The following are supplemental materials and will be published online only

	CDR1 V _H
EbovGPscFv18-1	MAWSHPQFEKTGSGDVMLVESGGGLVQSGGSMELSCVASGITFG-NYWMNRVRQSPEKGLEWVAE
EbovGPscFv35-2	MAWSHPQFEKTGSGDVKLQESGPGLVKPSQSLSLTCSVTGYSITSGYYWNWIRQFPGNKLEWMGY
EbovGPscFv10-3	MAWSHPQFEKTGSGEVQLVESGGGLVQPGGSLSLSCAASGFTFT-DYYMSWVRQPPGKALEWLGF
EbovGPscFv4-2	MAWSHPQFEKTGSGGAELVKSGASVKLSCTASGFNIK-DDYMHWVKQRPEQGLEWIGW
EbovGPscFv27-5	MAWSHPQFEKTGSGQVQLQQSGAELVKPGASVKSSCTATGFNIK-DYYIHWVKQRTEQGLEWIGR
EbovGPscFv13-1	MAWSHPQFEKTGSGQVQLQQSGAELVKPGASVKLSCKASGYTFT-EYTIHWVKQRSGQGLEWIGW
EbovGPscFv39-1	MAWSHPQFEKTGSGEVQLQQSGAELMKPGASVKLSCKATSYTFT-GYWIEWVKQRPGRGLEWIGE
EbovGPscFv16-1	MAWSHPQFEKTGSGGAELVRSGASVKLSCTASGFNIK-DDYMHWVKQRPEQGLKWIGW
EbovGPscFv3-2	MAWSHPQFEKTGSGQVQLQQPGAELVKPGASVKLSCKASGYTFT-SYWMHWVKQRPGRGLEWIGR
EbovGPscFv22-1	MAWSHPQFEKTGSGQVQLQQPGTELVKPGASVKLSCKASGYTFT-SYWMHWVKQRPGQGLEWIGN

