Glyoxalase 1 enhances bone marrow progenitor cell therapy for wound healing in diabetic mice.

Hainan Li¹, Megan O'Meara¹,Xiang Zhang¹, Kezhong Zhang^{2,3}, Berhane Seyoum⁴, Zhengping Yi^{1,5}, Randal J. Kaufman⁷, Terrence J. Monks^{1,5}, Jie-Mei Wang^{1,2,6*}. ¹Department of Pharmaceutical Sciences, Eugene Applebaum College of Pharmacy and Health Sciences; ²Center for Molecular Medicine and Genetics; ³Department of Immunology and Microbiology; ⁴Division of Endocrinology, School of Medicine, ⁵Integrated Biosciences; ⁶Cardiovascular Research Institute; Wayne State University, Detroit, MI. ⁷Degenerative Diseases Program, Sanford Burnham Prebys Medical Discovery Institute, La Jolla, CA. Address correspondence to: Jie-Mei Wang, MD PhD Wayne State University Eugene Applebaum College of Pharmacy and Health Sciences Department of Pharmaceutical Sciences 259 Mack Ave, Suite 3122 Detroit, Michigan 48201 Tel: 313-577-1715 Email: jiemei.wang@wayne.edu

Supplementary Figure S1. Immunofluorescent staining of IRE1 α and CD31 of aortas from IRE1^{ECKO} and IRE1^{flox/flox} mice. White arrows indicate IRE1 α in endothelium of aorta isolated from IRE1^{flox/flox} mice. Bar = 200 µm.

 $\label{eq:constraint} \ensuremath{\mathbb{C}}\xspace{2019} American Diabetes Association. Published online at http://diabetes.diabetes.journals.org/lookup/suppl/doi:10.2337/db18-0933/-/DC1 and the state of the state o$

Supplementary Figure S2. Western blot analysis of GLO1 expression level in Ad-IRE1 α or Ad-GFP infected db/db BMPCs with 24 hours of MGO exposure. BMPCs from db/+ mice were culture for 7 days then transfected with adenovirus carrying human IRE1 α (Ad-IRE1 α , 100 MOI, 48 hours) using adenovirus carrying egfp (Ad-GFP, 100 MOI, 48 hours) as controls. GLO1 protein level was analyzed by Western blot assay. n = 5 per group.

 $@2019\ American\ Diabetes\ Association.\ Published\ online\ at\ http://diabetes.diabetes.journals.org/lookup/suppl/doi:10.2337/db18-0933/-/DC1$

Supplementary Figure S3. Glyoxalase 1 (GLO1) expression level in bone marrow-derived progenitor cells (BMPCs) form db/+ mice did not change after MGO exposure. BMPCs from db/+ mice were culture for 7 days then exposed to 10 μ M of MGO for 24 hours. GLO1 protein level was analyzed by Western blot assay, n = 5 per group.

Supplementary	Table	S1.	Key	functional	regions	and	potential	MGO	binding	sites	in	human
IRE1a.												

Feature Key	Position	Description	Sequence
Binding site	599	ATP binding	FDNRDVAV <mark>KR</mark>
Active site	688	Proton acceptor	SLNIVH <mark>R</mark> DL <mark>K</mark>
Binding site	577-585	Nucleotide binding, ATP required	FCP <mark>K</mark> DVLGHG AEGTIVY <mark>R</mark> GM
Mutagenesis	599	K->A: Loss of autophosphorylation & endoribonuclease activity	FDN <mark>R</mark> DVAV <mark>KR</mark>
Mutagenesis	907	K->A: Loss of endoribonuclease activity	L <mark>R</mark> AM <mark>R</mark> N <mark>KK</mark> HH
Modified site	724-729	Phosphorylation sites	GHSFS <mark>RR</mark> SG

Red AA: functional site; highlighted AA: potential MGO binding position.

Supplementary Table S2. Clinical and biochemical characteristics in lean healthy subjects, obese subjects and type 2 diabetic patients.

Characteristics	Lean healthy (LH)	Type 2 diabetes (T2D)
Age (years)	25 ± 2.70	61.5 ± 3.54
Gender (Male/Female)	3/1	1/1
BMI (kg/cm ²)	21.20 ± 2.24	24.65 ± 1.54
Fasting glucose (mg/dl)	86.95 ± 7.28	161.85 ± 85.05
OGTT (2h, mg/dl)	92.60 ± 21.06	215 ± 29.62
HbA1c (%) (mmol/mol))	5.4% (36mmol/mol) ± 0.20	7.90% (63mmol/mol) ± 3.11

Abbreviation: BMI - body mass index. OGTT - oral Glucose Tolerance Test. Values are percentages or mean \pm SD

References

1. Zhang K, Wang S, Malhotra J, Hassler JR, Back SH, Wang G, Chang L, Xu W, Miao H, Leonardi R, Chen YE, Jackowski S, Kaufman RJ: The unfolded protein response transducer IRE1α prevents ER stress-induced hepatic steatosis. The EMBO Journal 2011;30:1357-1375

2. Wang JM, Qiu Y, Yang ZQ, Li L, Zhang K: Inositol-Requiring Enzyme 1 Facilitates Diabetic Wound Healing Through Modulating MicroRNAs. Diabetes 2017;66:177-192

3. Li H, Liu J, Wang Y, Fu Z, Huttemann M, Monks TJ, Chen AF, Wang J-M: MiR-27b augments bone marrow progenitor cell survival via suppressing the mitochondrial apoptotic pathway in type 2 diabetes. American Journal of Physiology - Endocrinology And Metabolism 2017;

4. Dhar A, Dhar I, Desai KM, Wu L: Methylglyoxal scavengers attenuate endothelial dysfunction induced by methylglyoxal and high concentrations of glucose. Br J Pharmacol 2010;161:1843-1856

5. Chen J, Song M, Yu S, Gao P, Yu Y, Wang H, Huang L: Advanced glycation endproducts alter functions and promote apoptosis in endothelial progenitor cells through receptor for advanced glycation endproducts mediate overpression of cell oxidant stress. Mol Cell Biochem 2010;335:137-146

6. Kinsky OR, Hargraves TL, Anumol T, Jacobsen NE, Dai J, Snyder SA, Monks TJ, Lau SS: Metformin Scavenges Methylglyoxal To Form a Novel Imidazolinone Metabolite in Humans. Chem Res Toxicol 2016;29:227-234

7. Wang JM, Tao J, Chen DD, Cai JJ, Irani K, Wang Q, Yuan H, Chen AF: MicroRNA miR-27b rescues bone marrow-derived angiogenic cell function and accelerates wound healing in type 2 diabetes mellitus. Arteriosclerosis, thrombosis, and vascular biology 2014;34:99-109

8. Xue M, Weickert MO, Qureshi S, Kandala NB, Anwar A, Waldron M, Shafie A, Messenger D, Fowler M, Jenkins G, Rabbani N, Thornalley PJ: Improved Glycemic Control and Vascular Function in Overweight and Obese Subjects by Glyoxalase 1 Inducer Formulation. Diabetes 2016;65:2282-2294