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Symmetric shape constructions
We describe the construction of symmetric shape families for
inverse engineering optimal particle shapes for each candidate
structure. In all cases, after the geometric construction below
was carried out, all particle shapes were normalized to unit
volume to maintain constant system density.

BCC and FCC
We focus on the spheric triangle group ∆4,3,2 [45], which is
constructed with three families of planes that make up the
faces of a rhombic dodecahedron, a cube, and an octahedron.
There are truncating planes of two types: type a correspond-
ing to the location of the cube faces, and type c which cor-
respond to the position of the octahedron faces. We use α to
represent the location of the truncating planes of type a and
β to represent the location of the truncating planes of type c,
both of which are linearly mapped to the interval between 0
and 1. (0, 0) is the cuboctahedron, (0, 1) is the cube, (1, 0) is
the octahedron and (1, 1) is the rhombic dodecahedron. For a
detailed mathematical construction and images of representa-
tive particle shapes see Ref. [4 ].

β-Mn
We truncate each vertex of a dodecahedron using planes with
normals directed along a line connecting the geometric center
of the dodecahedron with a vertex, truncating by an amount
α between 0 and 1. The perfect dodecahedron has α = 1,
and α = 0 when two truncating vertices meet. Representative
particles from this shape family are shown in fig. S1B.

SC
We first study the spheric triangle group ∆3,2,3 [4 ] which is
constructed with three families of planes that make up the
faces of a cube, a tetrahedron, and an octahedron. As in the
case of the ∆4,3,2 family, there are two shape parameters, a
and c, which specify the amount of truncation (or position of
the bounding planes). For a detailed mathematical construc-
tion and images of representative particle shapes see Ref. [ ].

We then study a one-parameter family of shapes formed by
adding a vertex at each face center of a cube. Shape param-
eter α = 0 describes a perfect cube and α = 1 describes a
perfect rhombic dodecahedron. Representative particles from
this shape family are shown in fig. S1A.

Diamond
We first study a one-parameter truncated tetrahedron family,
where we truncate each vertex of a tetrahedron by an amount
α that ranges between a perfect tetrahedron (α = 1) and an
octahedron (α = 0). Representative particles from this shape
family are shown in fig. S1C (top).

We then study a three-parameter shape family formed by
truncating the vertices of a tetrahedron and adding one more
vertex to each face. Each augmenting vertex lies along a line
connecting the geometric center of the tetrahedron with the
center of a face. For this shape family, we again use α to
parametrize the amount of truncation on each vertex of the
tetrahedron. For the hexagonal faces of a truncated tetrahe-
dron, we use shape parameter β to measure the distance be-
tween the augmenting vertex on the tetrahedron face and the

original face center. We use β = 0 to indicate that the aug-
menting vertex lies in the plane of the tetrahedron face (i.e.
no augmentation), and β = 1 to indicate that the distance be-
tween the augmenting vertex and center of mass (CM) is twice
the distance between the original face center and CM. For the
triangular faces of the truncated tetrahedron, we use shape pa-
rameter γ to measure the distance between the augmenting
vertex and CM. We use γ = 0 to indicate that the location of
the augmenting vertex coincides with the vertex location of a
regular (i.e. untruncated) tetrahedron and γ = 1 to indicate
that the augmenting vertex lies at the CM. Representative par-
ticles from this shape family are shown in fig. S1C (bottom).

β-W
We first study a two-parameter family of asymmetrically trun-
cated dodecahedral shapes. We divide the vertices of a dodec-
ahedron into two groups of ten, with one group of vertices on
the two parallel faces. Taking the convex hull of the remaining
“side” vertices yields a pentagonal antiprism, with pentagonal
faces parallel to the top and bottom faces of the dodecahedron.
We use α to parametrize the truncation of vertices on the top
and bottom faces by truncating planes that lie parallel to the
top and bottom faces and are equidistant to the particle CM.
We use α = 1 to indicate that the truncating planes are copla-
nar with the top and bottom faces of the dodecahedron, and
we use α = 0 to indicate the truncating planes lie halfway
between the top and bottom faces and the pentagonal faces
of the antiprism. We use β to parametrize the truncation of
the side vertices. The truncations are formed by situating ten
equidistant planes that have face normals parallel to directions
passing through the particle CM and each side vertex. We use
β = 1 to indicate no vertex truncation and β = 0 for the case
when two truncated vertices meet. Representative particles
from this shape family are shown in fig. S1E (top).

