Electronic Supplementary Material (ESI) for Chemical Science. This journal is © The Royal Society of Chemistry 2019

Electronic Supporting Information

A novel mass spectrometry-cleavable, phosphate-based enrichable and multi-targeting protein cross-linker

Rong Huang,^{ab#} Wei Zhu,^{a#} Yue Wu,^{a#} Jiakang Chen^a, Jianghui Yu^{ab}, Biao Jiang,^{*a} Hongli Chen,^{*a} Wenzhang Chen^{*a}

^a Shanghai Institute for Advanced Immunochemical Studies, ShanghaiTech University, 393 Middle Huaxia Road, Pudong, Shanghai, 201210, China

^b University of Chinese Academy of sciences, 19A Yuquan Road, Shijingshan District, Beijing, 100049, China

E-mail: chenhl@shanghaitech.edu.cn; jiangbiao@shanghaitech.edu.cn; chenwzh1@shanghaitech.edu.cn

Table of contents

General Information	S2
Experimental Procedures	S2
Data analysis	S3
References	S16

General Information

All chemical reagents were of analytical grade, obtained from commercial sources and used as supplied without further purification unless indicated.

NMR spectra were recorded on a Bruker-500 (500 MHz) instrument. The deuterated solvents employed were purchased from Energy Chemical. Chemical shifts were given in ppm with respect to referenced solvent peaks. Spectra were analyzed with MestReNova. High-resolution mass spectra (HRMS-ESI) were obtained on an ABsciex 4600 and Thermo fisher EASY1000-Fusion instruments. LC-MS² were recorded on Thermo fisher EASY1000-Fusion instrument. The maximum injection times for MS¹, MS² and MS³ are 50ms, 100ms and 200ms respectively.

Experimental Procedures

Synthesis of 1,3-bis(vinylsulfonyl)propan-2-yl dihydrogen phosphate (pBVS)

1,3-bis(vinylsulfonyl)propan-2-ol (BVS)

pBVS

A stirred solution of 1,3-bis(vinylsulfonyl)-2-propanol (**BVS**, 100 mg, 0.42 mmol) in dry DCM (5 mL) was cooled to 0 °C with ice-bath, phosphoryl trichloride (78 μ L, 0.84 mmol) and pyridine (51 μ L, 0.63 mmol) was then injected. After stirred at 0 °C to room temperature for 2 h, the reaction was quenched with water and adjusted to weak acidity with diluted HCl. The organic solvent was evaporated, and the resulting mixture was purified by RP-HPLC to afford white solid (8mg, 0.025 mmol), with 6% yield. ¹H NMR (500 MHz, D₂O) δ 6.85 (dd, *J* = 16.5, 10.0 Hz, 2H), 6.33 (d, *J* = 16.5 Hz, 2H), 6.30 (d, *J* = 10.0 Hz, 2H), 4.93-4.87 (m, 1H)), 3.75 (d, *J* = 6.0 Hz, 4H) ppm. ¹³C NMR (126 MHz, MeOD) δ 135.37, 132.38, 65.29, 56.99 ppm. ESI-HRMS calcd for C₂₅H₃₄N₇O₇S₃ [(M+H)⁺]: 320.9868, found:320.9815.

Cross-linking for BSA

Aqueous solution of **pBVS** (10 mM, 90 µL, 30 equiv) was added into 500 µL BSA in PBS (different pH), and the mixture was incubated at room temperature or 37 °C for 4 and 15 hours, <u>respectively</u>. Each <u>sample</u> was purified using a Pall[™] Nanosep with 3k Omega 100/pk to remove excess reagents and the resulting mixture was characterized by UPLC–MS analysis

Protein Digestion

The above cross-linked protein was first precipitated using acetone to remove the excess crosslinking reagent, then digested using FASP method as described by Jacek R Winiewsk^[1] with modifications. Briefly, the cross-linked protein was first loaded to a Nanosep filter (10 K, Pall corporation), then was washed twice with 200 uL 100 mM Tris-HCl (PH=8). The protein solution was reduced by adding 50 mM DTT in 100 mM Tris-HCl, and incubated at room temperature for two hours and then alkylated with iodoacetamide for 30 min in the dark. After reduction and alkylation, the filter was washed three times using 100 mM Tris-HCl. The protein on the filter was then digested using trypsin dissolved in 200 mM Tris-HCl at 37 °C for four hours. The protein: enzyme ratio is 50 : 1. The digestion solution was then acidified to pH = 2 to deactivate enzyme activity.

