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SUPPLEMENTARY NOTE 
METABOLIC PROFILING 
We performed an untargeted metabolic profiling with gas chromatography (GC) mass spectrometry (MS) and liquid 
chromatography1 MS for 43 organ donors across five metabolic tissues (intra-abdominal/visceral adipose tissue (VAT), 
liver, pancreatic islets, skeletal muscle and blood serum)1–4. 

SAMPLE PREPARATION 
INTRA-ABDOMINAL/VISCERAL ADIPOSE TISSUE 
500µL of 2/1(v/v) CHCl3:methanol (including D4-Cholic Acid) and, 100µL water (including 13C9-phenylalanine) and 2 
tungsten beads were added to each sample (18-23mg) (Supplementary Note - Metabolic Profiling). The samples were 
shaken at 30Hz for 3 minutes. The tungsten beads were removed, and the samples were left standing at room temperature 
for 30 minutes. The samples were centrifuged at 14000rpm, +4°C for 3 minutes and 80µL of the aqueous phase were 
transferred to Eppendorf tubes. 320µL methanol (including D6-salicylic acid) was added to the Eppendorf tubes, 
whereupon remaining proteins were precipitated at -20°C for 1 hour. The samples were centrifuged for 10 minutes at 
14000rpm, +4°C and 50µL supernatant were taken out to GC vials and 200µL for LC-MS. Solvents were evaporated and 
the samples were stored at -80°C until analysis. 

LIVER, MUSCLE AND PANCREATIC ISLETS 
1000µL (450µL for islets) of extraction buffer (80/20 v/v methanol: water) including internal standards (Supplementary 
Note - Metabolic Profiling) were added to 9-12mg of tissue. The sample was shaken with a tungsten bead in a mixer mill 
at 30Hz for 3 minutes, the bead was removed and the sample was centrifuged at +4°C, 14000rpm, for 10 minutes. The 
supernatant was transferred to micro vials and evaporated to dryness in a speed-vac concentrator. For liver and muscle 
tissues 200µL was used for LCMS and 200µL for GCMS analysis. For islets, 200µL of the supernatant was evaporated for 
LCMS and 100µL for GCMS analysis5,6. 

SERUM 
900 µL of extraction buffer (90/10 v/v methanol: water) including internal standards for both GC-MS and LC-MS 
(Supplementary Note - Metabolic Profiling) were added to 100µL of serum. The sample was shaken at 30Hz for 2 minutes 
in a mixer mill and proteins were precipitated at +4°C on ice. The sample was centrifuged at +4°C, 14000rpm, for 10 
minutes. The supernatant, 200µL for LC-MS analysis and 200µL to GC-MS analysis, was transferred to micro vials and 
evaporated to dryness in a speed-vac concentrator5. 

MASS SPECTROMETRY 
LC-MS 
Before the LC-MS analysis the sample was re-suspended in 10+10µL methanol and water. Each batch of samples was first 
analyzed in positive mode. After all samples within a batch were analyzed, the instrument was switched to negative mode 
and a second injection of each sample was performed. 

