Supplementary Information

Iron-dependent histone 3 lysine 9 demethylation controls B
cell proliferation and humoral immune responses

Jiang, et al.
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Supplementary Figure 1. Involvement of other trace elements and vitamin D in humoral immune response. (a and b) A linear
regression model was used to analyze the relationship between trace elements (Magnesium, calcium, manganese, copper, zinc)
and MV-specific antibody titers, between vitamin D and MV-specific antibody titers in age=10 human subjects(a) and age<10
subjects. (b) Trace elements were checked by ICP-MS, and vitamin D was checked by ELISA. Pearson’s correlation test was
used to determine the correlation coefficient r. P < 0.05 was considered significant (*P < 0.05, **P < 0.01).



BM cells spleen cells

mature B

CcD21 l

B220 CD23

FSC-A
FSC-A

re B

B cells

SSC-A B220

IgM l

b spleen cells

GCB
B220 IgD
——
| 5 <D,
M
g —
%) =} @
SSC-A B220 GL7
C spleen cells BM cells
lating mature B
< <
) ) —
n n
L L
SSC-A B220
d livecells , — 1 >
isolated splenic B cells ~ E—
+LPS/anti-IgM stimulation & merged
&
—
c\
g — T 7AAD CFSE '—'Jl l\‘
15) |
- live cells > ij‘ '\
\
CD45.2 Q \ / CFSE
@)
ke
©
7AAD CFSE
€ isolated splenic B cells f isolated splenic B cells
+LPS/anti-IgM stimulation +LPS stimilation
live cells L, ’
divided cells 2 @
g [N T ) plasma cells
(72}
T o
SSC-A 7AAD CFSE CD138

Supplementary Figure 2. Gating strategies used for cell sorting. (a) Gating strategy of mature B cells (B220+IgM+IgDhi) in bone
marrw, MZB (B220+AA4.1-CD21hiCD23int) and FOB(B220+AA4.1-CD21intCDhi) differentiation in spleen, as presented on

Fig. 2a,b. (b) Gating strategy of germinal center B cells (B220+IgDlowFas+GL7+) from wildtype and iron-deficient mice immunized
with antigens. as presented on Fig. 2f, g. (c) Gating strategy of B cells and circulating B cells in bone marrow, as presented on
Fig. 3a and supplementary Fig. 4. (d) Gating strategy to assess B cell proliferation (divided cells) of isolated B cells from
co-transfer mice,as presented on Fig. 3e-h. (e) Gating strategy to assess B cell proliferation of isolated B cells from wildtype
C57BL/6 mice. The same strategy was used for the in vitro proliferation assay presented on Fig. 4c, 5¢c-d, 7a and 8d. (f) Gating
strategy of plasma cells for in vitro cultures presented on Fig. 4e.
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Supplementary Figure 3. Iron-deficient mouse model. (a) Serum iron levels in the peripheral blood serum of mice that

were fed a control diet or an iron-deficient diet for 5 weeks. (b) Flow cytometry of splenocytes from control and iron-deficient
mice. The splenocytes were stained with anti-B220 to identify B cells and further stained with anti-lgM and anti-IgD to
assess B cell maturation. Evaluation of MZB cells and FOB cells was followed by staining with anti-AA4.1, anti-CD21

and anti-CD23 antibodies. (c) Statistics for the percentage of B cell subsets in the two groups (mean + SEM of three

mice per group). (d) Results of ELISA to test basal levels of different serum Ig isotypes (mean £ SEM of four mice
per group). *P < 0.05, **P < 0.01, Student's t test.
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Supplementary Figure 4. High STEAP3 expression in B cells and B cell differentiation in Steap3-KO mice.

(a) STEAP3 expression in primary CD4+ T cells, CD8+ T cells, dendritic cells and B cells purified from the spleens of
wild-type C57BL/6J mice (males, 8 weeks old). The expression levels were normalized to GAPDH expression, and the
expression level of STEAP3 in primary B cells was set as 1. (b) Relative mRNA expression levels of STEAP1, STEAP2,
STEAP3 and STEAP4 in splenic B cells. (c) Evaluation of MZB cells (B220+AA4.1-CD21hiCD23int) and FOB cells
(B220+AA4.1-CD21intCD23hi) in the spleen (c, left). Identification of mature circulating B cells (B220hi) in bone marrow

(c, right). (d) Statistics for the percentage of mature circulating B cells in bone marrow and the percentage of splenic B

and T cells in the two groups (mean + SEM of three mice per group). (e) Flow cytometry of splenocytes from recipient mice
was conducted to compare CD45.1+ wild-type B cells with CD45.2+ wild-type or Steap3-KO B cells. The splenocytes were
further stained with anti-CD21 and anti-CD23 antibodies to evaluate MZB cells and FOB cells. (f) Statistics for the percentage
of CD45.1+ or CD45.2+ MZB cells and FOB cells in the spleens of different recipient mice (mean + SEM of three mice per
group). *P < 0.05, **P < 0.01, Student's t test.
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Supplementary Figure 5. Impaired B and T Cell proliferation under iron-deficient conditions in response to various stimulations.
(a) Clonal expansion of B cells that were unstimulated or stimulated with anti-CD40 (1 pyg/ml), anti-IgM (10 pg/ml) or LPS

(2 pg/ml) for 48 h in the presence of DFO (20 uM), DFO and FAC (100 uM) or FAC (100 yM) alone in normal medium.

