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In this supplementary information, we provide:

1. details on simulations used to generate Fig. 2 in the
main text (Supplementary Note 1),

2. a proof that our formulas, within the decoupling
approximation, are exact in first order of perturba-
tion around Brownian motion the for the fractional
Brownian motion (Supplementary Note 2),

3. additional information on the scaling function G
(Supplementary Note 3).

Supplementary Note 1: Details on numerical
simulations

Here we give additional details on how the results pre-
sented on Fig. 2 (in the main text) are obtained.

Diffusion on fractal lattices [Fig.2(a) and Supplemen-
tary Figure 1]. We performed simulations of random
walks on the Sierpinski gasket (SG) and the dual Sier-
pinski gasket (DSG). The generation g of the lattice was
chosen to be high enough to consider that the search for
the target occurs in infinite space (we used g = 11 for the
SG and g = 10 for the DSG). For these fractals we have
first randomly selected a pair of nodes having minimal
chemical distance r0 and then performed random walk
simulation. The procedure was repeated between 105 and
106 times. For determination of the survival probability
S(t) we have used a cut-off of 106 steps. The mean-first
passage time T was calculated from simulations without
cut-off by performing random walks on fractals of lower
generations (up to g = 8, so that, for selected distances
r0, T showed a saturation to a constant value). For the
calculation of the prefactor S0 we have used the behav-
ior of the propagator, p(r, t) ∼ K/tdf/dw . For SG and
DSG the fractal and walk dimensions are df = ln 3/ ln 2
and dw = ln 5/ ln 2, respectively. For SG the constant
K ≈ 0.30, see [1, 2], and for DSG K ≈ 0.37, see [2]. Note
that the constant K is the same for all distances r that
are much smaller than the size of the fractal [3, 4].

Flexible (Rouse) chain [Fig.2(c) and (d)]. We consider
the model in which x(t) = x1(t) is the position of the
first monomer of a one dimensional Rouse chain of N
monomers, whose dynamics is

ζẋi = −k(xi+1 − 2xi + xi−1) + fi(t) (1)

with 1 ≤ i ≤ N , 〈fi(t)fj(t′)〉 = 2δijδ(t − t′)kBTζ, and
x0(t) = x1(t), xN+1(t) = xN (t) by convention [5]. In
our numerical simulations we integrate numerically the
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Supplementary Figure 1: Survival probability for diffusion
on the dual Sierpinski gasket with one absorbing site for dif-
ferent source-to-target chemical distances r0. Symbols: simu-
lations. Continuous lines: explicit prediction Eq. (9). Dashed
lines: exact prediction of Eq. (8), in which T is measured in
simulations.

Langevin equation, Supplementary Equation (1). Re-
sults are shown by setting the units so that k = ζ =
kBT = 1. We consider two choices of initial condi-
tion: (i) stationary initial condition [Fig.2(c)], in which
the whole chain is initially at equilibrium conditional
to x1(0) = r0, and (ii) non-stationary initial condition
[Fig.2(d)], in which the position of all monomers is set to
r0 at initial time. In case (ii), the dynamics displays tran-
sient aging, the non-stationary initial condition is forgot-
ten if one waits more than the largest relaxation time
of the chain ∼ N2. In Fig.2(c), N = 20 and the time
step is ∆t = 2 × 10−4, whereas in Fig.2(d) N = 15 and
∆t = 10−3.

Fractional Brownian Motion [FBM, Fig. 2(e) and
(f)]. The FBM is a symmetric Gaussian process with
stationary increments with mean square displacement
〈[x(t)− x(0)]2〉 =κt2H . We simulate it with by using the
circulant matrix algorithm [6–9], which exactly samples
an FBM trajectory at times separated by a fixed time
step ∆t. We perform (i) one-dimensional simulations,
where x(0) = r0 = 1, and ∆t = 0.00006 and (ii) two-
dimensional simulations, where x(t) = (x(t), y(t)) is a
vector with x(t) and y(t) independent one dimensional
FBMs, starting at (r0, 0), the absorbing region being a
disk of radius a = 1, with a time step ∆t = 0.0015.
Results are shown in units with κ = 1. They are com-
pared with the predictions for S0 that use the link with
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Process r0 S0 in simulations S0 (our theory) S0 (Markovian Approx.)
Diffusion on SG 5 2.92 < S0 < 2.97 2.918 -

10 4.9 < S0 < 5 4.863 -
Bidiffusive process 10 2.1 < S0 < 2.2 2.11 4.7

3 0.17 < S0 < 0.19 0.159 0.575
1 0.032 < S0 < 0.038 0.033 0.827

Rouse (1D) 8 9.6 < S0 < 10 9.82 13.88
2 0.72 < S0 < 0.76 0.713 1.53
1 0.23 < S0 < 0.25 0.228 0.469

FBM (1D, H = 0.34) 1 0.65 < S0 < 0.71 0.49 7.2
FBM (2D, H = 0.35) 3 0.85 < S0 < 0.95 0.71 1.56

8 3.5 < S0 < 3.8 3.17 4.92

Supplementary Table 1: Values of S0 predicted by the theory versus simulation results corresponding to the processes shown
in Fig. 2 in the main text. All units and parameters are given in the text of this SI [Supplementary Note 1].