The chromatographic separation was performed on an Agilent 1290 Infinity UHPLC-system (Agilent Technologies, 
Waldbronn, Germany). 2μL of each sample were injected onto an Acquity UPLC HSS T3, 2.1×50mm, 1.8μm C18 column in 
combination with a 2.1×5mm, 1.8μm VanGuard precolumn (Waters Corporation, Milford, MA, USA) held at 40°C. The 
gradient elution buffers were A (H2O, 0.1% formic acid) and B (75/25 acetonitrile:2-propanol, 0.1% formic acid), and the 
flow-rate was 0.5mL/min. The compounds were eluted with a linear gradient consisting of 0.1-10% B over 2 minutes, B 
was increased to 99% over 5 minutes and held at 99% for 2 minutes; B was decreased to 0.1% for 0.3 minutes and the 
flow-rate was increased to 0.8mL/min for 0.5 minutes; these conditions were held for 0.9 minutes, after which the flow-
rate was reduced to 0.5mL/min for 0.1 minutes before the next injection. 
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The compounds were detected with an Agilent 6550 Q-TOF mass spectrometer equipped with a jet stream electrospray 
ion source operating in positive or negative ion mode. The settings were kept identical between the two modes, with the 
difference lying in the capillary voltage. A reference interface was connected for accurate mass measurements; the 
reference ions purine (4μM) and HP-0921 (Hexakis(1H, 1H, 3H-tetrafluoropropoxy)phosphazine) (1μM) were infused 
directly into the MS at a flow rate of 0.05 mL/min for internal calibration, and the monitored ions were purine m/z 121.05 
and m/z 119.03632; HP-0921 m/z 922.0098 and m/z 966.000725 for positive and negative mode respectively. The gas 
temperature was set to 150°C, the drying gas flow to 16L/min and the nebulizer pressure 35psig. The sheath gas 
temperature was set to 350°C and the sheath gas flow 11L/min. The capillary voltage was set to 4000V in positive ion 
mode, and to 4000V in negative ion mode. The nozzle voltage was 300V. The fragmentor voltage was 380V, the skimmer 
45V and the OCT 1 RF Vpp 750V. The collision energy was set to 0V. The m/z range was 70-1700, and data was collected 
in centroid mode with an acquisition rate of 4 scans s-1 (1977 transients/spectrum). 

GC-MS 
Derivatization and GC-MS analyses were performed as described previously5. The pancreatic islets and the VAT were 
derivatized in a final volume of 30µL, rather than 90µL, which was used for all the other tissues. 1μL of the derivatized 
sample was injected in splitless mode by a CTC Combi Pal autosampler (CTC Analytics AG, Switzerland) into an Agilent 
6890 gas chromatograph equipped with a 10m×0.18mm fused silica capillary column with a chemically bonded 0.18μm 
DB 5-MS UI stationary phase (J&W Scientific). 

The injector temperature was 270°C, the purge flow rate was 20mL/min and the purge was turned on after 60 seconds. 
The gas flow rate through the column was 1mL/min, the column temperature was held at 70°C for 2 minutes, then 
increased by 40°C/min to 320°C, and held there for 2 minutes. The column effluent was introduced into the ion source of 
a Pegasus III time-of-flight mass spectrometer, GC/TOFMS (Leco Corp., St Joseph, MI, USA). The transfer line and the ion 
source temperatures were 250°C and 200°C, respectively. Ions were generated by a 70eV electron beam at an ionization 
current of 2.0mA, and 30spectra/s were recorded in the mass range m/z 50-800. The acceleration voltage was turned on 
after a solvent delay of 150 seconds. The detector voltage was 1500-2000V. 

TARGETED DATA PROCESSING 
LC-MS 
For LC-MS, all the data processing was performed using the Agilent Masshunter Profinder version B.08.00 (Agilent 
Technologies Inc., Santa Clara, CA, USA). For the targeted data processing, a pre-defined list of metabolites commonly 
found in plasma and serum were searched for using the Batch Targeted feature extraction in Masshunter Profinder. An-
in-house LC-MS library built up by authentic standards run on the same system with the same chromatographic and mass-
spec settings, were used for the targeted processing. The identification of the metabolites was based on MS, MSMS and 
retention time information. Multivariate statistical tests were performed to investigate the potential effect of run-order 
to the metabolite intensities (SIMCA v13.0.2, Umetrics, Umeå, Sweden). 