We then study a four-parameter shape family with two pa-
rameters describing the vertex truncations as indicated above.
The other two parameters describe vertex augmentation. We
use γ to parametrize vertex augmentation of the side faces.
We use γ = 0 to indicate that the augmenting vertex lies in the
plane of the face (i.e. no vertex augmentation) and γ = 1 to
indicate the distance between the augmenting vertex and CM
is twice the distance between original face center and CM. We
use δ to parametrize the position of the vertices that augment
the top and bottom faces along lines connecting the center of
the particle with the centers of the top and bottom faces. We
use δ = 0 to indicate that the augmenting vertex lies at the ini-
tial pentagon face center and δ = 1 to indicate the augmenting
vertex is at the CM. Representative particles from this shape
family are shown in fig. S1E (bottom).

hP2-X
This hypothetical structure is a derivative of the hexagonally
close-packed structure (HCP). The structures are very similar
from a crystallographic viewpoint: both exhibit space group
P63/mmc (space group no. 194) and in both of them, the
same Wyckoff site is occupied: 2c 1/3, 2/3, 1/4. However,
the ratio of unit cell parameters c/a differs substantially be-
tween these two cases. While for the close-packing of spheres
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c/a =
√

8/3 ≈ 1.633, this is a free parameter from a sym-
metry point of view. For the structure used here, we chose a
much lower value of c/a = 0.639.

This variant of the crystallographically identical unit cell
exhibits a different local particle environment, due to the fact
that particles can move closer together along the c-direction
and therefore are farther apart, relatively, in the a-b-plane.
This leads to a coordination number of 8 nearest neighbors
– compared with 12 in HCP – and a coordination polyhedron
with the shape of a biaugmented triangular prism.

We first study a two-parameter family of asymmetrically
truncated bipyramid shapes. The dihedral angle between the
upper and lower face of the bipyramid is 122.049 degrees. We
divide the vertices of a bipyramid into two groups, with one
group of vertices at the top and bottom, and another group of
three vertices on the side. We use α to parametrize the trunca-
tion of the top and bottom vertices. We use α = 1 to indicate
no vertex truncation, and α = 0 to indicate the vertices are
truncated to the side vertex position. We use β to parametrize
the truncation of the side vertices. The truncations are formed
by situating three equidistant planes that have face normals
parallel with passing through the particle CM and each side
vertex. We use β = 1 to indicate no vertex truncation and
β = 0 for the case when two truncated vertices meet. Rep-
resentative particles from this shape family are shown in fig.
S1D (left).

We then study a four-parameter shape family with two pa-
rameters describing the vertex truncations as indicated above.
The other two parameters describe vertex augmentation. We
use γ to parametrize the position of the vertices that augment
the top and bottom faces along directions connecting the cen-
ter of the particle with the top and bottom vertices. We use
γ = 0 to indicate that the augmenting vertex lies at the ini-
tial top and bottom vertices and γ = 1 to indicate the aug-
menting vertex is at the particle CM. We use δ to parametrize
vertex augmentation of the side faces. We chose the aug-
menting vertex to be the side face center of a shape with
α = 0.435, β = 0.52, γ = 0.503. We use δ = 0 to indicate
that the augmenting vertex lies in the plane of the face (i.e.
no vertex augmentation) and δ = 1 to indicate the distance
between the augmenting vertex and CM is twice the distance
between the original augmenting vertex and CM. Represen-
tative particles from this shape family are shown in fig. S1D
(right).