Enrichment of cross-linked peptides

The digested peptides were subsequently enriched by TiO₂ as described by Li-Rong Yu.^[2] Briefly, the tryptic digested solution was diluted five times using loading buffer (1M glycolic acid, 0.5% TFA in 80% CH₃CN), then were incubated with 3 mg TiO₂ beads (GL science) at room temperature for 20 mins, the beads were washed once with loading buffer and twice with washing buffer (1% TFA in 80% CH₃CN) respectively. The peptides were eluted from TiO₂ bead by incubating with 240 ul 0.5% NH₄OH in 100 mM Tris-HCl for 6 min at room temperature. The peptides were acidified to pH = 2 immediately after the elution. The enriched peptides were then desalted using a C18 solid phase extraction column (Hypersep C18, 100 mg Thermo Scientific).

LC MS/MS analysis

The MS data was acquired on an Orbitrap Fusion MS coupled to a nano Easy LC 1000 and an Easyspray column (75 μ m × 50 cm, PepMap RSLC C18 column, 2 μ m, 100 Å, Thermo Scientific). The desalted peptides dissolved in 2% formic acid were loaded to a C18 trap column, then were separated on the Easy spray column, the peptides were eluted from the

Easy spray column using a gradient of 7 to 45% B (0.1% formic acid in CH_3CN) in 120 min at a flow rate of 250 nL/min. The column temperate was set to 50 °C.

The MS was operated in data dependent mode. CID-MS²-MS³ strategy was employed to identify cross-linked peptides. A survey scan at 120 K resolution was first conducted, then 10 most intense ions were selected (singly and doubly charged ions were excluded from the selection) for fragmentation using low collision energy dissociation (CE = 22). The MS² scan was performed in Orbitrap, the MS² resolution was set to 30 K. If a signature mass differences of 319.9789 or a signature mass differences of 222.0021 were observed, both the ion pairs were further fragmented by HCD-MS³ with a collision energy of 30 in ion trap, the MS³ scan speed was set to turbo. The target AGC of MS¹, MS² and MS³ scan events were set to 4×10^5 , 2×10^5 and 1×10^5 respectively.

Data analysis

The reagent in this method can target three different amino acids and generate three different mass tags. Previously reported software tools such as XlinkX are not applicable to the reagent reported in this study. Therefore, an in house written script was employed to do the data analysis. The raw MS³ data were first searched against BSA sequence using Proteome discover 2.2 (Thermo Scientific), both the Sequest and MS Amanda search engine were used. The precursor mass tolerance was set to 20 ppm and fragment mass tolerance were set to 1.2 da. The following variable modifications were taken into consideration: Carbamidomethyl (C), pBVS(C/H/K), and pBVS-phos (pBVS with loss of one phosphate group). 1% FDR was used to filter away false positive hits. The psm (peptide spectra matches) results and MS/MS spectrum information were exported to .csv format. Linked scan (which scan3 is triggered by which scan2, also which scan2 is triggered by which scan1) information were generated by converting the raw MS data to a quantification file in .txt format using Raw quant software.^[3] The three files obtained above were analyzed using an in house written R/R CPP script (https://github.com/wchenSHT/RCPPXLINK). The analysis is to assign each identified peptide chain sequence to its corresponding MS¹ precursor ion. If two different peptide chains were identified from the same precursor ion, and the mass error is within 10ppm, then the precursor ion is considered as a cross-linked peptide. All the results were further validated manually.

Entry	Time (h)	Temperature	рН	Identified cross-linkers
1	4	r.t.	7.4	29
2	4	37 °C	7.4	36
7	15	r.t.	7.4	32
8	15	37 °C	7.4	40
9	15	37 °C	8.5	49

 Table S1: Evaluation of the cross-linking efficiency in different reaction conditions.