GC-MS 
For the GC-MS data, all non-processed MS-files from the metabolic analysis were exported from the ChromaTOF software 
in NetCDF format to MATLAB® R2016a (Mathworks, Natick, MA, USA), where all data pre-treatment procedures, such as 
base-line correction, chromatogram alignment, data compression and Multivariate Curve Resolution were performed 
using custom scripts. The extracted mass spectra were identified by comparisons of their retention index and mass spectra 
with libraries of retention time indices and mass spectra7. Mass spectra and retention index comparison was performed 
using the NIST MS 2.0 software. Annotation of mass spectra was based on reverse and forward searches in the library. 
Masses and ratio between masses indicative of a derivatized metabolite were especially notified. If the mass spectrum 
according to SMC’s experience was with the highest probability indicative of a metabolite and the retention index between 
the sample and library for the suggested metabolite was ±5 (usually less than 3) the deconvoluted “peak” was annotated 
as an identification of a metabolite. Multivariate statistical tests were performed to investigate the potential effect of run-
order to the metabolite intensities (SIMCA v13.0.2, Umetrics, Umeå, Sweden). 
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SOLVENTS 
Methanol, HPLC-grade was obtained from Fischer Scientific (Waltham, MA, USA). Chloroform, Suprasolv for GC was 
obtained from Merck (Darmstadt, Germany). Acetonitrile, HPLC-grade was obtained from Fischer Scientific (Waltham, MA, 
USA). 2-Propanol, HPLC-grade was obtained from VWR (Radnor, PA, USA). H2O, Milli-Q. 

REFERENCE AND TUNING STANDARDS 
Purine, 4 μM, Agilent Technologies (Santa Clara, CA, USA). HP-0921 (Hexakis(1H,1H,3H-tetrafluoropropoxy)phosphazine), 
1 μM, Agilent Technologies (Santa Clara, CA, USA). Calibrant, ESI-TOF, ESI-L Low Concentration Tuning Mix, Agilent 
Technologies (Santa Clara, CA, USA). HP-0321 (Hexamethoxyphosphazine), 0.1 mM, Agilent Technologies (Santa Clara, CA, 
USA). 

STABLE ISOTOPES FOR INTERNAL STANDARDS 
LC-MS INTERNAL STANDARDS 
13C9-Phenylalanine, 13C3-Caffeine, D4-Cholic acid, D8-Arachidonic Acid, 13C9-Caffeic Acid were obtained from Sigma (St. 
Louis, MO, USA). 

GC-MS INTERNAL STANDARDS 
L-proline-13C5, alpha-ketoglutarate-13C4, myristic acid-13C3, cholesterol-D7 were obtained from Cil (Andover, MA, USA). 
Succinic acid-D4, salicylic acid-D6, L-glutamic acid-13C5,15N, putrescine-D4, hexadecanoic acid-13C4, D-glucose-13C6, D-
sucrose-13C12 were obtained from Sigma (St. Louis, MO, USA). 

OVERVIEW FOR METABOLIC PROFILING 
Raw intensities of internal standards (IS) from serum and VAT differed from those of pancreatic islets, liver and muscle in 
LC-MS (Supplementary Figure S2). In GC-MS this applied only to VAT, while IS for serum were similar to the other tissues 
(Supplementary Figure S3). IS within VAT in LC-MS showed larger variability (18-30%) when compared to IS within other 
tissues (Supplementary Figure S2), albeit this did not apply to GC-MS (Supplementary Figure S3). The differences and 
variations in IS intensities were most likely due to the different metabolite extraction protocols applied to VAT, serum and 
the other tissues (Supplementary Note – Sample Preparation). Nevertheless, the relative standard deviation of the 
intensities in LC-MS was below 20% for all IS that ionize well in the respective mode. The difference between the 
theoretical and the experimental values for retention time and mass were within accepted limits for LC-MS 
(Supplementary Figures S6 and S7). Only arachidonic acid in LC-MS negative mode for serum deviated among IS 
(Supplementary Figures S6 and S7). This might be caused by another compound in serum eluting at the same time, 
potentially saturating the detector and as a consequence impairing the mass accuracy. Taken together this information 
suggested that despite a limited number of varying compound intensities, we would be able to proceed with the analysis 
after data transformation (cf. Methods - Data Transformation and Normalization). 

An imperceptible number of samples appeared to deviate due to fluctuation of specific metabolites’ intensities, different 
peak shapes or additional peaks on certain mass channels (e.g. Supplementary Figure S4 – Pancreatic Islets positive mode). 
However, this was a consistently negligible number across tissues (Supplementary Figures S4 and S5). The randomized 
running order of samples did not affect the structure of the samples (Supplementary Figures S4 and S6). 

