Supporting Information for

Influence of the core/shell structure of indium phosphide based quantum dots on their photostability and cytotoxicity

K. David Wegner,^{1,*} Fanny Dussert,² Delphine Truffier-Boutry,³ Anass Benayad,³ David Beal,² Lucia Mattera,¹ Wai Li Ling,⁴ Marie Carrière,^{2,*} Peter Reiss^{1,*}

¹Univ. Grenoble Alpes, CEA, CNRS, IRIG, SyMMES, STEP, 38000 Grenoble, France ²Univ. Grenoble Alpes, CEA, CNRS, IRIG, SyMMES, CIBEST, 38000 Grenoble, France ³Univ. Grenoble Alpes, CEA-LITEN L2N, 17 rue des Martyrs, 38000 Grenoble, France ⁴Univ. Grenoble Alpes, CEA, CNRS, IRIG, IBS, 38000 Grenoble, France *Emails: wegner.karldavid@gmail.com, marie.carriere@cea.fr, peter.reiss@cea.fr

Photophysical characterization of the QDs

Table S1: Summary of the photophysical properties of the InP-based QDs with different shells after the synthesis.

(in nm)	ZnSeS	ZnSeS/ZnS thin	ZnSeS/ZnS thick		
1st Exciton peak	522	518	522		
PL maxima	564	556	555		
FWHM	63.2	57.5	57.1		

Figure S1: PL decay curves of InZnP QDs with ZnSeS (black), ZnSeS/ZnS thin (red), and ZnSeS/ZnS thick (black) shell.

Shell	A ₁	τ ₁ (ns)	A ₂	τ ₂ (ns)	A ₃	τ ₃ (ns)	τ <int> (ns)</int>
ZnSeS	2.4	4.9	43.9	36.0	53.7	78.1	66.5
ZnSeS/ZnS thin	1.4	5.7	53.3	39.7	45.3	82.2	66.7
ZnSeS/ZnS thick	0.9	4.2	53.3	39.5	45.9	79.0	64.5

Table S2: Decay times and intensity averaged decay time of InZnP QDs with different shells.

Alumina-coated CSS QDs

Figure S2: Comparison of normalized absorbance and PL spectra (A), PL decay curves (B), and EDX compositional analysis (C) of the InZnP/ZnSeS/ZnS thin QDs (original) and when using aluminum in the synthesis (Alumina).

Table S3: Decay times of the InZnP/ZnSeS/ZnS thin (original) and when using aluminum in thesynthesis (Alumina).

Shell	A ₁	τ ₁ (ns)	A ₂	τ ₂ (ns)	A ₃	τ ₃ (ns)	τ <int> (ns)</int>
original	1.4	5.7	53.3	39.7	45.3	82.2	66.7
Alumina	2.6	6.3	61.7	45.9	35.8	109.7	82.8

Photostability measurements in PMMA

Figure S3: PL spectra of the pristine PMMA film (black), PMMA with 0.4 wt% InZnP/ZnSeS gradient shell QDs (red), and after subtraction of the PMMA reference signal (blue), demonstrating that the polymer matrix does not influence the PL properties.

Table S4: Quantum yield of the PMMA films with increasing InZnP/ZnSeS QD concentration.

[QD] (wt%)	Quantum yield (%)
0.05	3.2
0.075	3.4
0.1	4.2
0.2	4.1
0.4	5.3

Figure S4: Comparison of the PL spectra and photophysical properties of InZnP/ZnSeS QDs (**A**), InZnP/ZnSeS/ZnS-alumina QDs (**B**), and InZnP/ZnSeS/ZnS (thick) QDs (**C**) in solution and embedded in the PMMA matrix.

Figure S5: PL spectra of PMMA without QDs after 0h, 6h and 12h of illumination in the climate chamber.

Figure S6: Evolution of quantum yield (A) and relative quantum yield (B) of the InZnP QDs with different shells embedded in PMMA kept in the dark and at room temperature.

Figure S7: Evolution of the normalized PL spectra of the three systems during continuous irradiation in the aging chamber.

Atomic concentration									
С-С С-Н С-О СОО									
Gradient 0h	96.3	0.5	0.7	2.5					
Gradient 6h	83.5	8.0	3.4	5.1					
Aluminium 0h	86.0	5.9	3.1	5.0					
Aluminium 6h	82.2	7.0	4.1	6.7					

Table S5: Atomic concentrations determined by XPS.

Atomic concentration									
ZnS* Zn ZnSe* ZnSSe* In*S In _(x) O _(y) SC									
Gradient 0h	24.7	29.9	13.0		13.4	4.9	14.0		
Gradient 6h	18.7	34.4	11.8		5.3	13.6	16.2		
Aluminium 0h	21.7	59.3	5.2	4.7	4.0	5.1			
Aluminium 6h	22.0	56.1	5.0	5.8	3.2	7.9			

Phase transfer with Penicillamine

Table S6: Summary of the photophysical properties of the InZnP QDs with different shell before (original) and after phase transfer (Pen).

	ZnSeS		ZnSeS/2	ZnS thin	ZnSeS/thick	
(in nm)	original Pen		original	Pen	original	Pen
1st Exciton peak	522	518	518	518	522	518
PL maxima	564	578	556	568	555	564
FWHM	63.2	66.2	57.5	61.3	57.1	60
Stokes shift	42	60	38	50	33	46

Figure S8: PL decay curves of InZnP QDs with different shells after phase transfer using penicillamine.

Table S7: Decay times and intensity averaged decay time of InZnP QDs with different shells after phase transfer.

Sample	A ₁	τ_1 (ns)	A ₂	τ ₂ (ns)	A ₃	τ ₃ (ns)	τ <int> (ns)</int>
ZnSeS	8.8	3.3	41.2	22.1	50.0	68.8	58.7
ZnSeS/ZnS thin	6.4	4.0	42.3	27.7	51.4	75.3	63.9
ZnSeS/ZnS thick	4.8	4.2	40.8	29.6	54.4	73.6	63.2

Figure S9: DLS measurements of the phase transferred InZnP QDs with different shells.

Figure S10: TEM images at different magnification of the different core/shell systems: A) InZnP/ZnSeS gradient shell, B) InZnP/ZnSeS/ZnS thin, C) InZnP/ZnSeS/ZnS thick.