OMTN, Volume 17

Supplemental Information

Efficient Generation of Pathogenic A-to-G

Mutations in Human Tripronuclear Embryos

via ABE-Mediated Base Editing

Guanglei Li, Xinyi Liu, Shisheng Huang, Yanting Zeng, Guang Yang, Zongyang Lu, Yu Zhang, Xu Ma, Lisheng Wang, Xingxu Huang, and Jianqiao Liu

SUPPLEMENTARY INFORMATION

Supplementary Figure 1 Detection of pathogenic A-to-G substitution induced by ABE in cells

Supplementary Figure 2 Detection of indels for TTR and RPE65

Supplementary Figure 3 Simultaneous editing of multiple sites.

Supplementary Figure 4 The editing efficiency for ALFOB, and KCNJ11

Supplementary Table 1 Summary of the used embryos and editing efficiency

Supplementary Table 2 Summary of the off-target sites for TTR

Supplementary Table 3 Summary of the off-target sites for RPE65

Supplementary Table 4 Primers used in the study

Supplementary Figure 1 Detection of pathogenic A-to-G substitution induced by ABE in cells. A. The representative pathogenic mutations. Five human genes with reported pathogenic mutation were selected, and the related pathogenic points are highlighted in red. The PAM sequences are underlined.

B. The representative chromatogram of the Sanger sequencing of target sites from genomic DNA of HEK293T cells transfected with ABE and related sgRNAs. The red stars indicate the conversion of A-to-G.

C. The editing efficiency of A-to-G within the target sites. Data from three independent experiments were shown as means \pm s.d.

D. Sequences of the PCR product after TA cloning for *TTR* and *RPE65*. The PAM sequences are underlined; the modified bases highlighted in red. N/N indicates bacterial colonies with base editing out of total number of the sequenced bacterial colonies.

Supplementary Figure 3 Simultaneous editing of multiple sites. A. The editing efficiency was calculated depending on the chromatogram of the Sanger sequencing of target sites. B. The editing efficiency was calculated depending on the deep sequencing.

Supplementary Figure 4 The editing efficiency for ALDOB and KCNJ11 in human embryos.

			Edit	tind	r			Edi	tina			Edi	itina
Used	Embryo	e	fficie	ene	cv	Used	Embryo	effici	iencv	Used	Embryo	effic	iencv
sgRNAs	No.	(A-to	o-G	3)	sgRNAs	No.	(A-t	o-G)	sgRNAs	No.	(A-t	o-G)
	Position	A	3		47		Position	A2	A4		#68	22%	86%
	#1	7%	6	4	1%		#35	8%	55%		#69	14%	89%
	#2	0%	6	3	9%	4. ABE+	#36	3%	90%		#70	22%	95%
	#3	0%	6	4	9%	COL9A2	#37	78%	91%		#71	35%	89%
	#4	0%	6	6	0%		#38	37%	100%	8. ABE+	#72	2%	94%
	#5 ^a	0%	6	8	8%		Position	A	5	TTR	#73	7%	98%
	#6	25	%	7	0%		#39	0	%		#74	8%	90%
SILEO	#7	5%	6	4	8%		#40	2	%		#75	35%	71%
	#8	45	%	6	5%	5. ABE+	#41	0	%		#76	5%	98%
	#9	44	%	9	3%	KCNJ11	#42	4	%		#77	12%	96%
	#10	0%	6	4	5%		#43	0	%		Positon	A2	A4
	#11	6%	6	5	5%		#44	3	%		#68	12%	50%
	#12	0%	6	10)0%		#45	1	%		#69	0%	50%
	Position	A2	A	5	A8		Position	A3	A6		#70	4%	87%
	#13	4%	99	%	1%		#46	0%	78%		#71	3%	70%
	#14	4%	100)%	3%		#47	80%	90%	8. ABE+	#72	1%	98%
	#15	3%	89	%	10%		#48	18%	80%	KFE00	#73	16%	25%
	#16	4%	96	%	2%		#49	18%	92%		#74	2%	97%
	#17	3%	99	%	8%		#50	13%	88%		#75	3%	60%
Z. ADE+	#18	2%	99	%	1%	0. ADE+	#51	6%	90%		#76	10%	85%
SITEZ	#19	2%	86	%	2%		#52	1%	82%		#77	4%	80%
	#20	6%	91	%	3%		#53	2%	95%		Position	A3	A6
	#21	3%	50	%	16%		#54	35%	86%		#78	14%	95%
	#22	8%	99	%	14%		#55	14%	74%		#79	0	96%
	#23	0%	100)%	0%		#56	9%	70%		#80	0	80%
	#24	1%	83	%	2%		#57	9%	87%		#81	33%	100%
	Position	Aź	2		44		Position	A2	A4		#82	10%	87%
	#25	0%	6	2	2%		#58	12%	60%		#83	30%	89%
	#26	0%	6	()%		#59	0%	38%	10	Position	A4	A7
3. ABE+	#27	1%	6	3	3%		#60	8%	64%		#85	19%	11%
ALDOB	#28	2%	6	1	۱%	7 AREL	#61	1%	42%	BCS1L-1	#86	26%	15%
	#29	0%	6	()%	RPE65	#62	0%	50%	DCOTET	#87	21%	14%
	#30	1%	6		۱%		#63	0%	26%	11	Position	A5	A7
	#31	0%	6	2	2%		#64	0%	70%	ABE-NG+	#88	42%	24%
	Position	A	6		48		#65	0%	53%	BCS11-2	#89	33%	0
4. ABE+	#32	29	%	8	7%		#66	2%	60%	50012-2	#90	32%	0
COL9A2	#33	529	%	3	0%		#67	5%	41%				
	#34	36	%	4	8%		Position	A3	A6				

Supplementary Table 1 Summary of the used embryos and editing efficiency

^a The embryos marked in red were subjected for deep sequencing.

