Science Advances

advances.sciencemag.org/cgi/content/full/5/7/eaax0250/DC1

Supplementary Materials for

Single-base mapping of m⁶A by an antibody-independent method

Zhang Zhang, Li-Qian Chen, Yu-Li Zhao, Cai-Guang Yang, Ian A. Roundtree, Zijie Zhang, Jian Ren, Wei Xie, Chuan He, Guan-Zheng Luo*

*Corresponding author. Email: luogzh5@mail.sysu.edu.cn

Published 3 July 2019, *Sci. Adv.* **5**, eaax0250 (2019) DOI: 10.1126/sciadv.aax0250

This PDF file includes:

Fig. S1. Quantitative demonstration of various fractions of m⁶A-containing oligo mixed with unmethylated oligo digested by ChpBK.

Fig. S2. FTO demethylate assay.

Fig. S3. The base composition of mRNA products cleaved by MazF.

Fig. S4. The single-site validation for 18S rRNA control site and m⁶A site.

Fig. S5. The single-site validation of eight m⁶A sites and one unmethylated site.

Fig. S6. Quantitative PCR results of six m⁶A sites.

Fig. S7. Metagene plots of m⁶A in mouse heart and mouse testis.

Fig. S8. Conservation of m⁶A in mammalian kidney.

Fig. S9. Conservation of m⁶A in mammalian liver.

Fig. S10. Gene expression and the expected number of shared m⁶A-modified genes.

Fig. S11. Evolutionary conservation between methylated and unmethylated A sites in the same genes of brain tissue.

Fig. S12. Evolutionary conservation between methylated and unmethylated A sites in the same genes of kidney tissue.

Fig. S13. Evolutionary conservation between methylated and unmethylated A sites in the same genes of liver tissue.

Fig. S14. Conservation scores for brain.

Fig. S15. Validation for the methylation sensitivity of mutated MazF-K56A.

Table S1. Basic information of sequencing data for human HEK293T cell line.

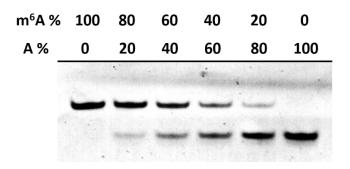
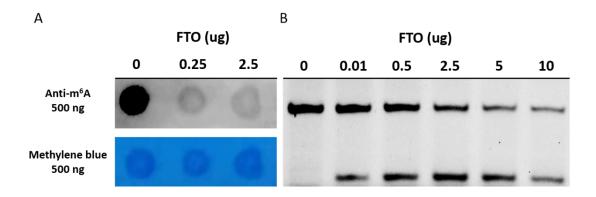
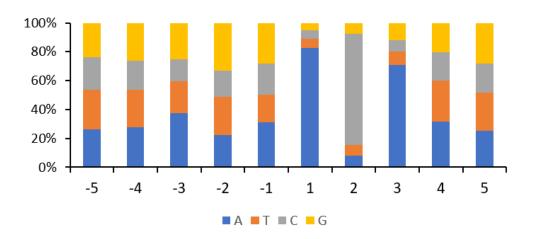
Table S2. Designed probes and universal primers for T3 ligase-based validation.

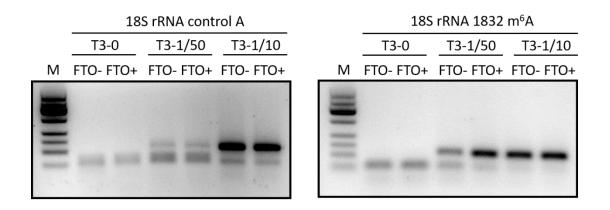
Table S3. Designed primers for Quantitative PCR validation.

Table S4. Basic information of sequencing data for mammalian tissues.

Table S5. m⁶A sites identified by m⁶A-REF-seq for mammalian tissues.

Table S6. Shared m⁶A-modified genes and m⁶A sites between pairwise species and the significance.