Table S2: The assignment of the fi	agment ions for crosslinked	peptide pair (α - β	B, NECFLSHKDDSPDLPK and LCVL	HEKTPVSEK) in Fig 2.
------------------------------------	-----------------------------	-----------------------------------	------------------------------	----------------------

Index	m/z	Peptide sequence	Modification	Note
1	1111.424	NECFLSHKDDSPDLPK	pBVS linker	
2	1062.4364	NECFLSHKDDSPDLPK	pBVS linker-phos	
3	951.4368	NECFLSHKDDSPDLPK	None	
4	931.3991	LCVLHEKTPVSEK	pBVS linker	¹³ C monoisotopic peak

5	881.4131 LCVLHEKTPVSEK		pBVS linker-phos	
6	770.4108	LCVLHEKTPVSEK	None	

#1	b*	b ²⁺	Seq.	y*	у ²⁺	#2
1	115.05020	58.02874	N			16
2	244.09280	122.55004	E	2107.80578	1054.40653	15
3	404.12345	202.56536	C-Carbamidomethyl	1978.76318	989.88523	14
4	551.19186	276.09957	F	1818.73253	909.86991	13
5	664.27592	332.64160	L	1671.66412	836.33570	12
6	751.30795	376.15761	S	1558.58006	779.79367	11
7	888.36686	444.68707	н	1471.54803	736.27765	10
8	1336.44073	668.72400	K-CHL-Plinker	1334.48912	667.74820	9
9	1451.46767	726.23747	D	886.41525	443.71126	8
10	1566.49461	783.75094	D	771.38831	386.19779	7
11	1653.52664	827.26696	S	656.36137	328.68432	6
12	1750.57940	875.79334	Р	569.32934	285.16831	5
13	1865.60635	933.30681	D	472.27657	236.64193	4
14	1978.69041	989.84884	L	357.24963	179.12845	3
15	2075.74318	1038.37523	Р	244.16557	122.58642	2
16			к	147.11280	74.06004	1

Table S3: The fragment ions assignment of α_{Linker} (mass error < 0.8 da) in Fig 3.

S4

Figure S1. The ms/ms spectra of α_{Linker} in Fig 3.

#1	b⁺	b²+	Seq.	у*	y ²⁺	#2
1	115.05020	58.02874	N			16
2	244.09280	122.55004	E	2009.82688	1005.41708	15
3	404.12345	202.56536	C-Carbamidomethyl	1880.78428	940.89578	14
4	551.19186	276.09957	F	1720.75363	860.88046	13
5	664.27592	332.64160	L	1573.68522	787.34625	12
6	751.30795	376.15761	S	1460.60116	730.80422	11
7	888.36686	444.68707	н	1373.56913	687.28820	10
8	1238.46183	619.73455	K-CHL-Plinker-P	1236.51022	618.75875	9
9	1353.48877	677.24802	D	886.41525	443.71126	8
10	1468.51571	734.76149	D	771.38831	386.19779	7
11	1555.54774	778.27751	S	656.36137	328.68432	6
12	1652.60050	826.80389	Р	569.32934	285.16831	5
13	1767.62745	884.31736	D	472.27657	236.64193	4
14	1880.71151	940.85939	L	357.24963	179.12845	3
15	1977.76428	989.38578	Р	244.16557	122.58642	2
16			к	147.11280	74.06004	1

Table S4: The fragment ions assignment of $\alpha_{\text{Linker-phos}}$ (mass error < 0.8 da) in Fig 3.

Figure S2. The ms/ms spectra of $\alpha_{\text{Linker-phos}}$ in Fig 3.

Table S5: The fragment ions assignment of α (mass error < 0.8 da) in Fig 3.

#1	b+	b²+	Seq.	y*	y ²⁺	#2
----	----	-----	------	----	-----------------	----

1	115.05020	58.02874	Ν			16
2	244.09280	122.55004	E	1787.82688	894.41708	15
3	404.12345	202.56536	C Carbamidomethyl	1658.78428	829.89578	14
4	551.19186	276.09957	F	1498.75363	749.88046	13
5	664.27592	332.64160	L	1351.68522	676.34625	12
6	751.30795	376.15761	S	1238.60116	619.80422	11
7	888.36686	444.68707	Н	1151.56913	576.28820	10
8	1016.46183	508.73455	к	1014.51022	507.75875	9
9	1131.48877	566.24802	D	886.41525	443.71126	8
10	1246.51571	623.76149	D	771.38831	386.19779	7
11	1333.54774	667.27751	S	656.36137	328.68432	6
12	1430.60050	715.80389	Р	569.32934	285.16831	5
13	1545.62745	773.31736	D	472.27657	236.64193	4
14	1658.71151	829.85939	L	357.24963	179.12845	3
15	1755.76428	878.38578	Ρ	244.16557	122.58642	2
16			к	147.11280	74.06004	1

S6

Figure S3. The ms/ms spectra of α in Fig 3.

