
 

 

Supplementary Information 

 

 

 

 

Analogue of dynamic Hall effect in cavity magnon polariton system and 

coherently controlled logic device 

 

Rao et al. 

 

 

 

 

 

 

This PDF file includes: 

 

Supplementary Note 1:  Theoretical description of magnon-photon coupling in x-

cavity 

 

Supplementary Note 2:  Input-output relations 

 

Supplementary Note 3:  Transmission of X-CMP dynamics 

 

Supplementary References 

 

 

 



1

Supplementary Note 1. Theoretical description of magnon-photon coupling in x-cavity

Hamiltonian of X-CMP dynamics

The whole system can be viewed as a coupled cavity magnon system in a photon bath. The Hamiltonian of the
whole system has the following form:

H = Hsys +Hbath +Hint (1)

Here, Hsys is the Hamiltonian of the coupled cavity magnon system isolated with surroundings, and Hbath is the
Hamiltonian of the photon bath. As for the Hint, it represents the interaction effect between the coupled cavity
magnon system and the photon bath. The detailed expressions of these three parts are shown as following:

Hsys = ~ωca
†
xax + ~ωmm†m+ ~ωca

†
yay + ~Ω0(m

†ax +ma†x) + ~Ω0(m
†ay +ma†y) (2)

Hbath =

∫
~ωk

D∑
r=A

(p†k,rpk,r +
1

2
)dk (3)

Hint =

∫
i~λ[(pk,Aa†x − p†k,Aax) + (pk,Ca

†
x − p†k,Cax) + (pk,Ba

†
y − p†k,Bay) + (pk,Da†y − p†k,Day)]dk (4)

ax(a
†
x), ay(a

†
y) represent the annihilation (creation) operators of X-cavity modes in x- and y- directions. m(m†) is

the annihilation (creation) operator of the magnon. pk,r(p
†
k,r) is the annihilation (creation) operator of the photon

with wave vector k, while the subscript index r=A,B,C,D corresponds to the port A,B,C,D respectively.

The equation motion for the extra-cavity photon

The equation of motion for the extra-cavity photon operator in Heisenberg representation reads

dpk,A
dt

= − i

~
[pk,A,H] = −iωkpk,A − λax (5)

The solution of this dynamic equation can be formally written as

pk,A(t) = e−iωk(t−t0)pk,A(t0)− λ

∫ t

t0

e−iωk(t−t′)ax(t
′)dt′ (6)

Analogously, we can also get the expressions of the photon operators for the other three ports:

pk,C(t) = e−iωk(t−t0)pk,C(t0)− λ

∫ t

t0

e−iωk(t−t′)ax(t
′)dt′ (7)

pk,B(t) = e−iωk(t−t0)pk,B(t0)− λ

∫ t

t0

e−iωk(t−t′)ay(t
′)dt′ (8)

pk,D(t) = e−iωk(t−t0)pk,D(t0)− λ

∫ t

t0

e−iωk(t−t′)ay(t
′)dt′ (9)

The equation motion for the intra-cavity photon

Similar to Supplementary equation (5), we can write the equations of motion for the two orthogonal X-cavity modes
in the Heisenberg representation.

dax
dt

= − i

~
[ax,Hsys] +

∫ ∞

0

λpk,Adk +

∫ ∞

0

λpk,Cdk (10)

day
dt

= − i

~
[ay,Hsys] +

∫ ∞

0

λpk,Bdk +

∫ ∞

0

λpk,Ddk (11)
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By substituting Hsys and Supplementary equation (6)-(9) into Supplementary equation (10) and (11), we obtain a
new form of equations of motion for x- and y- directions, respectively.

−iωax = −iωcax − iΩ0m+
√
2κp(p

in
A + pinC )− 2κpax (12)

−iωay = −iωcay − iΩ0m+
√

2κp(p
in
B + pinD )− 2κpay (13)

where κp is the coupling strength between feedlines and X-cavity, which follows the relation
√
κp =

√
πλ.

Supplementary Note 2. Input-output relations

The extra-cavity asymptotic output operators at t = +∞ can be related to the input operators at t0 = −∞ and
the cavity photon ones through a linear relationship1,2. The standard definitions of the input and output photons are
pink,r = pk,r(t0)e

iωk(t0) and poutk,r = pk,r(t)e
iωk(t). By substituting them into Supplementary equation (6)-(9), we can

get the response formula of the photon with wave vector k at each port, shown below

poutk,r = pink,r −
√
2πλa(ωk) (14)

Here, the a(ωk) is the Fourier Transformation of ax(t
′) or ay(t

′) depending on the port number, r.

a(ωk) =
1√
2π

∫ ∞

−∞
eiωkt

′
a(t′)dt′ (15)

The input and output signals are the sum of photons with different wave vectors i.e. the wave packets. Therefore, we
define the input and output wave packets as

pinr =
1√
2π

∫ ∞

0

e−iωktpink,rdk (16)

poutr =
1√
2π

∫ ∞

0

e−iωktpoutk,r dk (17)

Substituting these two definitions into the Supplementary equation (14) and transferring ar(ωk) from the frequency
domain back to the time domain a(t), we can obtain the input-output relation as

poutr = pinr −
√
2πλa(t) (18)

Supplementary Note 3. Transmission of X-CMP dynamics

Start from the dynamic equation of magnon in Heisenberg representation

dm

dt
= − i

~
[m,Hsys]