Fig. S1. Quantitative demonstration of various fractions of m⁶A-containing oligo mixed with unmethylated oligo digested by ChpBK.

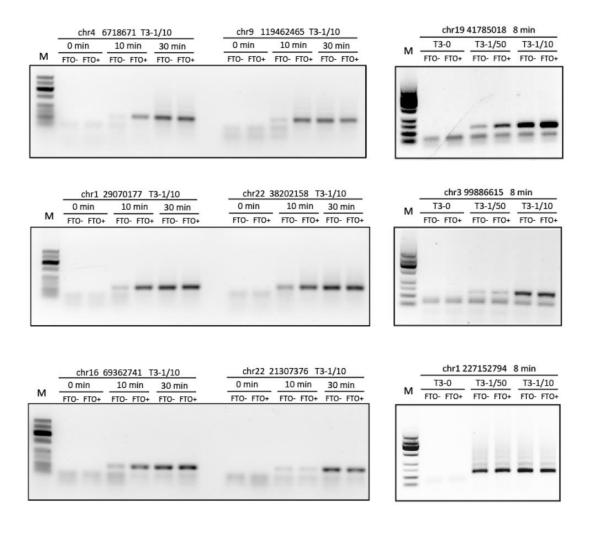
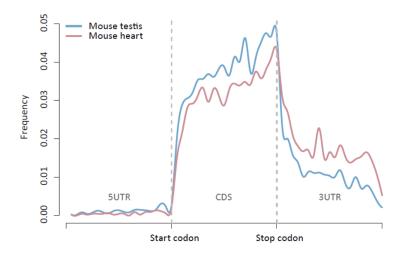
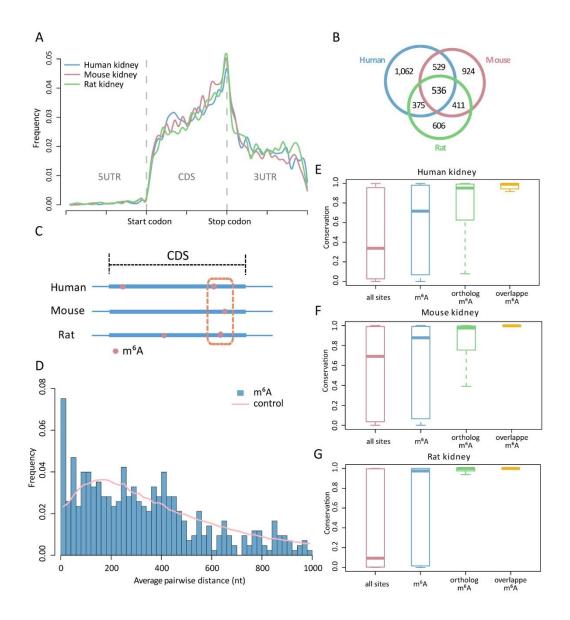
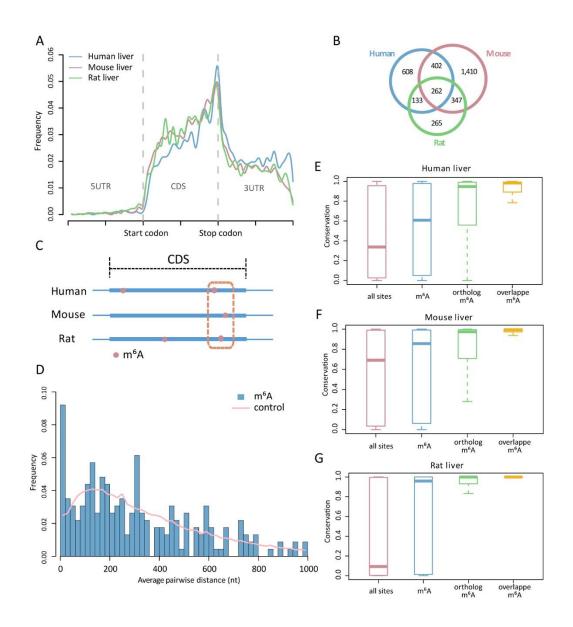

Fig. S2. FTO demethylate assay. (**A**) Dot-blot assay. (**B**) Detection of FTO demethylation reaction with different FTO concentration by MazF cleavage assay.

