Supplementary Information

Human Corneal Expression of SLC4A11, a Gene Mutated in Endothelial Corneal Dystrophies

Darpan Malhotra¹, Sampath K. Loganathan^{1,2}, Anthony M. Chiu¹, Chris M. Lukowski¹ and Joseph R. Casey^{1#}

¹Department of Biochemistry, Membrane Protein Disease Research Group, University of Alberta, Edmonton, Alberta, T6G 2H7, Canada.

²Present address: Lunenfeld-Tanenbaum Research Institute, Toronto, Ontario, Canada

M5G 1X5

*Address Correspondence to:

Dr. Joseph R. Casey
Department of Biochemistry
University of Alberta
Edmonton, Alberta, Canada T6G 2H7

Phone: (780) 492-7203

Email: joe.casey@ualberta.ca

URL: http://www2.biochem.ualberta.ca/CaseyLab/index.php

SUPPLEMENTARY FIGURE LEGENDS

Supplementary Figure S1. Detection ratio of SLC4A11-common antibody vs. SLC4A11-v3 antibody for SLC4A11 v3 protein. HEK293 cells transfected with cDNA encoding SLC4A11 v3 were processed for immunoblots. 5 μ g, 10 μ g and 20 μ g of cell lysate was loaded in duplicates. Blots were probed with SLC4A11-common antibody (α -common) and SLC4A11-v3 (α -v3) antibody. Densitometry quantified the band intensities. Ratio of SLC4A11 band intensity from α -common and α -v3 antibodies was calculated for each amount of total lysate and plotted. Data represent mean \pm SEM from three replicates.

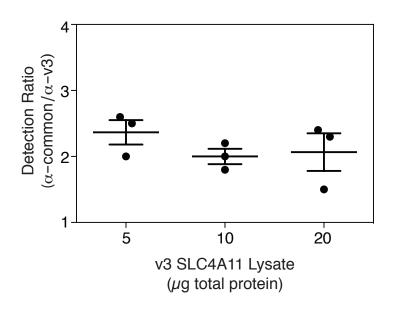
Supplementary Figure S2. Alternative homology model of SLC4A11 v2-M36 and SLC4A11 v3 cytoplasmic domains. Homology models of cytoplasmic domains of (A) SLC4A11 v2-M36 and (B) SLC4A11 v3 generated by Phyre2 fold recognition software, using crystal structure of human erythrocyte Band 3 cytoplasmic domain (PDB: 1HYN) as the template. Unique N-terminal sequence of v3 is highlighted in pink. (C) v2-M36 and v3 models aligned in PyMOL (molecular graphics system version 2.0.7), using segments that were modelled with 100% confidence (R90-P306 for v2-M36, R109-P325 for v3). N_{v2}, N_{v3} and C_{v2}, C_{v3} are the N and C termini for v2-M36 and v3, respectively.

Supplementary Figure S3. Full-length immunoblot images for the data presented in Figure 3. Blots 1 and 2 were probed with α -SLC4A11-common and α -SLC4A11-v3 antibodies, respectively. Blots probed with α -GAPDH antibody are presented below their

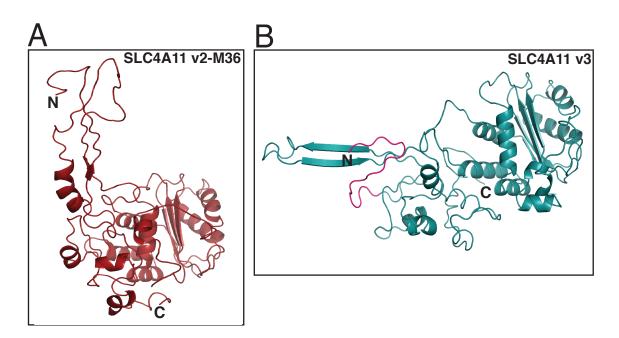
respective samples. Intervening lanes to the left of human cornea lane are shown. MW: Molecular weight.

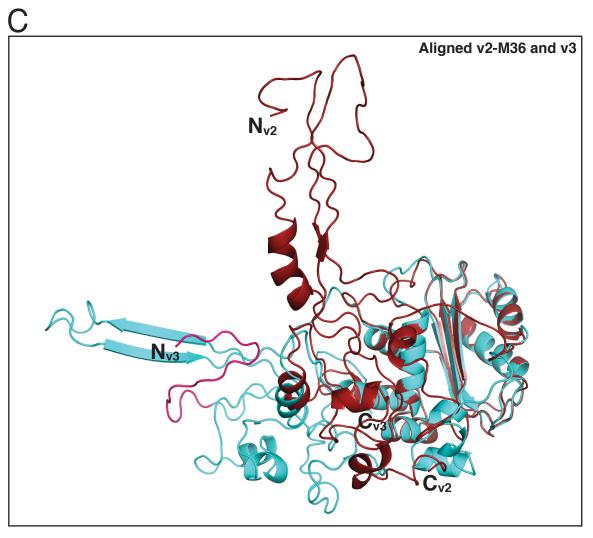
Supplementary Figure S4. Full-length immunoblot images for the data presented in Figure 5A.

Supplementary Figure S5. Full-length immunoblot images for the data presented in Figure 6A.

