Science Advances

advances.sciencemag.org/cgi/content/full/5/7/eaaw1888/DC1

Supplementary Materials for

Exercise training improves motor skill learning via selective activation of mTOR

Kai Chen, Yuhan Zheng, Ji-an Wei, Huan Ouyang, Xiaodan Huang, Feilong Zhang, Cora Sau Wan Lai, Chaoran Ren, Kwok-Fai So*, Li Zhang*

*Corresponding author. Email: hrmaskf@hku.hk (K.-F.S.); zhangli@jnu.edu.cn (L.Z.)

Published 3 July 2019, *Sci. Adv.* **5**, eaaw1888 (2019) DOI: 10.1126/sciadv.aaw1888

This PDF file includes:

Fig. S1. Exercise-activated ribosomal protein S6 in motor cortex.

Fig. S2. Exercise-induced neuron activity of cortical pyramidal neurons.

Fig. S3. Calcium spike dynamics of apical tuft and soma of L5PRN.

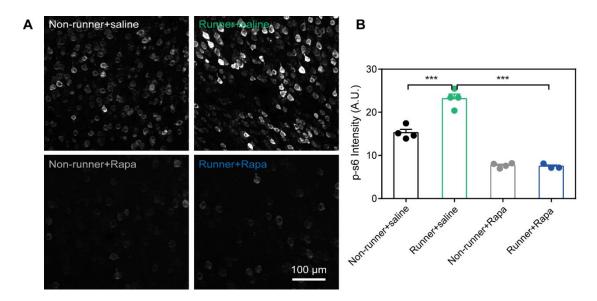
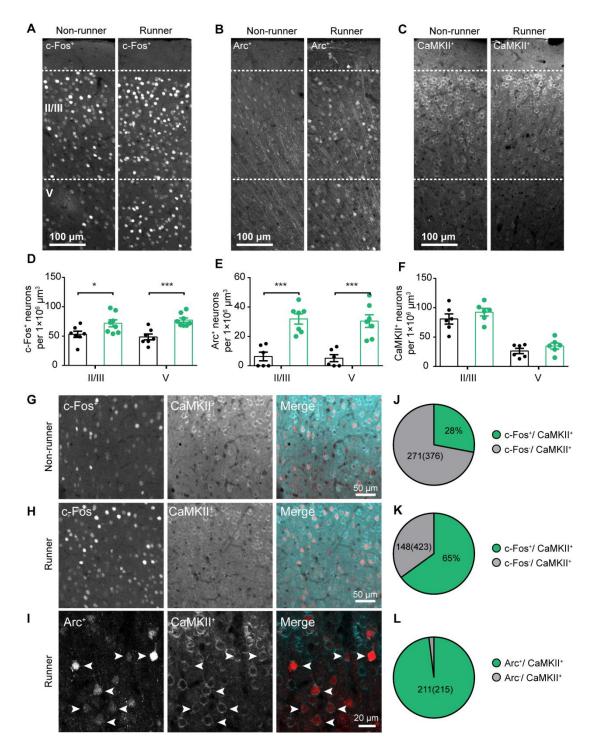

Fig. S4. Calcium transients of L5PRN.

Fig. S5. Subtyping of $BrdU^+$ cells in the CC region.


Fig. S6. Immunofluorescence labeling of BrdU and Olig2 in mouse motor cortex after exercise.

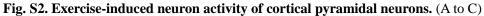
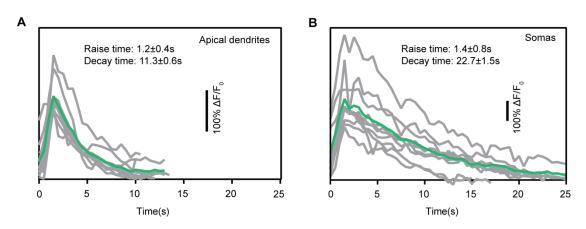
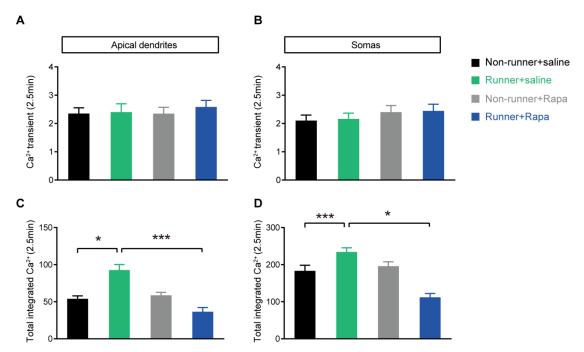

Fig. S7. Energy requirement of cells under exercise.