Fig. S3. The base composition of mRNA products cleaved by MazF. The x-axis indicates the relative position to 5' terminal. Most reads contained the ACA 5' end as shown in the position 1, 2 and 3.

Fig. S4. The single-site validation for 18*S* **rRNA control site and m**⁶**A site.** The ligation reaction with 500 ng total RNA template was performed at room temperature for 10 min. Different amounts (1/10 ul to 1/50 ul) of T3 ligase was used. FTO- indicated the reaction without FTO demethylation while FTO+ indicated the FTO treatment. The 1/50 ul T3 ligase reaction was able to distinguish the m⁶A from A. M indicated the 50 bp marker, ranging from 50 bp to 600 bp.

Fig. S5. The single-site validation of eight m⁶A sites and one unmethylated site. Eight m⁶A sites and one A site (chr22: 21307376) were picked from m⁶A-REF-seq. Six out of eight m⁶A sites were confirmed to be m⁶A sites. The amount of T3 ligase (ul) and ligation time in each reaction were indicated in the figures. FTO- indicated the mRNA without FTO demethylation while FTO+ indicated the FTO treatment. M indicated the 50 bp marker, ranging from 50 bp to 600 bp.

Fig. S6. Quantitative PCR results of six m⁶A sites. H1-H3 were high level methylated sites (> 0.75) while L1-L3 were low level methylated sites (< 0.35). See Supplementary Table S3 for designed primers.

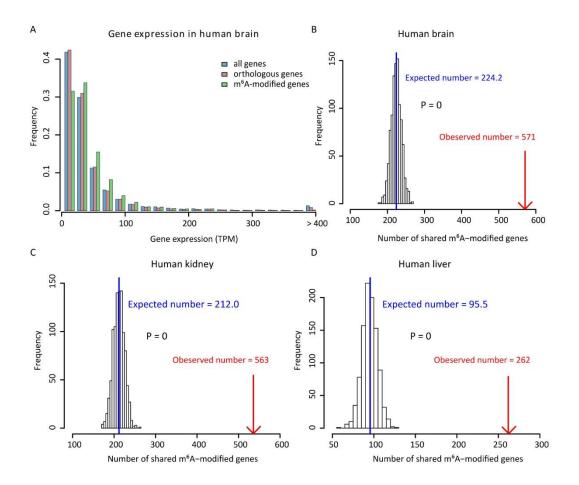

Fig. S7. Metagene plots of m⁶A in mouse heart and mouse testis.

Fig. S8. Conservation of m⁶A in mammalian kidney. (**A**) Metagene plots of m⁶A in the kidney of human, mouse and rat. (**B**) Shared m⁶A-modified genes among three species. (**C**) Diagram showing the m⁶A sites conserved in the corresponding short regions from different species. (**D**) Frequency of distances for pairwise m⁶A in kidney. Randomly picked ACA motifs were assigned for the same analysis as control. (**E-G**) Conservation scores of all m⁶A sites, methylation sites in ortholog genes and conserved m⁶A sites were compared to that for all A sites in ACA motifs (Wilcoxon test, p-values < 2×10^{-7}).

Fig. S9. Conservation of m⁶A in mammalian liver. (**A**) Metagene plots of m⁶A in the liver of human, mouse and rat. (**B**) Shared m⁶A-modified genes among three species. (**C**) Diagram showing the m⁶A sites conserved in the corresponding short regions from different species. (**D**) Frequency of distances for pairwise m⁶A in liver. Randomly picked ACA motifs were assigned for the same analysis as control. (**E-G**) Conservation scores of all m⁶A sites, methylation sites in ortholog genes and conserved m⁶A sites were compared to that for all A sites in ACA motifs (Wilcoxon test, p-values < 0.0003).

