Supplementary Information

Iron-dependent histone 3 lysine 9 demethylation controls B cell proliferation and humoral immune responses

Jiang, et al.

Supplementary Figure 1. Involvement of other trace elements and vitamin D in humoral immune response. (a and b) A linear regression model was used to analyze the relationship between trace elements (Magnesium, calcium, manganese, copper, zinc) and MV-specific antibody titers, between vitamin D and MV-specific antibody titers in age≥10 human subjects(a) and age < 10 subjects. (b) Trace elements were checked by ICP-MS, and vitamin D was checked by ELISA. Pearson's correlation test was used to determine the correlation coefficient r. P < 0.05 was considered significant (*P < 0.05, **P < 0.01).

а

Supplementary Figure 2. Gating strategies used for cell sorting. (a) Gating strategy of mature B cells (B220+IgM+IgDhi) in bone marrw, MZB (B220+AA4.1-CD21hiCD23int) and FOB(B220+AA4.1-CD21intCDhi) differentiation in spleen, as presented on Fig. 2a,b. (b) Gating strategy of germinal center B cells (B220+IgDlowFas+GL7+) from wildtype and iron-deficient mice immunized with antigens. as presented on Fig. 2f, g. (c) Gating strategy of B cells and circulating B cells in bone marrow, as presented on Fig. 3a and supplementary Fig. 4. (d) Gating strategy to assess B cell proliferation (divided cells) of isolated B cells from co-transfer mice, as presented on Fig. 3e-h. (e) Gating strategy to assess B cell proliferation of isolated B cells from wildtype C57BL/6 mice. The same strategy was used for the in vitro proliferation assay presented on Fig. 4c, 5c-d, 7a and 8d. (f) Gating strategy of plasma cells for in vitro cultures presented on Fig. 4e.

Supplementary Figure 3. Iron-deficient mouse model. (a) Serum iron levels in the peripheral blood serum of mice that were fed a control diet or an iron-deficient diet for 5 weeks. (b) Flow cytometry of splenocytes from control and iron-deficient mice. The splenocytes were stained with anti-B220 to identify B cells and further stained with anti-IgM and anti-IgD to assess B cell maturation. Evaluation of MZB cells and FOB cells was followed by staining with anti-AA4.1, anti-CD21 and anti-CD23 antibodies. (c) Statistics for the percentage of B cell subsets in the two groups (mean \pm SEM of three mice per group). (d) Results of ELISA to test basal levels of different serum Ig isotypes (mean \pm SEM of four mice per group). *P < 0.05, **P < 0.01, Student's t test.

Supplementary Figure 4. High STEAP3 expression in B cells and B cell differentiation in Steap3-KO mice. (a) STEAP3 expression in primary CD4+ T cells, CD8+ T cells, dendritic cells and B cells purified from the spleens of wild-type C57BL/6J mice (males, 8 weeks old). The expression levels were normalized to GAPDH expression, and the expression level of STEAP3 in primary B cells was set as 1. (b) Relative mRNA expression levels of STEAP1, STEAP2, STEAP3 and STEAP4 in splenic B cells. (c) Evaluation of MZB cells (B220+AA4.1-CD21hiCD23int) and FOB cells (B220+AA4.1-CD21hiCD23hi) in the spleen (c, left). Identification of mature circulating B cells (B220hi) in bone marrow (c, right). (d) Statistics for the percentage of mature circulating B cells in bone marrow and the percentage of splenic B and T cells in the two groups (mean \pm SEM of three mice per group). (e) Flow cytometry of splenocytes from recipient mice was conducted to compare CD45.1+ wild-type B cells with CD45.2+ wild-type or Steap3-KO B cells. (f) Statistics for the percentage of CD45.1+ or CD45.2+ MZB cells and FOB cells in the spleens of different recipient mice (mean \pm SEM of three mice per group). *P < 0.05, **P < 0.01, Student's t test.

Supplementary Figure 5. Impaired B and T Cell proliferation under iron-deficient conditions in response to various stimulations. (a) Clonal expansion of B cells that were unstimulated or stimulated with anti-CD40 (1 µg/ml), anti-IgM (10 µg/ml) or LPS (2 µg/ml) for 48 h in the presence of DFO (20 µM), DFO and FAC (100 µM) or FAC (100 µM) alone in normal medium. Images were acquired using an Axio Observer.A1 microscope (Zeiss). (b) Splenic B cells were stimulated with anti-IgM (BCRs, 10 µg/ml) or LPS (TLRs, 2 µg/ml), and T cells were stimulated with anti-CD3 (TCRs, 1 µg/ml) in the presence of different concentrations of DFO. Proliferation was assessed by CFSE dilution 72 h later, and the percentage of divided cells in the absence of DFO was set as 1. (c) Cyclin E1 induction were measured by qRT-PCR in control and iron-deficient T cells (20µM DFO) that were unstimulated or stimulated with anti-CD3 (1 µg/ml). Data were representative of two independent experiments. *P < 0.05, **P < 0.01, Student's t test.

b

Supplementary Figure 6. Iron is not required for induction of cell cycle-related genes during early stage of B cell proliferation. (a and b) qRT-PCR analysis of the expression of a set of cell cycle-related genes and B cell survival-related Bcl-xL expression in control and iron-deficient B cells following BCR or TLR stimulation for 4 h (a) and 12 h (b). (c) Control and iron-deficient B cells were unstimulated or stimulated with anti-IgM (10 μ g/ml) or LPS (2 μ g/ml) for 48 h; in the third group, FAC was added to iron-deficient B cells 20 h after stimulation. The mRNA levels of cyclin D2, cyclin E1 and Bcl-xL were measured by qRT-PCR in the three groups. *P < 0.05, **P < 0.01, Student's t test.