#1	b⁺	b ²⁺	Seq.	y*	y ²⁺	#2
1	114.09134	57.54931	L			13
2	274.12199	137.56463	C-Carbamidomethyl	1746.71478	873.86103	12
3	373.19040	187.09884	V	1586.68413	793.84570	11
4	486.27447	243.64087	L	1487.61571	744.31150	10
5	623.33338	312.17033	н	1374.53165	687.76946	9
6	752.37597	376.69162	E	1237.47274	619.24001	8
7	1200.44983	600.72856	K-CHL-Plinker	1108.43014	554.71871	7
8	1301.49751	651.25239	т	660.35628	330.68178	6
9	1398.55028	699.77878	Р	559.30860	280.15794	5
10	1497.61869	749.31298	V	462.25584	231.63156	4
11	1584.65072	792.82900	S	363.18743	182.09735	3
12	1713.69331	857.35029	E	276.15540	138.58134	2
13			К	147.11280	74.06004	1

Table S6: The fragment ions assignment of β_{Linker} (mass error < 0.8 da) in Fig 3.

Figure S4. The ms/ms spectra of β_{Linker} in Fig 3.

Table S7: The fragment ions assignment of $\beta_{\text{Linker-phos}}$ (mass error < 0.8 da) in Fig 3.

#1	b+	b²+	Seq.	y*	y ²⁺	#2
1	114.09134	57.54931	L			13
2	274.12199	137.56463	с	1648.73588	824.87158	12

			Carbamidomethyl			
3	373.19040	187.09884	V	1488.70523	744.85625	11
4	486.27447	243.64087	L	1389.63681	695.32205	10
5	623.33338	312.17033	н	1276.55275	638.78001	9
6	752.37597	376.69162	E	1139.49384	570.25056	8
7	1102.47093	551.73911	K Plinker-P	1010.45124	505.72926	7
8	1203.51861	602.26294	т	660.35628	330.68178	6
9	1300.57138	650.78933	Р	559.30860	280.15794	5
10	1399.63979	700.32353	V	462.25584	231.63156	4
11	1486.67182	743.83955	S	363.18743	182.09735	3
12	1615.71441	808.36084	E	276.15540	138.58134	2
13			к	147.11280	74.06004	1

Figure S5. The ms/ms spectra of $\beta_{\text{Linker-phos}}$ in Fig 3.

Table S8: The fragment ions assignment of β (mass error < 0.8 da) in Fig 3.

#1	b⁺	b²+	Seq.	y*	y ²⁺	#2
1	114.09134	57.54931	L			13

2	274.12199	137.56463	C Carbamidomethyl	1426.73588	713.87158	12
3	373.19040	187.09884	V	1266.70523	633.85625	11
4	486.27447	243.64087	L	1167.63681	584.32205	10
5	623.33338	312.17033	Н	1054.55275	527.78001	9
6	752.37597	376.69162	E	917.49384	459.25056	8
7	880.47093	440.73911	К	788.45124	394.72926	7
8	981.51861	491.26294	т	660.35628	330.68178	6
9	1078.57138	539.78933	Р	559.30860	280.15794	5
10	1177.63979	589.32353	V	462.25584	231.63156	4
11	1264.67182	632.83955	S	363.18743	182.09735	3
12	1393.71441	697.36084	E	276.15540	138.58134	2
13			К	147.11280	74.06004	1

Figure S6. The ms/ms spectra of β in Fig 3.

