	