Supplementary Figure 7. Cyclin E1 and cyclin D2 induction occur prior to DNA replication in activated B cells. (a) Naive B cells were stimulated with anti-CD40 (1 µg/ml), anti-IgM (10 µg/ml) or LPS (2 µg/ml) for 24 or 28 h, cocultured with 10 µM BrdU for the last 45 min, stained with anti-BrdU and 7AAD, and analyzed by flow cytometry. (b and c) Induction of different cell cycle-related genes at 24 h and 28 h post stimulation. (d) CFSE-labeled splenic B cells from wild-type C57BL/6 mice were infected with cyclin E1 shRNA (two independent sequences) lentivirus, and cell proliferation was analyzed by flow cytometry following anti-IgM (10 µg/ml) or LPS (2 µg/ml) stimulation for 72 h. (e) Statistics for the percentage of B cells that underwent cell division after shRNA-mediated cyclin E1 knockdown. (f) Cyclin E1 and cyclinD2 mRNA expression in cyclin E1 shRNA lentivirus-infected B cells. *P < 0.05, **P < 0.01, Student's t test.

Supplementary Figure 8. KDM2B, KDM3B and KDM4C contribute to B cell proliferation to varying degrees. (a) qRT-PCR analysis of JmjC demethylase in control and iron-deficient B cells following BCR or LPS stimulation. The 5 JmjC demethylases induced after 48 h are shown. (b) CFSE-labeled splenic B cells from wild-type C57BL/6 mice were infected with shRNA lentiviruses targeting 5 different JmjC demethylases, and cell proliferation was analyzed by flow cytometry after stimulation with anti-IgM (10 μ g/ml) or LPS (2 μ g/ml) for 72 h. (c) Statistics for the percentage of B cells that underwent cell division under various conditions after shRNA-mediated knockdown of different JmjC demethylases. The data were representative of two independent experiments using two different shRNA target sequences. *P < 0.05, **P < 0.01, Student's t test.

Cyclin E1	Тор	gatcc GGAGGATCATGTTAAACAAAG TTCAAGAGA CTTTGTT
shRNA1	strand	TAACATGATCCTCCTTTTTTg
	Bottom	aattcAAAAAAGGAGGATCATGTTAAACAAAGTTCTCTTGAAC
	strand	TTTGTTTAACATGATCCTCCg
Cyclin E1	Тор	gatccGCTTCTGCTTTGTATCATTTCTTCAAGAGAGAAATGAT
shRNA2	strand	ACAAAGCAGAAGCTTTTTTg
	Bottom	aattcAAAAAAGCTTCTGCTTTGTATCATTTCTCTCTTGAAGAA
	strand	ATGATACAAAGCAGAAGCg
Control	Тор	gatcc GAAACCATGCAAAGTAAGGTT TTCAAGAGA AACCTTA
shRNA	strand	CTTTGCATGGTTTCTTTTTg
	Bottom	aattcAAAAAAGAAACCATGCAAAGTAAGGTTTCTCTTGAAA
	strand	ACCTTACTTTGCATGGTTTCg

Supplementary table 1. shRNA sequences targeting cyclin E1

Annealed top and bottom strands were inserted into pLVX-shRNA1 plasmid, EcoRI and BamHI were used as restriction enzymes.

Supplementary table 2. sequences of the RT-qPCR and ChIP-qPCR primers

Real-time qPCR primer			
Ccnf-F	TCAGGTTCTGTGGAGAAGGC		
Ccnf-R	TTCTGTTGGGGACATCCTTG		
Ccnb2-F	CTTGCAGAGCAGAGCATCAG		
Ccnb2-R	TGAAACCAGTGCAGATGGAG		
Ccne1-F	TCCACGCATGCTGAATTATC		
Ccne1-R	CTCCAGAAAAAGGAAGGCAA		
Ccnd2-F	GAGTGGGAACTGGTAGTGTTG		
Ccnd2-R	CGCACAGAGCGATGAAGGT		
Cdc20-F	TTGGCCATGGTTGGATACTT		
Cdc20-R	GAGTGCTGTGGATGTGCATT		
Ccna2-F	GTGGTGATTCAAAACTGCCA		
Ccna2-R	GGCCAGCTGAGCTTAAAGAA		
Bcl2l1-F	CTGCATTGTTCCCGTAGAGA		
Bcl2l1-R	GGTGAGTCGGATTGCAAGTT		
GAPDH-F	CTAAGGCCAACCGTGAAA		
GAPDH-R	AGAAGGAAGGCTGGAAAA		