Demonstration of uccessful elf- ssembly
For the structures BCC, FCC, β-Mn, SC, diamond, and β-
W, we confirmed the successful self-assembly of each target
structure using a geometric ansatz where particles have the
shape of the Voronoi cell of the target crystal structure, a near
optimal unsymmetrized shape from Alch-MC simulation, and
the symmetric optimal shape from Alch-MC simulation (see

validation was performed using the Hard Particle Monte Carlo
(HPMC) [3 ] plugin for HOOMD-blue [40]. We simulated in
the NV T ensemble with 2197 particles for all structures at
packing fraction η = 0.6, with between 4 × 107 and a max-
imum of 1 × 109 Monte Carlo sweeps. We identified an as-

sembled crystal structure by computing bond order diagrams
and diffraction patterns using particle centroids, following the
approach used in Ref. [11].

Direct ree nergy omputation
We computed the Helmholtz free energy difference between
the target crystal and the Einstein crystal using Frenkel-Ladd
thermodynamic integration [43] via the implementation used in
Refs. [38, 47]. We placed approximately 2000 particles in a pe-
riodic simulation box; the exact number was chosen to be a
multiple of the number of particles in the unit cell of the tar-
get structure. For SC, BCC, diamond, and hP2-X structures,
particles in the assembled structure have orientational order.
Einstein crystal positions and orientations were taken directly
from the space-filling tessellation. For FCC, β-W, and β-Mn
structures, particles in the assembled structure do not show
orientational order. To create an appropriate Einstein crystal,
we first initialized the simulation at a low packing fraction
η = 0.5, chose particle positions using the target structure,
and randomly assigned a set of orientations observed in the
assembly. Then we compressed the system to packing frac-
tion η = 0.6, allowing particles to rotate to resolve overlaps.
We computed the alchemical free energy of the target struc-
ture [14]. We normalized free energies in all plots by setting
the free energy of the target structure with the Voronoi par-
ticles to be zero. Negative values of the free energy indicate
lower free energy for a given particle than a Voronoi particle
shape.

We validated our methodology by performing the free en-
ergy calculation described above for truncated tetrahedra in a
diamond structure, and checked that it reproduces the results
reported in Ref. [14] computed via the Bennett acceptance ratio
method [ ].

f e c

s s a

fig. S2 for representative system snapshots). Self-assembly
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Structure mean of cosine of dihedral angle distribution
BCC -1/3 1/3 1 N/A
FCC -1/2 0 1/2 1
β-Mn -0.447 0.447 1 N/A
SC 0 1 N/A N/A
Diamond 1/3 N/A N/A N/A
β-W -0.447 0.447 1 N/A
hP2-X -0.531 -0.484 0.148 0.617

Mean
of cosine of dihedral angle distribution for unsymmetrized optimal
shapes in step one for seven target structures, which used to infer
symmetry-restricted shapes in step two.

Structure α β γ δ

BCC 0.476 0.194 N/A N/A
FCC 0.341 0.318 N/A N/A
β-Mn 0.263 N/A N/A N/A
SC 0.130 N/A N/A N/A
Diamond 0.392 0.111 0.350 N/A
β-W 0.564 0.486 0.122 0.081
hP2-X 0.451 0.608 0.487 0.043

Optima l geometric parameters.Table S2. Optimal geometric
parameters (see Symmetric Shape Constructions section for param-
eter descriptions) from Alch-MC simulation for symmetric convex
polyhedra in step two to self-assemble seven target structures.

 MTable  S1. ean of cosine of dihedral angle distribution.
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F . S1. Symmetric shape families. Illustration of the geometric constructions used to create symmetric, convex polyhedra for the target
structures: SC, β-Mn, diamond, β-W, and hP2-X in step two. See Symmetric Shape Constructions section for a detailed description.
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F Diamond
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F . S2. Successful self-assembly from disordered fluid. Representative system snapshots indicating the successful self-assembly inNV T
MC simulations of near-optimal convex polyhedra obtained from Alch-MC simulation in step one (left column), NV T MC simulation of
optimal symmetric convex polyhedra obtained from Alch-MC simulation in step two (center column), and geometric ansatz (right column) for
six structures at packing fraction η− 0.6. Particle images and bond-order diagrams are on the left. (A snapshot of a representative system that
successfully self-assembled the hP2-X structure is shown in Fig. 3C.)
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