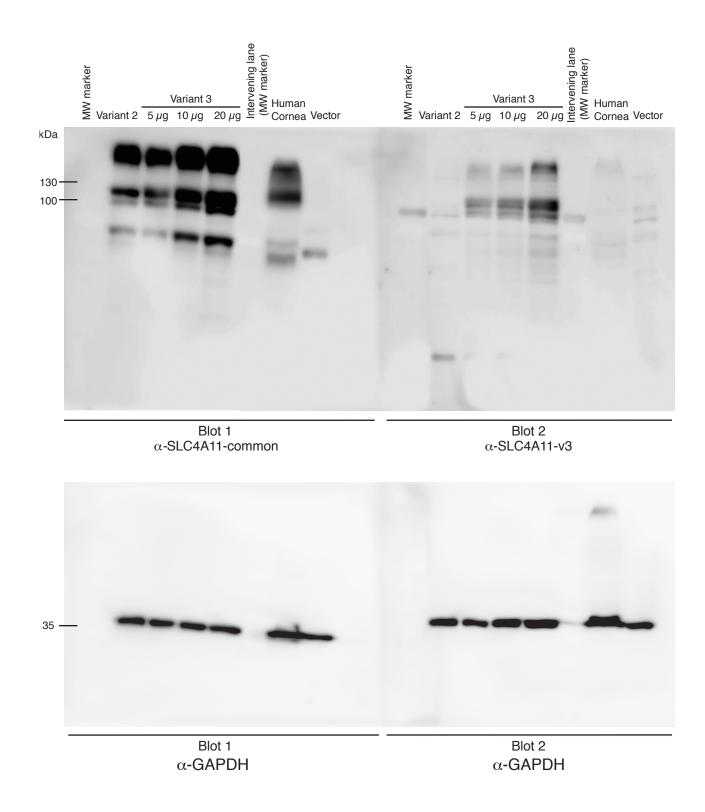

SUPPLEMENTARY TABLES

Supplementary Table S1. Primers for reverse transcription PCR amplification of SLC4A11 transcripts.

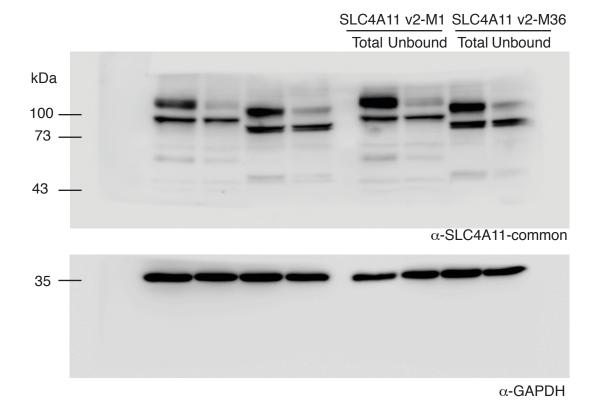

	Forward Primer	Reverse Primer	Product Size (bp)
SLC4A11 Variant 1	5'-GGGCAGGGTTTTCTCAGGAA-3'	5'-CATTCTCAGTGTTGGTGGCCT-3'	244
SLC4A11 Variant 2	5'-GGCTGGTGACCTTTCTGCTT-3'	5'-CATTCTCAGTGTTGGTGGCCT-3'	233
SLC4A11 Variant 3	5'-CAGGCGCGTGTTCCATCTG-3'	5'-CATTCTCAGTGTTGGTGGCCT-3'	233
GAPDH	5'-CAGCCTCAAGATCATCAGCA-3'	5'-TGTGGTCATGAGTCCTTCCA-3'	106

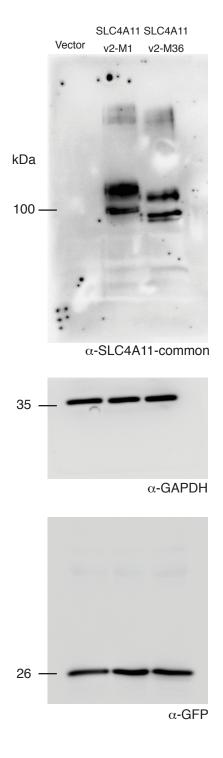

Supplementary Table S2. Review of Human SLC4A11 Variants used in studies from 2001-2019. Studies using different SLC4A11 variants since 2001. Indicated citations can be found in the main references.

SLC4A11 Variant used	Literature Citations with Reference Numbers in Manuscript	
v1	Zhang et al. (2015) ²⁰	
v2-M1	Parker et al. (2001) ⁴⁴ , Park et al. (2004) ²³ , Vithana et al. (2006) ¹⁰ , Riazuddin	
	et al. (2010) ⁵ , Vilas et al. (2011) ²⁹ , Vilas et al. (2012) ²⁸ , Jalimarada et al.	
	(2013) ¹⁶ , Vilas <i>et al.</i> (2013) ¹⁴ , Ogando <i>et al.</i> (2013) ¹⁷ , Loganathan <i>et al.</i>	
	(2014) ¹⁵ , Soumittra <i>et al.</i> (2014) ²⁷ , Roy <i>et al.</i> (2015) ⁴⁵ , Loganathan <i>et al.</i>	
	(2016) ²⁶ , Kao et al. (2016) ⁴⁶ , Guha et al. (2017) ⁴⁷ , Li et al. (2019) ²⁵	
v2-M36	Chiu et al. (2016) ⁴⁸ , Loganathan et al. (2016) ²¹ , Badior et al. (2017) ⁴⁹ , Alka	
	et al. (2018a) ²⁴ , Alka et al. (2018b) ⁵⁰	
v3	Kao et al. (2015) ¹⁸ , Kao et al. (2016) ⁴⁶	



Supplementary Figure S1




Supplementary Figure S2

Supplementary Figure S3

Supplementary Figure S4

Supplementary Figure S5