Table S1. Primary and secondary antibody used in Western blotting and immunofluorescence staining.


Fig. S1. Exercise-activated ribosomal protein S6 in motor cortex. (A) Representative images of immunofluorescent staining showing prominently higher levels of phosphorylated S6 (p-S6) in motor cortex. (B) Quantification of p-S6 fluorescent intensity among four groups (Non-runner: n=4; Runner: n=4; Non-runner + Rapa: n=4; Runner + Rapa: n=3; One-way ANOVA, $F_{3,11}=106.1$, P<0.0001). Runner mice showed significantly higher p-S6 levels than non-runner controls (Tukey's comparison, $q_{11}=11.24$, P<0.0001), and rapamycin injection suppressed p-S6 level $(q_{11}=20.67, P<0.0001)$. ***, P<0.001. Error bar, s.e.m.



Representative immunofluorescent staining images showing the expression of c-Fos (A), Arc (B) and CaMKII (C) in coronal sections of motor cortex between non-runner (n=7) and runner mice (n=8). (D to F) Quantification of positive stained cells in layer II/III and layer V. Runner mice had significantly more c-Fos⁺ neurons comparing to non-runner controls (Unpaired t-test, Layer II/III: $t_{13}=2.317$, P=0.0374; Layer V: $t_{13}=4.669$, P=0.0004; D), and higher levels of Arc expression

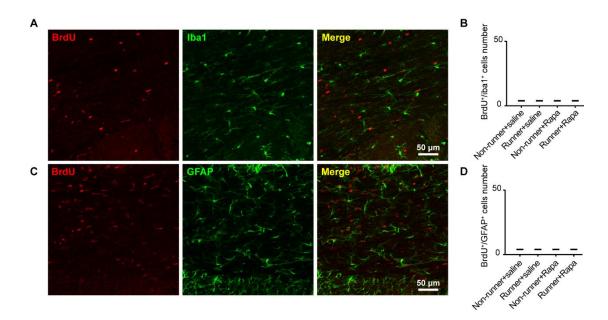

(Unpaired t-test, Layer II/III: t_{11} =5.483, P=0.0002; Layer V: t_{11} =4.921, P=0.0005; E), whilst no change of CaMKII⁺ cell number existed (Unpaired t-test, Layer II/III: t_{10} =1.059, P=0.3145; Layer V: t_{10} =1.251, P=0.2393; F). (G to I) Representative imaging planes for cFos and CaMKII co-labelling in Layer V of motor cortex in non-runner (G) and runner mice (H), and for Arc and CaMKII co-labelling (I). (J to L) Cell counts showed more cFos⁺ cells in CaMKII⁺ neurons after exercise training, and almost all Arc⁺ cells are CaMKII⁺ neurons. *, P<0.05; ***, P<0.001. Error bar, s.e.m.

Fig. S3. Calcium spike dynamics of apical tuft and soma of L5PRN. Representative recording traces (gray) from controlled mice were overlaid with averaged trace (green). In general, calcium spike in soma showed similar rise time but longer decay time comparing to those in apical tuft.

Fig. S4. Calcium transients of L5PRN. (A) Quantification of Ca²⁺ transients within a 2.5-min recording trace in apical dendrites. (B) Quantification of Ca²⁺ transients in somas. No significant change was found in the frequency of calcium transient (Apical dendrite: Kruskal-Wallis test, P=0.5523; Soma: P=0.6453). (C) Total integrated Ca²⁺ levels within a 2.5-min recording trace in apical dendrites. (D) Total integrated Ca²⁺ levels in apical somas. Runner mice (n=6) showed significantly higher total integrated Ca²⁺ (Apical dendrite: $F_{3,119}=15.72$, P<0.0001; $q_{119}=7.796$, P<0.0001; Soma: $F_{3,335}=12.69$, P<0.0001; $q_{335}=4.195$, P=0.0169) than non-runner mice (n=4). Such enhancements were further abolished by rapamycin injection. *, P<0.05; ***, P<0.001. Error bars, s.e.m.

Fig. S5. Subtyping of BrdU⁺ **cells in the CC region.** Double fluorescent labelling showed barely any microglial cells (A and B) or astrocytes (C and D) that were $BrdU^+$ cells.