 Table S9: The fragment ions assignment of the ion YLQQCPFDEHVK+pBVS (mass error < 0.8 da).</th>

#1	b⁺	b ²⁺	Seq.	y*	y ²⁺	#2
1	164.07061	82.53894	Y			12

2	277.15467	139.08097	L	1663.62015	832.31371	11
3	405.21325	203.11026	Q	1550.53608	775.77168	10
4	533.27182	267.13955	Q	1422.47751	711.74239	9
5	956.25991	478.63359	C Plinker	1294.41893	647.71310	8
6	1053.31267	527.15997	Р	871.43084	436.21906	7
7	1200.38109	600.69418	F	774.37808	387.69268	6
8	1315.40803	658.20765	D	627.30967	314.15847	5
9	1444.45062	722.72895	E	512.28272	256.64500	4
10	1581.50953	791.25841	Н	383.24013	192.12370	3
11	1680.57795	840.79261	V	246.18122	123.59425	2
12			К	147.11280	74.06004	1

Table s10: The fragment ions assignment of the ions LFTFHADICTLPDTEK+pBVS (mass error < 0.8 da).

#1	b⁺	b²+	b³+	Seq.	y*	y ²⁺	γ ³⁺	#2
1	114.09134	57.54931	38.70196	L				16
2	261.15975	131.08352	87.72477	F	2114.81561	1057.91144	705.61006	15
3	362.20743	181.60735	121.40733	т	1967.74720	984.37724	656.58725	14
4	509.27585	255.14156	170.43013	F	1866.69952	933.85340	622.90469	13
F	000 24200	402 00047	222 77677	Н	1710 (2111	000 04040	572 00400	12
5	966.31366	483.66047	322.77607	Plinker	1719.63111	860.31919	573.88189	12
6	1037.35077	519.17902	346.45511	А	1262.59329	631.80029	421.53595	11
7	1152.37772	576.69250	384.79742	D	1191.55618	596.28173	397.85691	10
8	1265.46178	633.23453	422.49211	I	1076.52924	538.76826	359.51460	9
				с				
g	1425.49243	/13.24985	475.83566	Carbamidomethyl	963.44517	482.22622	321.81991	8
10	1526.54011	763.77369	509.51822	т	803.41452	402.21090	268.47636	7
11	1639.62417	820.31572	547.21291	L	702.36685	351.68706	234.79380	6
12	1736.67693	868.84211	579.56383	Р	589.28278	295.14503	197.09911	5

13	1851.70388	926.35558	617.90614	D	492.23002	246.61865	164.74819	4
14	1952.75156	976.87942	651.58870	т	377.20308	189.10518	126.40588	3
15	2081.79415	1041.40071	694.60290	E	276.15540	138.58134	92.72332	2
16				к	147.11280	74.06004	49.70912	1

Table S11: The fragment ions assignment of the ions FWGKYLYEIAR+pBVS (mass error < 0.8 da).

#1	b⁺	b²+	Seq.	y⁺	y ²⁺	#2
1	148.07569	74.54148	F			11
2	334.15500	167.58114	W	1520.68918	760.84823	10
3	391.17647	196.09187	G	1334.60987	667.80857	9
4	741.27143	371.13935	K Plinker-P	1277.58841	639.29784	8
5	904.33476	452.67102	Y	927.49344	464.25036	7
6	1017.41882	509.21305	L	764.43012	382.71870	6
7	1180.48215	590.74471	Y	651.34605	326.17666	5
8	1309.52474	655.26601	E	488.28272	244.64500	4
9	1422.60881	711.80804	I	359.24013	180.12370	3
10	1493.64592	747.32660	А	246.15607	123.58167	2
11			R	175.11895	88.06311	1

Table S12: Unique cross-linked linkages identified of BSA with enrichment.

No.	Cross-linking site	Cross-linked peptides(cross-linked residues in red)	Cα-Cα distance (Å)
1	BSA ²³⁹ -BSA ²⁴⁶	LVTDLTKVHK-ECCHGDLLECADDR	10.51
2	BSA ²⁴² -BSA ²¹¹	VHKECCHGDLLECADDR-ALKAWSVAR	10.612
3	BSA ⁴⁶⁵ -BSA ¹⁰⁶	LCVLHEKTPVSEK-NECFLSHKDDSPDLPK	10.942
4	BSA ²⁶¹ -BSA ²⁸⁰	ADLAKYICDNQDTISSK-ECCDKPLLEKSH	11.232
5	BSA ¹⁵⁹ -BSA ²⁸⁷	FYAPELLYYANKYNGVFQECCQAEDK-SHCIAEVEK	11.749
6	BSA ⁵⁰⁹ -BSA ⁵²⁴	HADICTLPDTEK-KQTALVELLK	12.053
7	BSA ¹² -BSA ⁴	FKDLGEEHFK-DTHKSEIAHR	12.655
8	BSA ¹¹⁴ -BSA ¹⁴⁵	DDSPDLPKLKPDPN-RHPYFYAPELLYYANK	12.964