Fig. S10. Gene expression and the expected number of shared m⁶A-modified genes. (A) The distribution of gene expressions of all genes, ortholog genes and m⁶A-modified genes in human brain. The tissue specific expression data were obtained from GTEx Analysis V7 (<u>https://www.gtexportal.org/home/datasets</u>). (**B-D**) In order to control the potential detection bias between highly and lowly expressed genes, we ranked the expressions of ortholog genes and divided them into 10 equal-sized bins for random sampling. In each bin, we randomly picked k genes, where k is the number of human m⁶A-modified genes in this bin, and counted the number of mouse and rat m⁶A-modified genes within these k genes; this number represents the expected number of m⁶A-modified genes in the bin that were shared in all three species by chance. This step was performed for all bins and the total number (T) of m⁶A-modified genes in all species by chance was obtained. We repeated this process 1,000 times and plotted the distribution of acquired 1,000 T values. The actual number of shared m⁶A-modified genes among three species in the human brain, kidney and liver (571, 563 and 262, respectively) were significantly greater than expected number from random sampling. Hence, controlling for the potential detection bias does not alter the conclusion that m⁶A-modified genes are evolutionarily conserved.

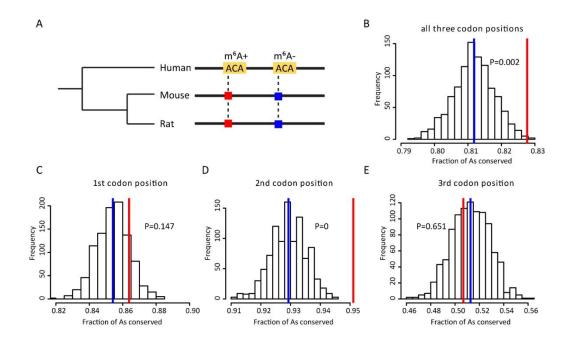
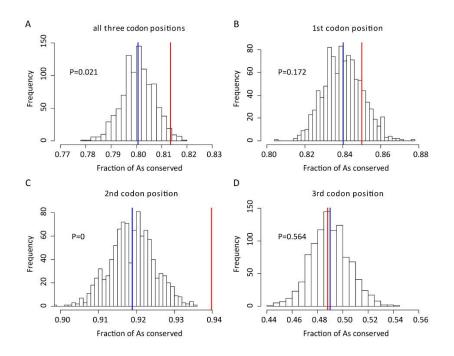



Fig. S11. Evolutionary conservation between methylated and unmethylated A sites in the same genes of brain tissue. (A) Schematic diagram illustrating the evolutionary conservation between methylated (m⁶A+) and unmethylated (m⁶A-) sites in human, mouse and rat. We test whether human m⁶A sites are more likely than unmethylated A to remain A in mouse and rat. The human ACA motifs are highlighted in yellow. The red and blue box indicates the corresponding sites in mouse and rat. (B-E) Frequency distribution of the fraction of conserved human m⁶A- sites in 1,000 random sets with the sample size equal to the number of m⁶A+ sites at all three codon positions (B) or at three codon positions respectively (C-E). Red and blue lines indicate the fraction of conserved m⁶A+ sites and the mean fraction of conserved m⁶A- sites in 1,000 random sets for all positions or individual codon positions concerned. P-value is the fraction of the distribution on the right side of the red line.

Fig. S12. Evolutionary conservation between methylated and unmethylated A sites in the same genes of kidney tissue. Schematic diagram illustrating the evolutionary conservation between methylated (m⁶A+) and unmethylated (m⁶A-) sites in human, mouse and rat is the same as Fig. S11A. Frequency distribution of the fraction of conserved human m⁶A- sites in 1,000 random sets with the sample size equal to the number of m⁶A+ sites at all three codon positions (A) or at three codon positions separately (B-D). Red and blue lines respectively indicate the fraction of conserved m⁶A+ sites and the mean fraction of conserved m⁶A- sites in 1,000 random sets for all positions or individual codon positions concerned. P-value is the fraction of the distribution on the right side of the red line.