T [Eq. (8)] and the method of Ref. [10] to compute the
value of T , within the “stationary covariance approxima-
tion”. Specifically, predictions for T in 2D and H = 0.35
appear in Fig. 3c of Ref. [10]. For the one dimensional
case, we use the prediction T = βHx

1/H−1
0 /κ2H , with

βH ' 0.70 [10] for H = 0.34.
Bidiffusive process [Fig. 2(b)]. We also simulate the

“bidiffusive” process, that is the symmetric Gaussian
process with stationary increments whose MSD function
is ψ(t) = Dt + B(1 − e−λt). Results are shown in units
for which D = λ = 1, and we use the value B = 30,
and a time step ∆t = 1.5× 10−4. The bidiffusive process
can be constructed by assuming that x(t) is coupled to
one additional degree of freedom for which the relaxation
time is 1/λ. Consider for example the Langevin system

ȧ1 = f1(t), ȧ2 = −λa2 + f2(t) (2)
〈fi(t)fj(t)〉 = δijδ(t− t′), (3)

and define x(t) =
√
Da1(t)+

√
Ba2(t). Assuming that a2

is initially at equilibrium and that x has initially a fixed
value x(0), we get the MSD of the bi-diffusive process
ψ(t) = 〈[x(t)− x(0)]2〉 = Dt+B(1− e−λt).

Estimates for the prefactor S0 are shown in Supple-
mentary Table 1. Note that, in all our simulations, we
begin with an arbitrary value of the time step and we de-
crease it by successive factors of 4 until we are convinced
that the obtained results do not depend on the time step.
We show the results for a sampling time where conver-
gence has been reached.

Supplementary Note 2: Perturbation expansion for
the prefactor S0 for the Fractional Brownian Motion

Here we prove that our approach, with the decoupling
approximation, provides an exact expression for S0 at
leading order in a perturbation expansion around Brow-
nian motion for the fractional Brownian motion.

Consider a one dimensional fractional Brownian Mo-
tion (FBM), which is the symmetric Gaussian process

x(t) with stationary increments with 〈[x(t) − x(0)]2〉 =
κt2H , where κ is a generalized transport coefficient. If the
process starts at x0, we can state that the probability of
not reaching the origin S(t) behaves at

S(t) ∼
t→∞

αH

(
x

1/H
0

κ1/(2H)t

)1−H

. (4)

The above expression follows from dimensional analy-
sis and from the fact the the persistence exponent is
θ = 1−H. The problem is therefore reduced to the cal-
culation of a single, dimensionless function of H. Here
we characterize α at order ε = H − 1/2 at show that the
decoupling approximation is exact at this order.

First, we derive αH within our approach, and then use
the comparison with the exact perturbation results of
Refs. [11, 12]. In Ref. [10], it is found that the mean
first passage time, rescaled by the confining volume, is
exactly given by the following formula at order ε:

T =
∫ ∞

0

dt
1− e−1/(2πt2H)

(2πt2H)1/2
+O(ε2) (5)

where we have used x0 = 1 and κ = 1. Using the “de-
coupling approximation” of the main text, i.e. assuming
G ' 1 for the scaling function G, our expression for S0 is

S0 =
sin(πH)
πK

T . (6)

Here, K characterizes the long time behavior of the prop-
agator and is identified from

p(x, t) ∼
t→∞

1
(2πt2H)1/2

, (7)

so that

K = 1/
√

2π. (8)

Inserting this value into Supplementary Equation (6) and
expanding at first order in ε leads to

αH '
√

2
π

[1− 2ε(1− ln 2− γe)] , (9)
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where γe = 0.577... is the Euler-Mascheroni constant.
Here we remind that the only uncontrolled approxima-
tion in the above result is the use of the “decoupling
approximation”.