9	BSA ³³⁷ -BSA ³⁷⁷	HPEYAVSVLLR-LKHLVDEPQNLIK	13.036
10	BSA ⁴³⁹ -BSA ⁴³¹	CCTKPESER-SLGKVGTR	13.451
11	BSA ⁵³⁷ -BSA ⁴¹³	HKPKATEEQLK-KVPQVSTPTLVEVSR	11.72
12	BSA ²¹¹ -BSA ³⁵⁰	ALKAWSVAR-LAKEYEATLEECCAK	13.625
13	BSA ³⁷⁸ -BSA ³⁵⁰	HLVDEPQNLIK-LAKEYEATLEECCAK	13.694
14	BSA ³⁷⁷ -BSA ³⁵⁰	LKHLVDEPQNLIK-LAKEYEATLEECCAKD	13.698
15	BSA ⁶⁷ -BSA ²⁴²	SLHTLFGDELCK-VHKECCHGDLLECADDR	13.988
16	BSA ²⁸⁷ -BSA ²⁷³	SHCIAEVEK-YICDNQDTISSKLK	14.067
17	BSA ¹⁵⁹ -BSA ²⁸⁰	ANKYNGVFQECCQAEDK-ECCDKPLLEK	14.218
18	BSA ¹¹⁶ -BSA ¹³⁶	LKPDPNTLCDEFK-FWGKYLYEIAR	14.431
19	BSA ⁵²⁰ -BSA ¹¹⁶	HADICTLPDTEKQIK-LKPDPNTLCDEFK	15.555
20	BSA ⁴⁶⁵ -BSA ¹⁴⁵	LCVLHEKTPVSEK-RHPYFYAPELLYYANK	16.041
21	BSA ²³⁹ -BSA ⁶⁷	LVTDLTKVHK-SLHTLFGDELCK	16.256
22	BSA ¹² -BSA ²⁶¹	FKDLGEEHFK-ADLAKYICDNQDTISSK	16.359
23	BSA ³⁵⁰ -BSA ²⁰⁴	LAKEYEATLEECCAK-CASIQKFGER	17.006
24	BSA93-BSA106	ETYGDMADCCEKQEPER-NECFLSHKDDSPDLPK	17.186
25	BSA ⁶⁷ -BSA ⁵⁹	SLHTLFGDELCK-TCVADESHAGCEK	17.618
26	BSA ³⁵⁰ -BSA ⁴⁷⁴	LAKEYEATLEECCAK-VTKCCTESLVNR	18.065
27	BSA ²²¹ -BSA ²⁸⁰	LSQKFPK-LKECCDKPLLEK	19.2
28	BSA ¹¹⁴ -BSA ⁴³¹	DDSPDLPKLKPD-SLGKVGTR	19.228
29	BSA ⁴³⁹ -BSA ²²¹	CCTKPESER-LSQKFPK	20.205
30	BSA ⁵³⁷ -BSA ⁴⁷¹	HKPKATEEQLK-TPVSEKVTK	19.152
31	BSA ⁵⁹ -BSA ⁷⁶	TCVADESHAGCEK-SLHTLFGDELCKVASLR	20.467
32	BSA ¹¹⁴ -BSA ⁵⁰⁹	DDSPDLPKLKPDPNTLCDEFK-LFTFHADICTLPDTEK	20.774
33	BSA ²²¹ -BSA ²⁴²	LSQKFPK-VHKECCHGDLLECADDR	21.527
34	BSA ⁴⁷¹ -BSA ³⁵⁰	TPVSEKVTK-LAKEYEATLEECCAK	21.823
35	BSA ¹⁸⁰ -BSA ²⁸⁰	GACLLPKIETMR-ECCDKPLLEK	21.84
36	BSA ¹² -BSA ²⁸⁷	FKDLGEEHFK-SHCIAEVEK	22.111
37	BSA ⁴⁶⁵ -BSA ¹¹⁴	LCVLHEKTPVSEK-DDSPDLPKLKPDPNTLCDEFK	22.241

