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Supplementary Note 1: Correlations and temporal enhancement

In this section, we review the mathematics behind the known static correlations in disordered media, and then
discuss their consequences for the spatio-temporal correlations in multimode fibers. We then introduce our model for
temporal control. Finally we discuss the isotropic approximation of the time-resolved transmission matrix.

Correlations and transmission eigenvalues

The propagation of monochromatic light through a system with N input and N output channels is described by
an N -by-N transmission matrix u, where the matrix element uba is the flux-normalized field transmission coefficient
from input channel a to transmitted channel b. We denote Uba ≡ |uba|2.

We consider the singular-value decomposition u = W
√
τV †; here W and V are N -by-N unitary matrices, and τ is

a diagonal matrix whose elements {τn}Nn=1 are the eigenvalues of u†u.
For disordered media, the intensity correlation between the transmitted speckles is defined in channel space as

Caa′,bb′ ≡
〈UbaUb′a′〉
〈Uba〉〈Ub′a′〉

− 1 (1)

where 〈· · · 〉 denotes ensemble average over different disorder realizations. If the matrices u are isotropic, the correla-
tions must take on the form [1, 2]

Caa′,bb′ = δaa′δbb′C1 + (δaa′ + δbb′)C2 + C3, (2)

where the constants C1, C2, C3 are commonly referred to as the magnitudes of the short-range, long-range, and
infinite-range correlations. Typically C1 � C2 � C3.

Mathematically, the transmission matrices u are “isotropic” when the matrices W and V are sampled uniformly
and independently from the space of all random unitary matrices in the ensemble average. Physically, isotropy means
that all input modes and all output modes are fully mixed, and that all modes are statistically equivalent (a detailed
discussion about isotropy of transmission matrix in subsection D).

Spatially, a similar structure emerges for intensity correlation function. Denote I(rb, ra) as the transmitted intensity
at position rb on the back surface given a point-source excitation at position ra on the front surface. For isotropic
disordered media, the correlation between I(rb, ra) and I(rb′ , ra′) takes on the form [3, 4]

C(ra′ − ra, rb′ − rb) = [F (ra′ − ra)F (rb′ − rb)]C1

+[F (ra′ − ra) + F (rb′ − rb)]C2 + C3,
(3)

where the coefficients C1, C2 and C3 are the same as in Eq. (2). F (∆r) is a function that decays from one when
∆r = 0 to zero when |∆r| is large. Given a fixed input such that ra′ = ra, we obtain Eq. (1) in the main text, where

we define C̃1 ≡ C1 + C2 ≈ C1 and C̃2 ≡ C2 + C3 ≈ C2.
The statistics of the transmission eigenvalues uniquely determines the magnitudes of the correlations. It was shown

rigorously that [1, 2]

C1 =
N2(N2 + 1)

(N2 − 1)2

(
〈α2〉
〈α〉2

− 2N

N2 + 1

〈α2〉
〈α〉2

)
,

C2 =
N2(N2 + 1)

(N2 − 1)2

(
〈α2〉
〈α〉2

− 2N

N2 + 1

〈α2〉
〈α〉2

)
,

C3 = C1 − 1,

(4)

where α ≡
∑N

n=1 τn and α2 ≡
∑N

n=1 τ
2
n.

Even though the preceding results were initially obtained in the context of monochromatic light propagation through
disordered media, the mathematical framework is very general. In fact, Eqs. (2)–(4) are valid as long as the matrices
u are isotropic [2, 3]. In particular, the propagation of a pulse through a multimode fiber will also satisfy Eqs. (2)–(4)
if the time-resolved transmission matrix u(t) at arrival time t is sufficiently isotropic.
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Effective model for temporal enhancement

As described in the main text, the largest-possible enhancement of the spatially integrated intensity at a target
arrival time t0 is given by the largest eigenvalue of u†(t0)u(t0). Eq. (4) relates the spread of eigenvalues to the
magnitudes of the correlations. Here, we provide a heuristic model to relate the maximal eigenvalue to the spread of
eigenvalues and then to the correlations.

We model the eigenvalues {τn(t0)}Nn=1 associated with the N -by-N matrix u(t0) using the eigenvalues {τ (eff)
n (t0)}Nn=1

associated with an effective N (eff)(t0)-by-N matrix u(eff)(t0) with uncorrelated matrix elements. The idea, as first
introduced in Ref. [5], is to capture the effects of correlations in u(t0) by resizing the number of output channels from
N to N (eff)(t0). As the magnitude of correlations depends on the arrival time (see Fig. 2c in the main text), the
effective number N (eff)(t0) will also depend on t0.