MODENTIFY 
MoDentify is a computational tool that identifies modules of metabolites that are associated with the outcome, in this 
case T2D. In general, it takes advantage of multi-tissue metabolomics cohorts to increase the statistical power and to 
maximize the association of metabolites to the respective outcome. Specifically, it computes partial correlations of pairs 
of metabolites, while regressing out the effect of all the other metabolites present in the set. Strongly connected 
metabolites are then represented in a network that is used to identify the modules of metabolites through a score 
maximization function. Finally, the set of metabolites participating in these modules can be used to explore the 
associations of the outcome to metabolites or modules of metabolites. 
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We applied MoDentify to the unified set of metabolites for all tissues and their covariates8. We first asked MoDentify to 
compute Gaussian graphical models of metabolites and to generate a network of the correlated metabolites (FDR<5%) 
(Supplementary Figures S18 and S19)9. Next, we computed functional modules of metabolites choosing the notion of 
eigenmetabolites as the module representative (FDR<5%) that quantifies the correlation of the module to the outcome. 
Finally, the network was imported in Cytoscape and taxa of metabolites of interest (e.g. AAs, Lipids) were highlighted 
(Figure 4). 

PATHWAY AND TAXONOMY ENRICHMENT ANALYSIS 
We used the human metabolome database (HMDB)10 identifiers of significant metabolites (Mann-Whitney U test 
permuted p-value£0.1 or fold-change 50%) from each tissue to explore the classification, pathway and biological roles 
enrichment using MBROLE 2.0 (Supplementary Tables S4, S5 and S6)11. We used the full set of metabolites for homo 
sapiens as background. 

MULTIVARIATE STATISTICAL ANALYSIS 
We prepared datasets that contained samples in the rows and metabolites (variables) in the columns for each tissue. The 
last column was added to the dataset and contained the decision: ND for don-diabetes or T2D for type 2 diabetes. We 
averaged duplicate variables detected by different MS methods12. Next we ran Boruta with a different seed for each tissue 
(Supplementary Table S8)13. We restricted Boruta on 10000 iterations and forced it to record intermediate randomization 
results of the quality-control features in order to allow visual exploration of the selected features (Supplementary Figure 
S20). 

RULE-BASED CLASSIFICATION 
ROSETTA14 is founded in the theory of rough sets15. It generates minimal IF-THEN rule-based models from decision tables 
where rows are objects (e.g. samples) and columns are pairs of measured variables (features, attributes) with their values 
(e.g. a metabolite and its level for the sample) while the last column is the outcome (also known as decision), here type 2 
diabetes or Non-diabetes. A sample rule may be of the form: 

IF metabolite-1 is DOWN AND metabolite-32 is UNCHANGED AND metabolite-230 is UP THEN outcome=T2D 

The pairs are called descriptors. 

Rule-based models belong to the family of so-called transparent machine learning models with decision trees16 being 
another well-known member of this family. These models are legible and have the advantage of explicitly defining the 
outcome in the terms of variables and their values. Several statistical quality measures may be associated with rules and 
rule models. In this work we have used an R wrapper implementation17 of the ROSETTA system. 

IF-THEN rules are characterized by the left-hand support (LHS) and right-hand support (RHS). LHS stands for the number 
of objects (samples) that satisfy the IF part of the rule. RHS stands for the number of objects (samples) that satisfy the IF 
and the THEN part of the rule. However, given that there might be objects that satisfy the IF part of the rule (LHS) but their 
observed decision does not follow the one that the rule has (LHS≠RHS), we calculate rule accuracy (RA). RA stands for the 
ratio of RHS over LHS. The quality of each rule is additionally assessed by a p-value that is derived from a hypergeometric 
distribution. 

Transparent models not only offer predictions and classification, but also they can be studied in detail since non-experts 
easily read rules. Another property of rule-based models that makes them attractive is the possibility of studying 
interactions between the descriptors, eg. pairs of metabolite and their levels associated to the type 2 diabetes outcome. 
This possibility is explored by the VisuNet rule network visualization package18. 

Since some problems in genomics may be computationally prohibitively expensive due to very high dimensionality (much 
fewer samples than variables (n<<p)), there is a need for methods that select the most informative set of variables that 
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best at predicting the outcome. This step, also known as feature or variable selection, was performed with Boruta 
(Supplementary Note - Multivariate Statistical Analysis)13. 