Let us now consider the exact perturbative results of
Refs. [11, 12]. There it is shown that the survival proba-
bility reads

S(t, x0) =
∫ x0/

√
2tH

0

fH (y) dy. (10)

Here the function fH reads

fH(y) =

√
2
π
e−y

2/2
[
1 + ε[W (y) + C0] +O(ε2)

]
, (11)

where W is:

W (y) = 2F2

(
1, 1;

5
2
, 3;

y2

2

)
y4

6
− 3y2 +

√
2πey

2/2y

+ π(1− y2)erfi
(
y√
2

)
+ (y2 − 2)[γE + ln(2y2)], (12)

[see Eq. (17) of Ref. [11])]. The constant C0 is deduced
from the fact that S(t = 0) = 1. Using Supplementary
Equation (10), this condition implies that

∫∞
0
dyf(y) =

0, which is satisfied at order ε when

C0 = −
∫ ∞

0

dy

√
2
π
e−y

2/2W (y) = −2, (13)

where the last equality is obtained by using Supplemen-
tary Equation (12).

In Ref. [11], the convention κ = 2 is used, and we thus
use x0 =

√
2; with this choice the survival probability

reads S(t) ∼ αH/t
1−H and the value of αH can thus

be directly obtained. Now, we evaluate S in this theory
for large times in Supplementary Equation (10), in this
limit the function f can be evaluated for small values of
y, where W admits the asymptotic behavior

W (y) ∼
y→0
−4 ln y +A0, (14)

with

A0 = lim
y→0

[G(y) + 4 ln y] = −2γE − 2 ln 2, (15)

where the last equality is obtained by using Supplemen-
tary Equation (12).

Hence, the large time behavior of the survival proba-
bility reads, in this perturbative approach:

S(t) '
√

2
π

∫ 1
tH

0

dy

(
1− y2

2

)
[1 + ε(A0 + C0 − 4 ln y)]

'
√

2
π

1
tH

{
1 + ε

[
A0 + C0 − 4

(
ln

1
tH
− 1
)]}

'
√

2
πt
{1 + ε [A0 + C0 + 4 + ln t]} , (16)

where we have used t−H = t−1/2[1 − ε ln t + O(ε2)] in
the last equality. Now, expanding Supplementary Equa-
tion (4) (with x0 =

√
2 and κ = 2) at order ε gives

S(t) ' αH√
t

(1 + ε ln t), (17)

which is compatible with Supplementary Equation (16)
if

αH =

√
2
π

[
1 + ε(A0 + C0 + 4) +O(ε2)

]
. (18)

With the explicit values of A0 and C0 in Supplementary
Equations (15) and (13), we find that this exact result
is the same as the result Supplementary Equation (9) of
our theory. This implies that the “decoupling approxi-
mation”, in which the scaling function G is approximated
by unity, is exact at order ε for H → 1/2.
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Supplementary Figure 2: (a) Survival probability for a one
dimensional fractional Brownian Motion starting at x0 = 1,
with a target at x = 0, for H = 0.34 and κ = 1. The straight
lines are the predictions of the long time behavior of S(t) using
the non-Markovian theory with the decoupling approxima-
tion (dashed blue line), without the decoupling approximation
[red continuous line, in this case G is evaluated based on the
numerical data presented in (b)], and the pseudo-Markovian
approximation (red dashed line). (b) Value of µ(t|τ)/tH as
measured in simulations, with µ(t|τ) = 〈x(t+ τ)〉FPT=τ . We

also represent the function f(x) = 0.8/(1 + (2x)0.68)1/2 that
reasonably fits the data.

Supplementary Note 3: More information on the
scaling function G

Our exact estimate of S0 involves the scaling function
G, which is equal to unity in the decoupling approxima-
tion. Its complete analytical determination is postponed
for future work. Here, we give additional information
obtained by measuring it in numerical simulations in the
case H = 0.34. Our stochastic simulations support the
fact that (i) the distribution of paths in the future of a
FPT is Gaussian and that (ii) the variance of trajectories
in the future of the FPT is well described by its station-
ary value ψ(t). Here, an important fact is that (i) and (ii)
are valid even when conditioning by a particular (large)
value of the FPT. Hence, we focus on the average µ(t|τ),
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that is the average value of x(t+τ) given that the FPT is
exactly τ . Dimensional analysis indicates that for large
t, τ , µ(t|τ) ∼ tHf(t/τ). This scaling behavior is con-
firmed on Supplementary Figure 2(b), where f displays
two regimes.

Using a simple form for f(x), and thus for G = e−f
2/2,

we may now evaluate S0 from the exact equation (17) (in
the main text). The result compares well with simula-
tions in Supplementary Figure 2(a), but is only a small
improvement of the simple approximate expression (18).
We conclude that the expression of S0 that is obtained
within the decoupling approximation G ' 1 appears as
a reliable and simple first estimate of S0, and contains
most of memory effects.
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