= −iωmm− iΩ0(ax + ay) (19)

If we assume the solution of this equation follows the general form as m = |m|e−iωt, then Supplementary equation
(19) should be:

(ω − ωm)m = Ω0(ax + ay) (20)

Now, we put the intrinsic damping of the magnon into this equation i.e. ωm → ωm − iαωm, then Supplementary
equation (20) becomes

(ω − ωm + iαωm)m = Ω0(ax + ay) (21)

In experiment, for general assumption, the port A and port C are the input ports, and the port B and port D are
output ports. Under this condition, we can set pinC and pinD as zero and obtain the equations of motion of the coupled
cavity magnon system in the cross cavity as following:
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[ω − ωc + i(βinωc + 2κp)]ax − Ω0m = i
√
2κpp

in
A

[ω − ωc + i(βinωc + 2κp)]ay − Ω0m = i
√
2κpp

in
B

(ω − ωm + iαωm)m− Ω0(ax + ay) = 0 (22)

Here, βinωc is the intrinsic damping of the cavity. We can also use a lumped damping factor β to represent the
loaded damping of the cavities, i.e. βωc = βinωc + 2κp.

Dynamics hall effect in X-CMP

Firstly, if we only input microwave power at port A. As a result, input condition can be simplified as pinA = Ṽ in
x

and pinB = 0, using Supplementary equation (22), we get the expressions of ax and ay in the frequency domain as:

ax = −
√
2κpṼ

in
x

i(ω − ωc)− βωc +
Ω2

0

i(ω−ωm)−αωm+
Ω2
0

i(ω−ωc)−βωc

ay = ax +

√
2κpṼ

in
x

i(ω − ωc)− βωc
(23)

Substituting these two expressions into Supplementary equation (18), we get the output signals from the port C

and port D, respectively, i.e. poutC = Ṽ out
x = −

√
2κpax and poutD = Ṽ out

y = −
√

2κpay:

Ṽ out
x =

2κpṼ
in
x

i(ω − ωc)− βωc +
Ω2

0

i(ω−ωm)−αωm+
Ω2
0

i(ω−ωc)−βωc

Ṽ out
y =

2κpṼ
in
x

i(ω − ωc)− βωc +
Ω2

0

i(ω−ωm)−αωm+
Ω2
0

i(ω−ωc)−βωc

− 2κpṼ
in
x

i(ω − ωc)− βωc
(24)

Because of the geometric symmetry of our device, it’s straightforward to draw a conclusion that if signal was input

from port B i.e. pinA = 0 and pinB = Ṽ in
y , we can also observe the normal transmission signal and the dynamic

Hall signal from the port C and port D, respectively. By means of this symmetric property, we have transformed
supplementary equation (24) into a matrix equation which is shown as:

1

2κp

[
i(ω − ωc)− βωc +

Ω2
0

i(ω−ωm)−αωm

Ω2
0

i(ω−ωm)−αωm

Ω2
0

i(ω−ωm)−αωm
i(ω − ωc)− βωc +

Ω2
0

i(ω−ωm)−αωm

][
Ṽ out
x

Ṽ out
y

]
=

[
Ṽ in
x

Ṽ in
y

]
(25)

To better describe the dynamic Hall effect, this matrix equation has been transformed into a much more straight-
forward form:

(
Ṽ out
x

Ṽ out
y

)
= 2κp

T̂

det(T̂ )

(
Ṽ in
x

Ṽ in
y

)
(26)

Here, T̂ is the dynamic Hall tensor in X-CMP system, which plays an important role in controlling the direction of
polariton flow. The detail of T̂ is shown below as

T̂ =

[
i(ω − ωc)− βωc +

Ω2
0

i(ω−ωm)−αωm
− Ω2

0

i(ω−ωm)−αωm

− Ω2
0

i(ω−ωm)−αωm
i(ω − ωc)− βωc +

Ω2
0

i(ω−ωm)−αωm

]
(27)

with the denominator det(T̂ ) as,
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det(T̂ ) = [i(ω − ωc)− βωc]
2 (28)

+
2Ω2

0[i(ω − ωc)− βωc]

i(ω − ωm)− αωm

Because of the non-zero off-diagonal terms of the transfer matrix, the Hall signal is generated in the experiment.
And since these off-diagonal terms exhibit a resonance response of the external magnetic field, the dynamic Hall
signal can be modulated by the external field. We have shown a detailed description of the dynamic Hall signal in
the manuscript.

Two-port input experiment

The second step of our experiment is the Two-port input experiment. The input signal is Ṽ in, and we split it
into two branches with same amplitude. A mechanical phase shifter was added into one branch to induce a phase
difference between the two coherent signals (Φ). Then, these two signals were injected into the cross cavity from port
A and port B, simultaneously. In theory, they can be described as:

pinA = Ṽ in
x = Ṽ in/

√
2

pinB = Ṽ in
y = ieiΦṼ in/

√
2 (29)

By substituting these two input signals into Supplementary equation (26), it’s straightforward to obtain the output
signal from port C:

ṼC =
√
2κp(Txx + ieiΦTxy)Ṽ

in/det(T̂ ) (30)

And the spectra of the output signal in frequency domain is:

ṼC =

√
2κpṼ

in

i(ω − ωc)− βωc +
(1+ieiΦ)Ω2

0

i(ω−ωm)−αωm+
(1−ieiΦ)Ω2

0
i(ω−ωc)−βωc

(31)
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