Here we used the set of features that Boruta marked as “Confirmed” or “Tentative” (Supplementary Figure S20). We next 
used these datasets and developed tissue-specific models. We aimed at exploring the combinatorics of sets of metabolites 
that predict Non-Diabetes or type 2 diabetes in various tissues. ROSETTA requires data to be discretized, and here applied 
equal frequency binning to split metabolite values into ranges containing an equal number of samples. ROSETTA was run 
in default settings except from the number of cross-validation to be performed that was set to 5 due to the limited number 
of samples, and the fallback classification class that was set to type 2 diabetes. The quality of the rule-based classifier was 
verified by classic machine learning metrics such as accuracy and receiver operating characteristic (ROC) area under the 
curve (AUC) (Supplementary Table S8). 

VisuNet (http://bioinf.icm.uu.se/~visunet/index.php) is a package to display rule networks18. Nodes of the networks are 
descriptors and edges are put between the nodes that co-occur in a rule. Several numerical values may be associated to 
edges and nodes. The more often a pair of descriptors co-occurs in rules and the higher is the accuracy of these rules, the 
thicker is the edge. And if the descriptor occurs in many rules, the size of the node grows. Rule networks help discover 
which descriptors may be central in defining the outcome and which descriptors may interact. 

In our study, VisuNet was provided with the set of statistically significant rules from ROSETTA (p-value < 0.1) and with the 
following settings: File format: Line-by-line; Minimum Accuracy: 0.1; Minimum Support: 1; Threshold (%): 100; Color of 
Nodes: Level of gene expression. Visualizations from VisuNet are shown in (Supplementary Figure S21).  
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SUPPLEMENTARY FIGURES 

 