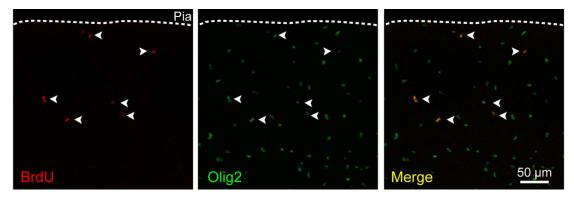
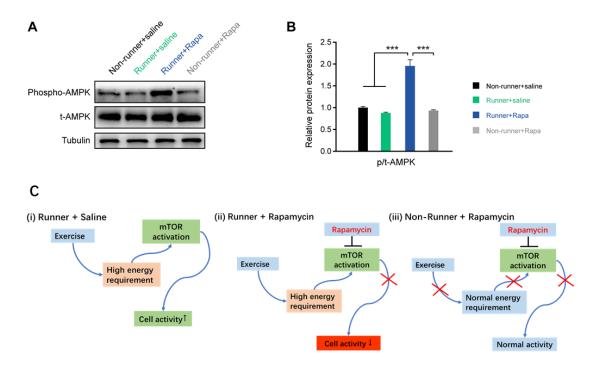



Fig. S6. Immunofluorescence labeling of BrdU and Olig2 in mouse motor cortex after exercise. Most of $BrdU^+$ cells were OLs.

Fig. S7. Energy requirement of cells under exercise. (A) Representative Western blotting bands and (B) Quantitative analysis of p-AMPK in mouse motor cortex. Exercise + rapamycin mice presented significantly higher p-AMPK level than other groups ($F_{3,12}$ =184.8, P<0.0001). n=4 per group. (C) A proposed working model for exercise, mTOR and cell activity. Rapamycin can suppress the exercise-activated mTOR pathway, making it unable to satisfy energy requirements of cells under exercise paradigms. In non-runner mice, however, mTOR suppression may not affect basal levels of cell activity due to the normal energy requirement, which does not require mTOR activation.

Table S1. Primary and secondary antibody used in Western blotting and

immunofluorescence	staining.
--------------------	-----------

	Primary antibody	Host	Company	Dilution	Catalog #
Western blotting (WB)	BDNF	Mouse	Millipore	1:1000	MABN114
	Phospho-TrkB (Tyr816)	Rabbit	CST	1:1000	4168
	Trkb	Rabbit	CST	1:1000	4603
	Phospho-AKT (Ser473)	Rabbit	CST	1:1000	4060
	АКТ	Rabbit	CST	1:1000	9272
	Phospho-mTOR (Ser2448)	Rabbit	CST	1:1000	2971
	mTOR	Rabbit	CST	1:1000	2972
	Phospho-s6 (Ser240/244)	Rabbit	CST	1:1000	2215
	s6	Rabbit	CST	1:1000	2217
	4E-BP2	Rabbit	CST	1:1000	2845
	PSD95	Rabbit	CST	1:1000	3450
	Synaptophysin	Rabbit	CST	1:1000	5461
	SNAP25	Rabbit	CST	1:1000	5308
	Actin	Rabbit	CST	1:1000	8457
	β-Tubulin	Rabbit	CST	1:1000	2146
	Phospho- AMPK (Ser485)	Rabbit	CST	1:1000	4184
	АМРК	Rabbit	CST	1:1000	2532
Immuno- fluorescence (IF)	Phospho-s6 (Ser220/244)	Rabbit	CST	1:500	2215
	c-Fos	Guinea pig	SY SY	1:500	226004
	Arc	Rabbit	SY SY	1:1000	156003
	CaMKII	Rabbit	Abcam	1:250	ab5683
	Myelin Basic Protein	Rabbit	Abcam	1:500	ab40390
	BrdU	Rat	Abcam	1:500	ab6326
	Olig2	Rabbit	Abcam	1:500	ab109186
	CC1	Mouse	Calbiochem	1:20	OP80
	PDGFRalpha	Goat	R&D systems	1:500	AF1062
	Ki67	Rabbit	Abcam	1:500	ab15580
	lba1	Rabbit	Wako	1:1000	019-19741
	GFAP	Mouse	Millipore	1:500	MAB360
Secondary	Goat Anti-Rabbit IgG H&L (HRP)	-	Abcam	1:5000	ab6721
antibody (WB)	Rabbit Anti-Mouse IgG H&L (HRP)	-	Abcam	1:5000	ab6728
Secondary antibody (IF)	Goat Anti-Rabbit (Alexa Fluor® 488)	-	Abcam	1:500	ab150077
	Goat Anti-Rabbit (Alexa Fluor® 594)		Abcam	1:500	ab150080
	Goat Anti-Mouse (Alexa Fluor® 488)	-	Abcam	1:500	ab150113
	Rabbit Anti-rat (Alexa Fluor® 555)	-	CST	1:500	4417
	Goat anti-Guinea Pig (Alexa Fluor® 488)	-	Invitrogen	1:500	A-11073
	Donkey anti-Goat (Alexa Fluor® 488)	-	Invitrogen	1:500	A32814