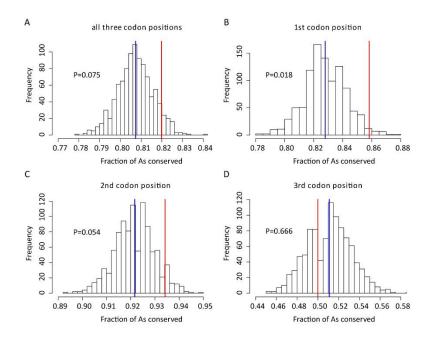
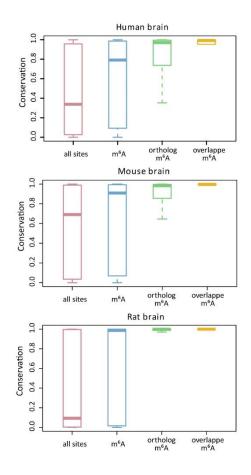
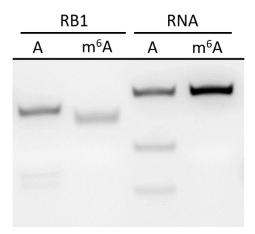




Fig. S13. Evolutionary conservation between methylated and unmethylated A sites in the same genes of liver tissue. Schematic diagram illustrating the evolutionary conservation between methylated (m⁶A+) and unmethylated (m⁶A-) sites in human, mouse and rat is the same as Fig. S11A. Frequency distribution of the fraction of conserved human m⁶A- sites in 1,000 random sets with the sample size equal to the number of m⁶A+ sites at all three codon positions (**A**) or at three codon positions separately (**B-D**). Red and blue lines respectively indicate the fraction of conserved m⁶A+ sites and the mean fraction of conserved m⁶A- sites in 1,000 random sets for all positions or individual codon positions concerned. P-value is the fraction of the distribution on the right side of the red line.

Fig. S14. Conservation scores for brain. Conservation scores of all m^6A sites, methylation sites in ortholog genes and conserved m^6A sites were compared to that for all A sites in ACA motifs (Wilcoxon test, p-values < 9×10^{-10}).

Fig. S15. Validation for the methylation sensitivity of mutated MazF-K56A. Two synthetic RNA oligonucleotides were used as the substrates (RB1 and RNA). The sequences can be found in Methods section.

Replicates	Treatment	Clean data (million reads)	Mapped reads (million reads)	Mean coverage (Q20*)	# covered transcripts
Rep1-MazF	MazF	20.14	15.15	2.96	30,235
Rep1-FTO	FTO-MazF	33.29	24.90	4.14	31,271
Rep2-MazF	MazF	21.02	15.59	2.96	30,338
Rep2-FTO	FTO-MazF	18.49	13.56	2.75	30,614
Rep3-MazF	MazF	23.62	17.67	3.21	30,490
Rep3-FTO	FTO-MazF	15.00	10.19	2.23	30,129

Table S1. Basic information of sequencing data for human HEK293T cell line.

* Q20 indicated mapping quality >= 20.

Table S2. Designed probes and universal primers for T3 ligase–based validation. rG and rU indicates ribonucleotide.