Images were acquired using an Axio Observer.A1 microscope (Zeiss). (b) Splenic B cells were stimulated with anti-lgM

(BCRs, 10 pg/ml) or LPS (TLRs, 2 pg/ml), and T cells were stimulated with anti-CD3 (TCRs, 1 yg/ml) in the presence of different
concentrations of DFO. Proliferation was assessed by CFSE dilution 72 h later, and the percentage of divided cells in the
absence of DFO was set as 1. (c) Cyclin E1 induction were measured by gRT-PCR in control and iron-deficient T cells

(20uM DFO) that were unstimulated or stimulated with anti-CD3 (1 pg/ml). Data were representative of two independent
experiments. *P < 0.05, **P < 0.01, Student's t test.
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Supplementary Figure 6. Iron is not required for induction of cell cycle-related genes during early stage of B cell proliferation.
(a and b) gRT-PCR analysis of the expression of a set of cell cycle-related genes and B cell survival-related Bcl-xL expression
in control and iron-deficient B cells following BCR or TLR stimulation for 4 h (a) and 12 h (b). (c) Control and iron-deficient B
cells were unstimulated or stimulated with anti-lgM (10 pg/ml) or LPS (2 ug/ml) for 48 h; in the third group, FAC was added to
iron-deficient B cells 20 h after stimulation. The mRNA levels of cyclin D2, cyclin E1 and Bcl-xL were measured by qRT-PCR

in the three groups. *P < 0.05, **P < 0.01, Student's t test.
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Supplementary Figure 7. Cyclin E1 and cyclin D2 induction occur prior to DNA replication in activated B cells. (a) Naive B
cells were stimulated with anti-CD40 (1 pg/ml), anti-lgM (10 pg/ml) or LPS (2 pg/ml) for 24 or 28 h, cocultured with 10 yM
BrdU for the last 45 min, stained with anti-BrdU and 7AAD, and analyzed by flow cytometry. (b and c) Induction of different
cell cycle-related genes at 24 h and 28 h post stimulation. (d) CFSE-labeled splenic B cells from wild-type C57BL/6 mice
were infected with cyclin E1 shRNA (two independent sequences) lentivirus, and cell proliferation was analyzed by flow
cytometry following anti-lgM (10 pg/ml) or LPS (2 pg/ml) stimulation for 72 h. (e) Statistics for the percentage of B cells that
underwent cell division after shRNA-mediated cyclin E1 knockdown. (f) Cyclin E1 and cyclinD2 mRNA expression in cyclin E1
shRNA lentivirus-infected B cells. *P < 0.05, **P < 0.01, Student's t test.
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Supplementary Figure 8. KDM2B, KDM3B and KDM4C contribute to B cell proliferation to varying degrees. (a) gRT-PCR
analysis of JmjC demethylase in control and iron-deficient B cells following BCR or LPS stimulation. The 5 JmjC demethylases
induced after 48 h are shown. (b) CFSE-labeled splenic B cells from wild-type C57BL/6 mice were infected with shRNA
lentiviruses targeting 5 different JmjC demethylases, and cell proliferation was analyzed by flow cytometry after stimulation
with anti-lgM (10 ug/ml) or LPS (2 pg/ml) for 72 h. (c) Statistics for the percentage of B cells that underwent cell division

under various conditions after shRNA-mediated knockdown of different JmjC demethylases. The data were representative

of two independent experiments using two different shRNA target sequences. *P < 0.05, **P < 0.01, Student's t test.



Supplementary table 1. shRNA sequences targeting cyclin E1

Cyclin E1 | Top gatccGGAGGATCATGTTAAACAAAGTTCAAGAGACTTTGTT
shRNA1 | strand | TAACATGATCCTCCTTTTTTg
Bottom | aattcAAAAAAGGAGGATCATGTTAAACAAAGTTCTCTTGAAC
strand | TTTGTTTAACATGATCCTCCg
Cyclin E1 | Top gatccGCTTCTGCTTTGTATCATTTCTTCAAGAGAGAAATGAT
shRNA2 | strand | ACAAAGCAGAAGCTTTTTTg
Bottom | aattcAAAAAAGCTTCTGCTTTGTATCATTTCTCTCTTGAAGAA
strand | ATGATACAAAGCAGAAGCg
Control | Top gatccGAAACCATGCAAAGTAAGGTTTTCAAGAGAAACCTTA
shRNA |strand | CTTTGCATGGTTTCTTTTTTg
Bottom | aattcAAAAAAGAAACCATGCAAAGTAAGGTTTCTCTTGAAA

strand

ACCTTACTTTGCATGGTTTCg

Annealed top and bottom strands were inserted into pLVX-shRNA1 plasmid,
EcoRI and BamHI were used as restriction enzymes.

Supplementary table 2. sequences of the RT-qPCR and ChIP-qPCR

primers
Real-time qPCR primer

Cenf-F TCAGGTTCTGTGGAGAAGGC
Cenf-R TTCTGTTGGGGACATCCTTG
Ccnb2-F CTTGCAGAGCAGAGCATCAG
Ccnb2-R TGAAACCAGTGCAGATGGAG
Ccne1l-F TCCACGCATGCTGAATTATC
Ccnel1-R CTCCAGAAAAAGGAAGGCAA
Ccnd2-F GAGTGGGAACTGGTAGTGTTG
Ccnd2-R CGCACAGAGCGATGAAGGT
Cdc20-F TTGGCCATGGTTGGATACTT
Cdc20-R GAGTGCTGTGGATGTGCATT
Ccna2-F GTGGTGATTCAAAACTGCCA
Ccna2-R GGCCAGCTGAGCTTAAAGAA
Bcl2l1-F CTGCATTGTTCCCGTAGAGA
Bcl211-R GGTGAGTCGGATTGCAAGTT
GAPDH-F CTAAGGCCAACCGTGAAA
GAPDH-R AGAAGGAAGGCTGGAAAA
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