FbouGPscFul8-1	
EbovGrSCrV10-1 EbovGrscFv35-2	I SYDCSNNYNDSI KNDISTTEDTSKNOFFI KI NSWTTEDTATYYOAPESDYYCSSHWYFGV
EbovGISCIVJJ = 2 EbovGPscEv10=3	
EbovGPscFv4-2	
EbovGPscFv27-5	IDPEDGETKYAPKFOGKATITADISPNTAYLOPSSLTSEDTAVYYOTRGGYYGPWYFDV
EbovGPscFv13-1	EYPGSGSTKYDEKEKDKATLTADKSSSTVYMELSBLTSEDSAVYFOARHEPYYYGSSYEGPEDY
EbovGPscFv39-1	TLPGSG-STNYNEKEKGKATETADTSSNTAYMOLSSPTTEDSATYYOARDYYDWYFDV
EbovGPscFv16-1	TDPENGDTEYASKLOGKATTTADTSSNTAYLOLSSLTSEDTAVYYOARPTYYYGSSHWYFDV
EbovGPscFv3-2	TDPNSGGTKYNEKEKSKATLTVDKPSSTAYMOLSSLTSEDSAVYYOARTGYYGSSWYFDV
EbovGPscFv22-1	TNPSNGGTNYNEKFKSKATLTVDKSSNTAYMOLSSLTSEDSAVYYCARSVSGNFAY
	·* ···· ·LINKER * · · ··· · · *** · * · · CDB1 V.
EbovGPscFv18-1	WGOGTTVTVSSGGGGSGGGGSGGGGSGGGGSGGGGSLSLPVSLGDOASISCRSSDNLEDS-NGKTFLNWYL
EbovGPscFv35-2	WGTGTTVTVSSGGGGSGGGGSGGGGSGGGGSGGGGSASLSASVGETVTITCRTSENIYSYLAWYO
EbovGPscFv10-3	RGOGTLVTVSAGGGGSGGGGSGGGGSGGGGGGGGGGGGGGGGGGGG
EbovGPscFv4-2	WGOGTLVTVSAGGGGSGGGGSGGGGSGGGGGGGGGGGGGGGGGGGG
EbovGPscFv27-5	WGTGTTVTVSSGGGGSGGGGSGGGGSGGGGSGGGGSASLSVSVGETVTITCRASENIYSYLAWYO
EbovGPscFv13-1	WGQGTTLTVSSGGGGSGGGGSGGGGSGGGGSGGGGSSPLSVSAGEKVTMSCKSSQSLLNSGNQKNYLAWYQ
EbovGPscFv39-1	WGTGTTVTVSSGGGGSGGGGGGGGGGGGGGGGGGGGGGGG
EbovGPscFv16-1	WGTGTTVTVSSGGGGSGGGGGGGGGGGGGGGGGGGGGGGG
EbovGPscFv3-2	WGTGTTVTVSSGGGGSGGGGGGGGGGGGGGGGGGGGGGGG
EbovGPscFv22-1	WGQGTLVTVSAGGGGGGGGGGGGGGGGGGGGGGGGGGGGGGGGGGG
	* :***:********************************
Fhow Chargery 19-1	
EbovGPscFv10-1	
EbovGPscFv35=2	OKOCISPOLI VYNAKTI AEGVPSRESGSGSGTOFSI KINSLOPEDEGNYYCOHHYTTPFTEGGG
EbovGPscEv4-2	QKQCISIQIIN IMARIIMAGVISKISGSGSGCQYSLKINNLOPEDEGSYYCOHEWSTDYTEGGG
EboyGPscFy27=5	OKOGKSPOLLVYNAKTLAEGVPSRESGSGSGTOFSLKINNLOPEDEGSYYCORHYDTPYTEGGG
EbovGPscFv13-1	OKPGOPPKLLTYGASTRESGVPDRFTGSGSGTDFTLTTSSVOAEDLAVYYCONDHSYPLTFGAG
EbovGPscFv39-1	OKPGOPPKLLTYGASTRESGVPDRLTGSGSGTDFTLTTSSVQAEDLAVYYCONDHSYPWTFGGG
EbovGPscFv16-1	OKPGOSPKLLTYKVSNRFSGVPDRFSGSGSGSTDFTLKTSRVEAEDLGVYFCSOSTHVPWTFGGG
EbovGPscFv3-2	OKPGOSPKLLTYKVSNRFSGVPDRFSGSGSGSTDFTLKTSRVEAEDLGVYYCFOGSHVPPLYTFGGG
EbovGPscFv22-1	OKPGOSPKLLIYKVSNRFSGVPDRFSGSGSGTDFTLKISRVEAEDLGVYFCSOSTHVPWTFGGG
	:. *:**.*** .*:*:*:**** :::*.* . :: ** *:* . * ***.*
EboyGPscFy18-1	TKLELRRADAAPTVSTEPPSSEOLTSGGASVVCET.NNFTHCOELOODECS
EbovGPscFv35-2	TKLEIKRADAAPTVSIFPPSSEQLTSGGASVVCFLNNFTHCOELOODECS
EbovGPscFv10-3	TKLEIKRADAAPTVSIFPPSSEQLTSGGASVVCFLNNFTHCQELQQDECS
EbovGPscFv4-2	TKLEIKRADAAPTVSIFPPSSEQLTSGGASVVCFLNNFTHCQELQQDECS
EbovGPscFv27-5	TKLEIKRADAAPTVSIFPPSSEQLTSGGASVVCFLNNFTHCQELQQDECS
EbovGPscFv13-1	TKLELKRADAAPTVSIFPPSSEQLTSGGASVVCFLNNFTHCQELQQDECS
EDOVGPSCEV39-1 EbovGPscEv16-1	TKLEIKKADAAPTVSIFPPSSEQLTSGGASVVCFLNNFTHCQELQQDECS
EbovGPscFv3-2	TKLEIKRADAAPTVSIFPPSSEOLTSGGASVVCFLNNFTHCOELOODECS
EbovGPscFv22-1	TKLEIKRADAAPTVSIFPPSSEQLTSGGASVVCFLNNFTHCQELQQDECS
	**** **********************************

S1 Fig. Alignment of the derived aminoacids sequences of the randomly chosen scFvs from linked antibody library and complementary determining regions (CDRs). FRs and CDRs are determined by the IMGT information system. Diversity was found predominantly in the CDR regions. A normal 20 amino acid linker [(G4S)4] joins the VH and VL chains. Alignments were **colour coded** according to residue property groups. AVFPMILW-red, DE-blue, RK-magenta, STYHCNGQ-green, others-grey.