Supplementary Figure S1: Principle component analysis (PCA) plots for the 2 first principle components of log2 
transformed and scaled to μ=0 and σ=1 metabolite intensities for Controls, Pre-diabetes and Type-2 Diabetes. The five 
tissues are shown in the rows. A) Data not corrected for cofactors; B) Data corrected for BMI, Age, Gender and Sample 
Weight; C) Data corrected for BMI, Age, Gender, Sample Weight, GSIS and HbA1c.  
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Supplementary Figure S2: Intensity (area) for various internal standards (name of compound mentioned in each plot) in 
all tissues for LC-MS in A-D) negative and E-F) positive mode. Note that VAT is abbreviated with “F”, pancreatic islets with 
“I”, liver with “L”, muscle with “M” and serum with “S”.  
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Supplementary Figure S3: Intensity (area) for internal standards (Sucrose-13C12-8TMS) for GC-MS. Note that VAT is 
abbreviated with “F”, pancreatic islets with “I”, liver with “L”, muscle with “M” and serum with “P”.  
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Supplementary Figure S4: Principle component analysis (PCA) plots for the two first principle components of raw 
metabolite intensities in LC-MS for each tissue (rows) color-coded for run-order (Supplementary Methods – Metabolic 
Profiling). A) LC-MS negative mode; B) LC-MS positive mode.  
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Supplementary Figure S5: Principle component analysis (PCA) plots for the two first principle components of raw 
metabolite intensities in GC-MS for each tissue (rows) color-coded for run-order (Supplementary Methods – Metabolic 
Profiling).  
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Supplementary Figure S6: Difference (delta – Δ) between theoretical and observed retention time in minutes for internal 
standards in LC-MS. A) and B) negative mode; C) and D) positive mode. B) and D) are for VAT, while A) and C) for the other 
four tissues (liver, pancreatic islets, muscle and serum).  
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Supplementary Figure S7: Difference (delta – Δ) between theoretical and observed mass in parts per million for internal 
standards in LC-MS. A) and B) negative mode; C) and D) positive mode. B) and D) are for VAT, while A) and C) for the other 
four tissues (liver, pancreatic islets, muscle and serum).  
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Supplementary Figure S8: Principle component analysis (PCA) plots for the 2 first principle components of log2 
transformed and scaled to μ=0 and σ=1 metabolite intensities for Non-diabetes and Type-2 Diabetes. The five tissues are 
shown in the rows. A) Data not corrected for cofactors; B) Data corrected for BMI, Age, Gender and Sample Weight; C) 
Data corrected for BMI, Age, Gender, Sample Weight, GSIS and HbA1c.  
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Supplementary Figure S9: Statistically significant metabolites when comparing non-diabetes to type 2 diabetes. 
Significance was computed for log2 scaled to μ=0 and σ=1 metabolite intensities. Rows represent metabolites and columns 
tissues. Color coding is based on manually curated classification of the metabolites based on HMDB’s Super Class 
annotation10. A filled black dot states statistical significance (Mann-Whitney U test permuted p-value<0.1; Methods - 
Statistical analysis), while the empty dot shows new metabolites that appeared after correcting for covariates. A) 
Metabolite intensities without covariate correction; B) Metabolite intensities corrected for BMI, Age, Gender and Sample 
Weight; C) Metabolite intensities corrected for BMI, Age, Gender, Sample Weight, HbA1c and GSIS.  
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Supplementary Figure S10: Metabolic taxa (classes) enriched in various tissues. Taxa enrichment was obtained from 
MBROLE2.011 for significant metabolites in the corresponding tissue (Methods - Statistical analysis; Supplementary Note - 
Pathway and taxonomy enrichment analysis). Color-coding is based on FDR corrected p-values (Supplementary Table S3).  
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Supplementary Figure S11: MoDentify correlation matrix for manually annotated classes of metabolites for five metabolic 
tissues (rows and columns) (Supplementary Note - MoDentify)8. Classes belonging to the same tissue are marked in red 
boxes. The count of metabolite pairs correlated within the manually-annotated class (rows and columns) are noted in the 
matrix cells. The color intensity in the heatmap is representative of the number of the correlated compounds within the 
class.  
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Supplementary Figure S12: MoDentify correlation matrix for metabolites’ Super Classes annotated from HMDB for five 
metabolic tissues (rows and columns) (Supplementary Note - MoDentify)8. Super classes belonging to the same tissues are 
marked in red boxes. The count of metabolite pairs correlated within the HMDB-annotated class (rows and columns) are 
noted in the matrix cells. The color intensity in the heatmap is representative of the number of the correlated compounds 
within the class.  
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Supplementary Figure S13: Levels of bile acids across five metabolic tissues. Columns show tissues and rows metabolites. 
The text in each plot shows statistical significance (Mann-Whitney U test permuted p-value) (p-value>0.1 NS; 0.1≥p-
value>0.05 *; 0.05≥p-value>0.01 **; 0.01≥p-value>0.001 ***; 0.001≥p-value ****) between Non-diabetes (ND) and type 
2 diabetes (Methods – Statistical analysis). The second line of the text in each plot shows the mean fold-change. The red 
dot signifies the mean value of the group. Abbreviations: CA = Cholic acid; DCA = Deoxycholic acid; CDCA = 