Chr.	Location	Probe	Sequences
chr4	6718671	probe L	CCATAAGCAGGATTTGCAATTCACTTCATACTGGAGGTAAG
emi			ATATCGACCTGTACCTCT
chr4	6718671	probe R	ATCTCATCCCTGCGTGTCAAGTAAACTTTAAAATCCCACACT
		r	CCAACATCATATATrGrU
chr9	119462465 probe L		CACTGAAAGGTGGAGCAGATCCCACTGAAGCATGCACAGT
		1	GATATCGACCTGTACCTCT
chr9	119462465	probe R	ATCTCATCCCTGCGTGTCACTGAGACATAATGTTACGGGAA
			TATGATGTCTTAAATrGrU CCACTGCCGTTGACACTGAAAAGTAAGTAAACGGGGGCCTTG
chr1	29070177	probe L	ATATCGACCTGTACCTCT
			ATCTCATCCCTGCGTGTCGTCCACAGCAGATTTCATTTC
chr1	29070177	probe R	CACGCCACAGAAGTrGrU
			CCGCAAGAAAGACTTCATTGTCACTTCTTCTTGCCGGCCG
chr22	38202158	probe L	ATATCGACCTGTACCTCT
			ATCTCATCCCTGCGTGTCAGAAAATTATTTACAGAAAATAG
chr22	38202158	probe R	GAGACAGGAGGGAGTrGrU
	chr16 69362741	probe L	CCGTAACTGATTTCAGGGCAAACATTTCTGACATCTTCCTGA
chr16			TATCGACCTGTACCTCT
1.10		probe R	ATCTCATCCCTGCGTGTCGGGGGGGGATTTTTCTCCTCAAGTT
chr16	69362741		GTAGCCAACATTTTrGrU
chr22	21307376	probe L	TCATATTCCTCTGAGCAAACATCACAAGAGCAGTGGCCATG
CIII 22	21307370	probe L	ATATCGACCTGTACCTCT
chr22	21307376	probe R	ATCTCATCCCTGCGTGTCTGGCAAAAAACCACATCATCCCTT
011122	21507570	probert	TTCAAAAATAAAATrGrU
chr1	227152794	probe L	GGAGGCTCCGGCTGCATGCGGGACTGAGAAGTGGAACTCC
enn r	22/132/91	proce	GATATCGACCTGTACCTCT
chr1	227152794	probe R	ATCTCATCCCTGCGTGTCGCGCGCTGACTGGTCGGGAGCGGAG
		P	GCTGAAGAGAGTCTrGrU
chr3	99886615	probe L	GGTTCTTCCTAAGTTTTACCCACTTAGGACAAATTTCTTTGA
		1	TATCGACCTGTACCTCT ATCTCATCCCTGCGTGTCCTGCAGATGATCAGCATCAGGAC
chr3	99886615	probe R	CGATTTCTTCTCACTrGrU
			AGACGGAAGGTGCTTCACGGAGATTTCCTCATTGATCTTCG
chr19	41785018	probe L	ATATCGACCTGTACCTCT
			ATCTCATCCCTGCGTGTCGGGGACCAGCCGATACGGACCACG
chr19	41785018	probe R	TGGGGGTCAGGCTCTrGrU
Univers	al primers	FP	CCATCTCATCCCTGCGTGTC
	-		AGAGGTACAGGTCGATATCA
Univers	Universal primers RI		

Chr.	Location	Probe ID	Sequences
chr16	87865500	H1-FP	TGTCACGCTCATGTCCTGTC
chr16	87865500	H1-RP	CACGGGAACAACAGAAACAA
chr6	31130366	H2-FP	TCCTCGGAAGTACCCAGTGA
chr6	31130366	H2-RP	ACATGGAACCAGACGTCACA
chr19	41785018	H3-FP	TTGCATACCTGTGGTCAGGA
chr19	41785018	H3-RP	AGGAGAAAGGCTCTTCGCCT
chr9	131763970	L1-FP	TCCTCACCACTCTAGAGGTG
chr9	131763970	L1-RP	GTTGGTGCTCAGCTGGTACA
chr19	59059888	L2-FP	TCAATGCCTGGACCAAGAGT
chr19	59059888	L2-RP	ATAGCCTTCCTGCACCTCCA
chr16	30537003	L3-FP	TCAACTGGTGTCTGGCTGAT
chr16	30537003	L3-RP	CACCATAGGAGAGTCTCAGT
		Gapdh-FP	TGAGTACGTCGTGGAGTCCA
		Gapdh-RP	TTCACACCCATGACGAACAT

Table S3. Designed primers for Quantitative PCR validation.