38	BSA ³⁷⁸ -BSA ⁴⁷	HLVDEPQNLIK-VTKCCTESLVNR	23.797
39	BSA ⁵⁰⁴ -BSA ¹¹	AFDEKLFTFHADICTLPDTEK-DDSPDLPKLKPDPNTLCDEFK	24.405
40	BSA ⁴¹³ -BSA ³⁷	3 KVPQVSTPTLVEVSR-HLVDEPQNLIK	25.408
41	BSA ³³⁷ -BSA ³⁶	RHPEYAVSVLLR-DDPHACYSTVFDK	25.409
42	BSA ²⁸⁰ -BSA ³³	ZECCDKPLLEK-RHPEYAVSVLLR	29.004
43	BSA ¹²⁷ -BSA ⁴³	LKPDPNTLCDEFKADEK-SLGKVGTR	35.929
44	BSA ³⁷⁵ -BSA ³⁷	3 DDPHACYSTVFDKLK-HLVDEPQNLIK	5.827
45	BSA ⁵²⁰ -BSA ⁵²	HADICTLPDTEKQIK-KQTALVELLK	6.491
46	BSA ⁵²⁴ -BSA ⁵⁵	KQTALVELLK-TCVADESHAGCEK	60.529
47	BSA ²⁶¹ -BSA ²⁸	5 ADLAKYICDNQDTISSK-ECCDKPLLEKSHCIAEVEK	9.165
48	B BSA ¹⁴⁵ -BSA ¹⁰	5 RHPYFYAPELLYYANK-NECFLSHKDDSPDLPKLKPDPNTLCDEFI	< 9.253
49	BSA ²⁸⁰ -BSA ²⁸	ZECCDKPLLEK-SHCIAEVEKDAIPENLPPLTADFAEDKDVCK	9.893

 Table S13: Unique cross-linked linkages identified of BSA without enrichment.

No.	Cross-linking site	Cross-linked peptides(cross-linked residues in red)	Cα-Cα distance (Å)
1	BSA ²⁴² -BSA ²¹¹	VHKECCHGDLLECADDR-ALKAWSVAR	10.612
2	BSA ¹⁵⁹ -BSA ²⁸⁷	RHPYFYAPELLYYANKYNGVFQECCQAEDK-SHCIAEVEK	11.749
3	BSA ⁵⁰⁹ -BSA ⁵²⁴	LFTFHADICTLPDTEK-KQTALVELLK	12.053
4	BSA ¹² -BSA ⁴	FKDLGEEHFK-DTHKSEIAHR	12.655
5	BSA ³³⁷ -BSA ³⁷⁷	RHPEYAVSVLLR-LKHLVDEPQNLIK	13.036
6	BSA ¹⁵⁹ -BSA ²⁸⁰	RHPYFYAPELLYYANKYNGVFQECCQAEDK-LKECCDKPLLEK	14.218
7	BSA ¹² -BSA ²⁶¹	FKDLGEEHFK-ADLAKYICDNQDTISSK	16.359
8	BSA ³⁵⁰ -BSA ⁴⁷⁴	LAKEYEATLEECCAK-VTKCCTESLVNR	18.065
9	BSA ⁴³⁹ -BSA ²²¹	CCTKPESER-LSQKFPK	20.205
10	BSA ²²¹ -BSA ²⁴²	LSQKFPK-VHKECCHGDLLECADDR	21.527
11	BSA ²⁸⁰ -BSA ²⁸⁷	LKECCDKPLLEK-SHCIAEVEK	9.893
12	BSA ¹¹⁶ -BSA ¹⁷³	LKPDPNTLCDEFKADEK-YNGVFQECCQAEDKGACLLPK	15.436

 Table S14: Unique cross-linked linkages identified of myoglobin with enrichment.