Symbols in the alignment are as follows: (*) indicates where there is a conserved amino acid; (:) indicates an amino acid position with conserved similarity; (.) indicates a semi-conserved amino substitution has occurred; (-) indicates spaces introduced to optimise the alignment.

S2 Fig. Schematic diagram of the pBAK1 (*anti-EbovGP-his-ScFv*) expression vector. The position of the enzymatic cleavage is indicated by the *red arrow*. The gene encoding anti-EbovGP-his-ScFv protein was inserted into the pBAK1 vector under the control of the T7lac promoter, in frame with a strep tag II.

S1 Table Nucleotide sequences of primers used

Duimon	Drimen seguences (52 22)
Primer	Primer sequence (5' - 5')
name	
	VH primers
MVH_F1	
MVH_F2	
MVH_F3	CGAGAAGACCGGCAGCGGTGGACCTGAGCTGGAGATGCCT
MVH_F4	CGAGAAGACCGGCAGCGGTGGACCTGGCCTGGTGAGACCT
MVH_F5	CGAGAAGACCGGCAGCGGTGGGGGGGGGGGGGGGGGGGG
MVH_F6	CGAGAAGACCGGCAGCGGTGGGGGCAGAGCTTGTGAAGCCA
MVH_F7	CGAGAAGACCGGCAGCGGTGGAGGGGGGCTTGGTACAGCCT
MVH_F8	CGAGAAGACCGGCAGCGGTGGGGGCAGAGCTTGTGAGGTCA
MVH_R1	GGAGCCGCCGCCGCCAGAACCACCACCACCACCACCACCA
	GAAACGGTGACCGTGGT
MVH_R2	GGAGCCGCCGCCGCCAGAACCACCACCACCACCACCACCA
	GAGACTGTGAGAGTGGT
MVH_R3	GGAGCCGCCGCCGCCAGAACCACCACCACCACCACCACCA
	GAGACAGTGACCAGAGT
MVH_R4	GGAGCCGCCGCCGCCAGAACCACCACCACCACCACCACCA
	GAGACGGTGACTGAGGT
	VL primers
MVL_F1	GGCGGCGGCGGCTCCGGTGGTGGTGGTGGTGGTGGTGCATCCC
MVL_F2	GGCGGCGGCGGCTCCGGTGGTGGTGGTGGTGGTGGTGGCGCCTCCCTATCTGTATCTGTG
MVL_F3	GGCGGCGGCGGCTCCGGTGGTGGTGGT
MVL_F4	GGCGGCGGCGGCTCCGGTGGTGGTGGTGGTCCCCCCCCC
MVL_F5	GGCGGCGGCGGCTCCGGTGGTGGTGGTGGTGCTCCTCAGCCTCTTTCTCCCTGGGA
MVL_F6	GGCGGCGGCGGCTCCGGTGGTGGTGGTGCTCCCTCCCTGAGTGTGTCAGCA
MVL_F7	GGCGGCGGCGGCTCCGGTGGTGGTGGTGGTGCTCCCTCC
MVL_F8	GGCGGCGGCGGCTCCGGTGGTGGTGGT <u>GGATCC</u> CTCTCCCTGCCTGTCAGTCTT
MKR	AGAACACTCATTCCTGTTGAAGCTCTTGACAATGGGTGAAGTTG
MKR_Not	AGT <u>GCGGCCGC</u> AGAACACTCATCCTGTTGAAGCTCTTGACAATGGGTGAAGT
Ι	TG
	Strep Tag II
KzSTREP	CGAATTCCACCATGGCC TGG AGC CAT CCG CAG TTC GAG AAG ACC GGC
II	AGC GG
	T7 promoter
RDT7	CTATAGAAGG GTAATACGACTCACTATAGGGCGAATTCCACCATGGCC

S2 Table Cross-reactivity profiles of anti-EBOV GP scFvs from ELISA result.