Species	Tissue	Treatment	Clean data (million reads)	Mapped reads (million reads)	Mean coverage (Q20*)	# covered transcripts
Human	Brain	MazF	24.62	18.19	2.20	35,285
Human	Brain	FTO-MazF	24.79	18.24	2.11	35,295
Human	Liver	MazF	26.55	19.44	2.43	33,849
Human	Liver	FTO-MazF	27.61	19.92	2.24	33,695
Human	Kidney	MazF	26.58	18.36	2.30	34,859
Human	Kidney	FTO-MazF	23.03	16.48	2.03	34,660
Mouse	Brain	MazF	14.13	7.46	1.82	46,194
Mouse	Brain	FTO-MazF	29.43	17.71	2.52	47,537
Mouse	Liver	MazF	21.53	11.73	2.82	42,522
Mouse	Liver	FTO-MazF	21.05	11.45	2.75	42,194
Mouse	Kidney	MazF	18.71	10.99	2.17	44,831
Mouse	Kidney	FTO-MazF	27.30	15.57	2.48	45,584
Mouse	Heart	MazF	15.76	8.31	1.96	44,363
Mouse	Heart	FTO-MazF	49.02	27.23	6.88	46,070
Mouse	Testis	MazF	17.09	10.41	1.93	52,981
Mouse	Testis	FTO-MazF	25.47	14.83	2.23	53,674
Rat	Brain	MazF	10.90	7.26	1.58	54,593
Rat	Brain	FTO-MazF	12.81	8.14	1.60	55,004
Rat	Liver	MazF	12.55	7.52	2.31	48,170
Rat	Liver	FTO-MazF	15.82	9.75	2.58	48,489
Rat	Kidney	MazF	14.83	9.13	2.06	53,011
Rat	Kidney	FTO-MazF	14.45	8.67	1.93	52,712

* Q20 indicated mapping quality >= 20.

Species	Tissue	# m ⁶ A sites		
Human	Brain	9,244		
Human	Liver	5,312		
Human	Kidney	9,225		
Mouse	Brain	16,161		
Mouse	Liver	8,318		
Mouse	Kidney	7,938		
Mouse	Heart	4,419		
Mouse	Testis	9,456		
Rat	Brain	4,720		
Rat	Liver	3,554		
Rat	Kidney	6,907		

Table S5. m⁶A sites identified by m⁶A-REF-seq for mammalian tissues.

Table S6. Shared m⁶A-modified genes and m⁶A sites between pairwise species and the significance. The hypergeometric test was used to test the significance.

Brain	shared-m ⁶ A genes			Brain	shared-m ⁶ A sites		
	Human	Mouse	Rat		Human	Mouse	Rat
Human		1,456	704	Human		229	105
Mouse	8.6×10 ⁻³¹¹		1,003	Mouse	1.2×10 ⁻²⁶		267
Rat	9.8×10 ⁻¹⁹⁷	2.7×10 ⁻³²²		Rat	2.1×10 ⁻³⁰	1.2×10 ⁻¹⁰⁵	
Kidney	shared-m ⁶ A genes			Kidney	shared-m ⁶ A sites		
	Human	Mouse	Rat		Human	Mouse	Rat
Human		1,065	911	Human		136	108
Mouse	3.2×10 ⁻²²⁸		947	Mouse	5.5×10 ⁻²⁰		190
Rat	5.0×10 ⁻²¹²	1.4×10 ⁻²⁵⁶		Rat	5.0×10 ⁻¹⁷	7.5×10 ⁻⁶⁸	
Liver	shared-m ⁶ A genes			Liver	shared-m ⁶ A sites		
	Human	Mouse	Rat		Human	Mouse	Rat
Human		664	395	Human		97	65
Mouse	2.2×10 ⁻¹⁵⁴		609	Mouse	4.0×10 ⁻²³		158
Rat	4.6×10 ⁻¹³⁹	2.1×10 ⁻²¹³		Rat	2.3×10 ⁻²⁸	3.1×10 ⁻⁸⁰	