Chenodeoxycholic acid; G/T = glycine/taurine conjugates. Empty plots mean that the metabolite was not detected in the 
corresponding tissue.  
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Supplementary Figure S14: Levels of selected amino acids (AAs) and products of them (Alanine, Glutamine, 
Glutamate/Glutamic Acid, Glycine, Proline, Serine, Histidine, Kynurenine, Lysine, Methionine, Cysteine and Tryptophan). 
Columns show tissues and rows metabolites. The text shows statistical significance (Mann-Whitney U test permuted p-
value) (p-value>0.1 NS; 0.1≥p-value>0.05 *; 0.05≥p-value>0.01 **; 0.01≥p-value>0.001 ***; 0.001≥p-value ****) between 
Non-diabetes (ND) and type 2 diabetes (Methods – Statistical analysis). The second line of the text shows the mean fold-
change. The red dot signifies the mean value of the group.  
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Supplementary Figure S15: Metabolic pathways enriched in various tissues. Pathway enrichment was obtained from 
MBROLE2.011 for significant metabolites in the corresponding tissue (Methods - Statistical analysis; Supplementary Note - 
Pathway and taxonomy enrichment analysis). Color-coding is based on FDR corrected p-values (Supplementary Table S4).  
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Supplementary Figure S16: Levels of branch-chain amino acids (BCAAs) and aromatic amino acids (AAAs). Columns show 
tissues and rows metabolites. The text shows statistical significance (Mann-Whitney U test permuted p-value) (p-
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value>0.1 NS; 0.1≥p-value>0.05 *; 0.05≥p-value>0.01 **; 0.01≥p-value>0.001 ***; 0.001≥p-value ****) between Non-
diabetes (ND) and type 2 diabetes (Methods – Statistical analysis). The second line of the text shows the mean fold change. 
The red dot signifies the mean value of the group.  
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Supplementary Figure S17: Number of significantly enriched pathways per tissue. Pathways are computed from MBROLE 
2.011 based on collections of significant metabolites for each tissue (Methods - Statistical analysis; Supplementary Note - 
Pathway and taxonomy enrichment analysis). The dot-matrix shows metabolic pathways unique and shared among 
tissues. The bottom-left barplot shows the number of statistically enriched pathways per tissue. The top barplot shows 
the number of shared pathways per intersection/combination.  
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Supplementary Figure S18: Metabolic biological roles enriched in various tissues. Biological roles enrichment was 
obtained from MBROLE2.011 for significant metabolites in the corresponding tissue (Methods - Statistical analysis; 
Supplementary Note - Pathway and taxonomy enrichment analysis). Color-coding is based on FDR corrected p-values 
(Supplementary Table S5).  
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Supplementary Figure S19: All-relevant variables for each tissue that best discern between the decision classes selected 
by Boruta (Supplementary Note - Multivariate Statistical Analysis)13. The color-coding of the boxplots is explained in the 
legend. Confirmed variables are those that are statistically significant when compared to random synthetic variables 
generated by Boruta. The variables marked as tentative are those that are borderline significant, and those marked as 
quality control variables are those that Boruta generates randomly to assess the quality of each experimental variable. 
The red dot shows the mean value of permutations. The x axis shows the importance of the variable which is assessed by 
measuring the loss of the random forest classification accuracy when permuting the variable’s values among objects.  
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Supplementary Figure S20: Visualization of rule-based classifers acquired from ROSETTA with VisuNet14,17,18. ROSETTA was 
ran as described in Supplementary Note - Rule-based Classification and rules were saved in a line-by-line format. Next 
VisuNet was employed to visualize the rule-models. Rows represent tissues. The left column visualizes the combinations 
of metabolites deciding for Non-Diabetes, while the right one for type 2 diabetes in the corresponding tissue. The size of 
the node shows the mean support value. The color of the node shows the level of the metabolite: Green: Low; Grey: 
Medium; Red: High. The border thickness of the node shows the number of rules in which the node participates at. The 
color of the edges implies statistical significance of the connections and it scales from grey to dark red. 
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Supplementary Figure S21: Statistically significant metabolites showing the progression of type 2 diabetes. The leftmost 
column shows a manually curated classification of the metabolites based on HMDB’s Super Class annotation10. Columns 
of the heatmaps show comparison between Controls and Pre-diabetes (N to P) and comparison between Pre-diabetes and 
type 2 diabetes (P to D). A black dot implies statistical significance (Mann-Whitney U test permuted p-value<0.1; Methods 
- Statistical analysis). The background color in the cells represents fold-change level and the color-coding is explained in 
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the legend. A) Metabolite intensities without covariate correction; B) Metabolite intensities corrected for BMI, Age, 
Gender and Sample Weight; C) Metabolite intensities corrected for BMI, Age, Gender, Sample Weight, HbA1c and GSIS.  
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Supplementary Figure S22: Levels of HbA1c (% of mmol/mol) (A and B) and GSIS levels (mmol in liters of glucose) (C and 
D) for A) and C) three phenotypic classes (Controls, Pre-diabetes and Type-2 Diabetes), and B) and D) two phenotypic 
classes (Non-diabetes and Type-2 Diabetes).  
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