scFv	GP _{EBOV}	GP _{SUDV}	GP _{RESTV}	GP _{BDBV}	GP _{TAFV}	GP _{MARV}
3-2	+	+	-	-	+	+
4-2	+++	+++	++	++	++	+++
10-3	-	-	-	-	+	+
13-1	+	-	-	-	-	+
16-1	+	+	-	-	++	+
18-1	+	+	++	++	++	+
22-1	++	+++	++	++	++	+++
27-5	-	-	-	-	-	I
35-2	++	++	+	-	+	++
39-1	++	++	-	+	+	++
Mouse anti-Zaire ebola	+++					
antibody 6D8						
Mouse anti-Sudan ebola virus		+++				
antibody						
Rabbit anti-Reston GP			+++			
polyclonal antibody						
Rabbit anti-Bundibugyo GP				+++		
polyclonal antibody						
Rabbit anti-MARV GP						+++
polycional antibody						
Dabbit anti Tai Fanast vince CD						
LaC					+++	
XfPilB21						

†: GPs of each virus species were used as antigens. *: scFv reactivity was evaluated based on ELISA OD450. +++: OD>1.0; ++: OD \geq 1.0; +: 0.3 < OD < 1.0; -: OD \leq 0.3. XfPilBscFv21: Negative control. Mouse anti-Zaire ebola antibody 6D8, Mouse anti-Sudan ebola virus antibody, Rabbit anti-Reston GP polyclonal antibody, Rabbit anti-Bundibugyo GP polyclonal antibody, Rabbit anti-MARV GP polyclonal antibody, and Rabbit anti-Tai Forest virus GP IgG: Positive controls.

S3 Table 3

scFv4-2 vs GP _{EBOV}				scFv4-2 vs GP _{SUDV}			scFv4-2 vs GP _{MARV}		
μg/mL	Mean Absorbance	%CV of calculated conc	%BIAS	Mean Absorbance	%CV of calculated conc	%BIAS	Mean Absorbance	%CV of calculated conc	%BIAS
30	2.748	21.0	1.2	2.121	5.8	-5.1	2.847	31.8	-1.9
20	2.709	34.3	10.4	2.030	9.0	4.7	2.816	4.1	2.4
15	2.667	3.9	0.1	1.916	1.7	5.1	2.756	13.1	5.9
10	2.523	11.5	4.4	1.613	2.4	-5.4	2.523	8.4	-0.4
5	1.735	3.3	-0.4	1.117	4.9	2.2	1.627	7.2	0.3
1	0.143	1.6	8.5	0.170	2.0	-3.7	0.067	1.8	-0.4
0.1	0.049	97.9	3.8	0.006	7.1	-0.2	0.0	6.3	18.1
0.01	0.034	Range?	Range?	0.005	12.7	776.8	0.0	6.0	1019.1

% CV & Bias around calculated EC-50. Accuracy and precision around the calculated EC-50 values are within acceptable level.

S4 Table. % **CV & Bias around calculated EC-50.** Accuracy and precision around the calculated EC-50 values are within acceptable level.

scFv4-2 vs GP _{BDBV}				scFv4-2 vs GP _{RESTV}				scFv4-2 vs GP _{TAFV}		
µg/ml	Mean Absorbance	%CV of calculated conc	%BIAS	Mean Absorbance	%CV of calculated conc	%BIAS		Mean Absorbance	%CV of calculated conc	%BIAS
30	1.286	4.2	-0.5	1.349	10.1	1.0		2.065	6.4	-2.6
20	1.199	13.0	1.2	1.266	15.0	1.3		1.918	16.4	4.8
15	1.087	5.1	0.3	1.167	0.6	0.6		1.765	5.7	3.9
10	0.832	3.4	0.1	0.930	5.5	0.1		1.426	2.7	-6.2
5	0.328	0.3	-0.05	0.424	0.2	-0.1		0.984	0.8	3.7
1	0.020	4.9	5.4	0.033	5.5	9.8		0.179	1.5	-5.9
0.1	0.009	54.4	10.9	0.012	17.5	12.0		0.011	4.6	14.7
0.01	0.008	Range?	Range?	0.008	0	5755.6		0.002	7.0	402.7