No.	Cross-linking site	Cross-linked peptides(cross-linked residues in red)	Cα-Cα distance (Å)

1	Myoglobin ⁸⁷ - Myoglobin ¹⁴⁵	GHHEAELKPLAQSH-NDIAAKYK	6.996
2	Myoglobin ⁹⁸ - Myoglobin ⁴²	HKIPIK-LFTGHPETLEKFDK	7.639
3	Myoglobin ⁸² - Myoglobin ¹⁴⁵	GHHEAELKPLAQSH-NDIAAKYK	12.88
4	Myoglobin ³⁶ - Myoglobin ¹¹³	LFTGHPETLEK-YLEFISDAIIHVLHSK	13.896
5	Myoglobin ⁸¹ - Myoglobin ¹⁴⁵	GHHEAELKPLAQSHATK-NDIAAKYK	15.202
6	Myoglobin ³⁶ - Myoglobin ¹¹⁶	LFTGHPETLEK-YLEFISDAIIHVLHSK	19.117
7	Myoglobin ¹⁴⁵ - Myoglobin ⁶²	NDIAAKYK-ASEDLKK	28.253

Table S15: Unique cross-linked linkages identified of Cpf1 with enrichment.

-

No.	Cross-linking site	Cross-linked peptides(cross-linked residues in red)	Cα-Cα distance (Å)
1	CPF ³²³ -CPF ³¹⁹	LEKLFK-NSEIFSSIKK	6.281
2	CPF ⁷⁹⁷ -CPF ²⁰	FSEDQYELHIPIAINK-FKAIPVGK	8.871
3	CPF ⁷⁰⁷ -CPF ²⁰	LYMFQIYNKDFSDK-FKAIPVGK	9.374
4	CPF ³²⁶ -CPF ³¹⁹	LFKNFDEYSSAGIFVK-NSEIFSSIKK	10.406
5	CPF ³⁷⁰ -CPF ³⁷⁴	DKWNAEYDDIHLK-KAVVTEK	11.146
6	CPF ⁷⁰⁷ -CPF ⁷²⁰	LYMFQIYNKDFSDK-SHGTPNLHTMYFK	11.748
7	CPF ¹²¹⁶ -CPF ¹⁰⁶¹	IAISNKEWLEYAQTSVKH-TDADYIKK	11.933
8	CPF ²⁰ -CPF ⁷⁸⁷	FKAIPVGK-TTTLSYDVYKDKR	13.745
9	CPF ⁵¹ -CPF ⁴²	AEDYKGVKK-LLVEDEKR	14.239
10	CPF ¹²⁷⁷ -CPF ¹⁰⁶¹	IAISNKEWLEYAQTSVKH-TDADYIKK	16.24
11	CPF ⁷¹² -CPF ²⁰	DFSDKSHGTPNLHTMYFK-FKAIPVGK	17.17
12	CPF ²⁰ -CPF ⁷¹⁴	FKAIPVGK-DFSDKSHGTPNLHTMYFK	19.392
13	CPF ³²⁶ -CPF ³¹⁰	LFKNFDEYSSAGIFVK-NTLNKNSEIFSSIK	20.015
14	CPF ²⁰ -CPF ³⁴	FKAIPVGK-TQENIDNKR	22.328
15	CPF ⁷³³ -CPF ⁸¹¹	LLFDENNHGQIR-NIFKINTEVR	24.922
16	CPF ⁵¹ -CPF ⁵¹⁴	AEDYKGVKK-NYVTQKPYSK	26.466
17	CPF ⁷⁸⁷ -CPF ⁶⁸⁷	TTTLSYDVYKDKR-VSFESASKK	31.809
18	CPF ⁵¹ -CPF ⁵³⁸	AEDYKGVKK-LYFQNPQFMGGWDKDKETDYR	33.062
19	CPF ⁷³³ -CPF ⁵⁶⁰	LLFDENNHGQIR-YYLAIMDKK	34.523

¹H NMR of pBVS

¹³C NMR of pBVS

HR-MS-ESI of pBVS

References

- [1] J. R. Wisniewski, A. Zougman, N. Nagaraj, M. Mann, Nat. Methods. 2009, 6, 359-362.
- [2] L. R. Yu, Z. Zhu, K. C. Chan, H. J. Issaq, D. S. Dimitrov, T. D. Veenstra, J. Proteome Res. 2007, 6, 4150-4162.
- [3] K. A. Kovalchik, S. Moggridge, D. D. Y. Chen, G. B. Morin, C.S. Hughes, J Proteome Res 2018, 17, 2237-2247.