Given a large M -by-N random matrix u with uncorrelated elements, the eigenvalues of u†u are given by the
Marčhenko–Pastur distribution [6], with the largest eigenvalue being τmax = (1 +

√
N/M)2τ̄ and the eigenvalue

variance being var(τ) ≡ τ̄2 − τ̄2 = (N/M)τ̄2. Therefore, the normalized maximal eigenvalue is directly related to the
spread of eigenvalues, as

τmax

τ̄
=

(
1 +

√
var(τ)

τ̄2

)2

. (5)

Here, we use overhead bars to denote averaging over the N eigenvalues.
The spread of eigenvalues is related to the magnitudes of the correlations through Eq. (4). Specifically, we obtain

〈var(τ)〉
〈τ̄〉2

=

(
1− 1

N2

)
(1 +NC2 + C3) ≈ 1 +NC2 (6)

by writing var(τ) = (α2/N)− (α2/N2) and solving for 〈α2〉/〈α〉2 and 〈α2〉/〈α〉2 in Eq. (4).
Inserting Eq. (6) into Eq. (5), we get

η(t0) = 2 +NC2(t0) + 2
√

1 +NC2(t0), (7)

which is Eq. (4) in the main text. This expression concisely relates the long-range spatio-temporal correlations C2(t)
to the maximal power enhancement at a targeted arrival time t0. It has two underlying assumptions, the first being
the isotropy of u(t0) [which underlies Eq. (4) and Eq. (6)], the second being the heuristic modeling of {τn} using a
resized uncorrelated matrix [which underlies Eq. (5)].

Model for focused pulse shape

Experimentally, we also measure the long-range correlation between speckle grains at different arrival times. Such
information can be used to predict the pulse shape (output power as a function of t) when the input wavefront has been
optimized to enhance the power at arrival time t0. We construct a heuristic model based on two observations. First,
the normalized power η(t, t0) should be identical to Eq. (7) when t = t0. Second, when the correlation C2(t, t0) ≈ 0, the
power at t should be equal to that of random incident wavefront, giving η(t, t0) ≈ 1. To satisfy these two constraints,
we propose

η(t, t0) = 2C1(t, t0) +NC2(t, t0)

+ 2
√

1 +NC2(t, t0)− β[1− C1(t, t0)].
(8)

C1(t, t0) = 1 for t = t0, and C1(t, t0) = 0 for t 6= t0. The parameter β is chosen such that the temporally-integrated
output power (pulse energy) equals that from a random input. From numerical simulations of a multimode waveguide
without loss, we find that β ≈ 1. With loss, both numerical and experimental results confirm that Eq. (8) is still an
excellent model with β = 1.

Isotropy of time-resolved transmission matrix

Macro- and micro-bendings of a multimode fiber (MMF) cause random mode coupling. In the experiment, we
clamp the fiber at multiple locations to introduce micro-bendings. The perturbations induce strong mode mixing
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Supplementary Figure 1: Participation ration (PR) of the time-resolved transmission matrices at different arrival times. The
error bar is the standard deviation for different input modes at a fixed arrival time. Red dashed line: the PR of isotropic
random matrices.

as light propagates through the fiber. In the main text, we present the measured transmission matrices at different
arrival times (Fig. 1c-d).

At the central (mean) arrival time, the higher-order modes have slightly smaller magnitude than the lower-order
modes (Fig. 1d). This is caused by the mode-dependent-loss (MDL) in the fiber. Even with strong mode coupling,
the distribution of mode intensities depends on the relative strength of mode coupling and MDL. Since random
mode coupling can be regarded as scattering in the fiber mode space, we define the transport mean free path lt
as the propagation length at which light originally injected to a single fiber mode is scattered to all spatial modes.
If the fiber length L � lt and lt is much smaller than the absorption length la for any fiber mode, mode mixing
dominates over dissipation, then all modes would have similar magnitudes. However, such conditions are not met for
the multimode fiber in our experiment. Because the higher-order modes experience significantly more loss, they have
shorter la than the lower-order modes. As their la become shorter than lt, the higher-order modes dissipate faster
than mode coupling. Thus their magnitudes become smaller than those of the lower-order modes.

Furthermore, Fig. 1c shows the transmission matrix at early arrival time has more contributions from the lower-
order modes than the higher-order modes. In order to have a short delay, the pulse must travel mostly in the
lower-order modes that have smaller group delay. Thus the lower-order modes contribute more to the transmission
matrix at earlier arrival time. Similarly, the higher-order modes contribute more to the transmission matrix at later
arrival times. Therefore, even if the mode-dependent loss is negligible, the transmission matrices at very early or very
late arrival times are not expected to be isotropic.

Clearly “isotropy” is an approximation for the time-resolved transmission matrices. To check how good the ap-

proximation is, we compute the participation ratio PR =
(
∑N

i=1 Ii)
2

N
∑N

i=1 I2
i

, where Ii is the transmitted intensity in mode i.