S5 Table

scFv22-1 vs GP _{EBOV}				scFv4-2 vs GP _{SUDV}			scFv4-2 vs GP _{MARV}		
µg/ml	Mean Absorbance	%CV of calculated conc	%BIAS	Mean Absorbance	%CV of calculated conc	%BIAS	Mean Absorbance	%CV of calculated conc	%BIAS
30	2.711	6.3	0.2	1.937	23.9	3.2	1.636	12.8	0.8
20	2.497	13.2	4.0	1.763	4.3	0.3	1.592	8.2	2.3
15	2.261	6.2	0.263	1.593	5.6	0.3	1.507	9.0	0.2
10	1.835	5.3	-5.0	1.301	0.9	0.368	1.269	6.5	0.5
5	1.235	5.4	5.5	0.749	1.7	-0.697	0.530	9.0	-0.1
1	0.184	0.8	-18.0	0.124	3.6	5.3	0.020	4.2	18.2
0.1	0.035	12.0	16.0	0.020	23.4	-16.0	0.006	16.2	18.6
0.01	0.059	73.8	3133.1	0.012	0	307.5	0.001	Range?	Range?

% CV & Bias around calculated EC-50. Accuracy and precision around the calculated EC-50 values are within acceptable level.

S6 Table.

% CV & Bias around calculated EC-50. Accuracy and precision around the calculated EC-50 values are within acceptable level.

scFv4-2 vs GP _{BDBV}				scFv4-2 vs GP _{RESTV}				scFv4-2 vs GP _{TAFV}		
µg/ml	Mean Absorbance	%CV of calculated conc	%BIAS	Mean Absorbance	%CV of calculated conc	%BIAS		Mean Absorbance	%CV of calculated conc	%BIAS
30	1.838	9.1	-5.1	1.872	8.2	-1.4		1.508	11.2	-4.6
20	1.688	3.0	0.3	1.706	2.1	1.2		1.366	3.1	7.9
15	1.465	1.0	3.6	1.513	12.3	1.9		1.141	1.9	1.0
10	0.813	0.4	-3.0	1.134	0.8	-1.0		0.800	1.7	-6.4
5	0.231	1.5	10.4	0.521	1.0	0.3		0.445	14.3	5.0
1	0.027	9.4	2.7	0.060	9.6	18.7		0.069	11.8	8.9
0.1	0.017	Range?	Range?	0.019	1.8	4.3		0.023	85.0	-24.9
0.01	0.004	Range?	Range?	0.008	Range?	Range?		0.012	Range?	Range?

S7 Table

Apparent affinity and maximal binding of EBOVGP scFvs to GP_{ZEBOV} , GP_{SUDV} , GP_{RESTV} , GP_{BDBV} , GP_{TAFV} and GP_{MARV} .

GP	scF	v4-2	scFv	/22-1	
	K_{d} .app (µg)	K_{d} .app (µg) B_{max} signal (10 ⁵)		B_{max} signal (10 ⁵)	
ZEBOV	4.8 ± 1.5	3.5 ± 0.3	9.3 ± 1.2	3.7 ± 0.2	
SUDV	6.6 ± 0.9	2.8 ± 0.1	10.8 ± 1.6	2.8 ± 0.2	
RESTV	12.2 ± 3.4	2.1 ± 0.2	17.4 ± 4.2	3.2 ± 0.4	
BDBV	15.1 ± 4.8	2.2 ± 0.3	38 ± 23	4.6 ± 1.8	
TAFV	8.2 ± 0.8	2.8 ± 0.1	19.3 ± 4.3	2.7 ± 0.3	
MARV	5.9 ± 1.8	3.8 ± 0.3	10.8 ± 3.8	2.5 ± 0.3	

The values for apparent affinity (K_d , *app*) and maximal binding (B_{max} , shown as relative absorbance units) were derived from the ELISAs with GP_{ZEBOV}, GP_{SUDV}, GP_{RESTV}, GP_{BDBV}, GP_{TAFV} and GP_{MARV}. Values are averages (and ranges) of three experiments.