The larger the PR, the more uniform the transmitted light is spread to all modes. For the measured transmission
matrix at a fixed delay time, we calculate the PR for light injected to each fiber mode (each column) and average the
PR over all input modes (all columns). To quantify the fluctuations of PR for different input modes, we compute the
standard deviation of PR for all columns of the transmission matrix.

The mean value and the standard deviation of PR are plotted versus the arrival time in Fig. S1. For comparison,
we also compute the PR for isotropic random matrices. Each column of the matrix is normalized to unity and consists
of N complex numbers that are randomly chosen from the normal distribution. The ensemble-averaged PR is 0.51.
The mean value of PR at different arrival times is fairly close to 0.51 (red dashed line) in Fig. S1. Hence, isotropy is
a good approximation for the time-resolved transmission matrices of our fiber within the measurement range of delay
times.
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Supplementary Figure 2: Spectral correlation function C(∆λ) of the output field pattern and the corresponding temporal pulse
shape when the input pulse has the spatial wavefront set by an EM, SPM, PM and random wavefront (RM). The input pulse is
transform limited and has a Gaussian spectrum of width equal to (a, b) 10, (c, d) 5 and (e, f) 2 times of the spectral correlation
width of the multimode waveguide. For clarity, the transmitted pulses are temporally off-set by 70 ps in (b, d, f).

5



Supplementary Note 2: Comparison to Principal Modes

The principal mode (PM) is defined as the eigenmode of the group-delay matrix for a multimode fiber [7–10]. It
retains the transmitted spatial field profile to the first order of frequency variation. If random mode coupling is
strong in a fiber (L � lt), the spectral window, over which the transmitted field pattern remains nearly unchanged
with frequency, has a width about twice of the spectral correlation width of the fiber. To further enhance spectral
correlation, super-PMs [11] are created by minimizing the variation of output field pattern with frequency, i.e., by
maximizing the area underneath the curve for the spectral correlation function over a chosen frequency range. The
spectral bandwidth of the super-PM is about four times of the spectral correlation width of the fiber with strong
mode mixing.

Both PMs and super-PMs aim to achieve an output spatial profile that is invariant in frequency so that the output
field pattern does not change with the arrival time and maintains the spatial coherence; however, the transmitted
power is not necessarily maximized at any arrival time.

The eigenmode (EM) with the maximum eigenvalue of the time-resolved transmission matrix generates the highest
possible transmitted power at the selected arrival time. It works for input pulses with arbitrarily broad spectra.
Therefore, PM, super-PM (SPM) and EM are all suppressing modal dispersion in the fiber, but for different purpose
and thus optimizing the incident wavefront with different figures of merit.

Below we compare the spectral correlation and temporal pulse shape of the PM, super-PM (SPM), EM and random
wavefront (RM) for varying bandwidths of the input pulse. Numerically we simulate a multimode waveguide with
the concatenated model [12]. The input pulse is assumed to have a Gaussian spectrum. Its spectral width is varied
from 2, 5 and 10 times of the correlation width of the fiber (for random incident wavefronts). The spectral correlation
function for the transmitted field pattern |ψout〉 is given by C(∆λ ≡ λ − λ0) ≡ 〈ψout(λ0)|ψout(λ)〉, where |ψout〉 is
normalized at each wavelength λ [9].

Figure 2 presents the results for three bandwidths of input pulses, which are transform limited. For the EM, t0 is
set to the mean arrival time. The PM and SPM are chosen to have the intermediate delay time and the broadest
bandwidth. When the input bandwidth is 10 times of the spectral correlation width of the fiber (as studied in our
experiment), EM clearly outperforms PM and SPM in both the frequency domain and the time domain (a,b). The
total area underneath the curve of the spectral correlation function for EM is the largest, indicating the overall spectral
decorrelation within the broad range is the least for EM (a). Temporally, EM achieves the highest peak power of
the transmitted pulse (b). When the input bandwidth is reduced to 5 times of the spectral correlation width (c,d),
the PM still displays notable spectral decorrelation and the output pulse is clearly broadened in time. The SPM
and EM are effective in suppressing spectral decorrelation (c) and temporal stretching (d), but EM still outperforms
SPM slightly. Only when the input spectrum is reduced to twice of the spectral correlation width of the fiber (e,f),
PM, SPM and EM achieve almost equivalent performances. In the frequency domain, PM, SPM and EM barely
decorrelate, contrary to RM (e). In the time domain, the output pulse for RM is about twice longer than the input
pulse. In contrast, PM, SPM and EM all have transmitted pulses of length comparable to the incident pulse (f).
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