Position	1	2	3	4	5	6	7	8	9	10	11	12	13	14	15	16	17	18	19	20	Ν	G	G			Location	
Target site	G	G	А	G	Т	А	G	G	G	G	С	Т	С	А	G	С	А	G	G	G	С	G	G	Chr.	Strand	Start	End
TTR-OF1	А	G	А	G	Т	G	G	G	G	G	С	Т	С	А	G	С	А	G	G	G	Т	G	G	7	-	101886959	101886981
TTR-OF2	G	G	А	G	С	А	С	А	G	G	С	Т	С	А	G	С	А	G	G	G	Т	G	G	9	-	134834935	134834957
TTR-OF3	С	G	G	G	С	А	G	G	С	G	С	Т	С	А	G	С	А	G	G	G	Т	G	G	1	-	54459729	54459751
TTR-OF4	G	G	G	G	G	G	С	G	G	G	С	Т	С	А	G	С	А	G	G	G	А	G	G	1	-	233055471	233055493
TTR-OF5	А	G	С	С	Т	А	G	G	G	С	С	Т	С	А	G	С	А	G	G	G	А	G	G	16	-	3144125	3144147
TTR-OF6	G	С	С	G	Т	С	G	G	С	G	С	Т	С	А	G	С	А	G	G	G	А	G	G	1	-	217186869	217186891
TTR-OF7	G	С	С	G	G	А	G	G	G	G	С	Т	С	А	G	С	А	G	G	G	С	Α	G	19	-	35925685	35925707
TTR-OF8	G	G	С	С	А	А	G	G	G	G	С	Т	С	А	G	С	А	G	G	G	G	Α	G	2	-	16397188	16397210
TTR-OF9	А	G	А	G	С	т	G	G	G	G	С	Т	С	А	G	С	А	G	G	G	G	Α	G	11	+	119792041	119792063
TTR-OF10	G	G	т	G	Т	т	G	G	G	G	С	Т	С	А	G	С	А	G	G	G	Т	G	G	12	+	68329077	68329099
TTR-OF11	G	G	С	т	С	А	G	G	G	G	С	Т	С	А	G	С	А	G	G	G	Т	G	G	3	+	129512561	129512583
TTR-OF12	А	G	А	G	Т	С	А	G	G	G	С	Т	С	А	G	С	А	G	G	G	А	G	G	17	+	18256612	18256634
TTR-OF13	т	G	G	G	С	т	G	G	G	G	С	Т	С	А	G	С	А	G	G	G	А	G	G	7	-	1057874	1057896
TTR-OF14	G	т	т	G	А	т	G	G	G	G	С	Т	С	А	G	С	А	G	G	G	Т	G	G	11	-	2894294	2894316
TTR-OF15	т	т	А	G	G	А	А	G	G	G	С	Т	С	А	G	С	А	G	G	G	Т	G	G	9	-	136104150	136104172
TTR-OF16	G	G	А	А	Т	G	G	А	G	G	С	Т	С	А	G	С	А	G	G	G	Т	G	G	17	-	17627042	17627064
TTR-OF17	Α	С	А	G	С	А	G	т	G	G	С	Т	С	А	G	С	А	G	G	G	А	G	G	2	-	199141685	199141707
TTR-OF18	С	С	т	G	Т	А	G	G	С	G	С	Т	С	А	G	С	А	G	G	G	Т	G	G	9	+	137070161	137070183
TTR-OF19	G	С	т	А	Т	А	G	А	G	G	С	Т	С	А	G	С	А	G	G	G	А	G	G	12	+	12331390	12331412
TTR-OF20	G	т	G	G	Т	С	G	А	G	G	С	Т	С	А	G	С	А	G	G	G	С	G	G	2	+	120794406	120794428
TTR-OF21	G	т	А	G	Α	Т	А	G	G	G	С	Т	С	А	G	С	А	G	G	G	G	G	G	10	+	13995879	13995901

Supplementary Table 2 Summary of the off-target sites for TTR

	-						-		_
Cunn	lamontom	Toble 2	Cummon	of the	off torgat	citor :	for	$DDEC^{\mu}$	5
SUDD	nementary	Table 5	Summary	or the o	on-target	snes .	IOI –	KFEU.	.)
~~rr									

Position	1	2	3	4	5	6	7	8	9	10	11	12	13	14	15	16	17	18	19	20	Ν	G	G			Location	
target site	С	А	Т	А	Т	С	Т	С	С	Т	А	А	С	Т	Т	С	А	G	G	Т	Т	G	G	Chr.	Strand	Start	End
RPE65-OF1	С	т	Т	G	т	С	Т	т	С	А	А	А	С	Т	Т	С	А	G	G	Т	Т	Α	G	9	-	117426716	117426738
RPE65-OF2	G	G	Т	А	Т	С	Т	т	С	Т	А	А	А	т	Т	С	А	G	G	Т	G	G	G	6	-	106501910	106501932
RPE65-OF3	С	А	G	А	С	С	А	С	С	С	А	А	С	Т	Т	С	А	G	G	Т	G	G	G	3	+	28844733	28844755
RPE65-OF4	G	А	Т	С	А	С	Т	С	С	Т	А	С	С	Т	Т	С	А	G	G	Т	G	G	G	10	+	60419751	60419773
RPE65-OF5	А	А	Т	G	G	С	Т	С	С	Т	А	G	С	Т	Т	С	А	G	G	Т	A	G	G	7	+	119799948	119799970
RPE65-OF6	С	А	Т	С	т	G	Т	С	С	А	А	G	С	Т	Т	С	А	G	G	Т	G	G	G	15	+	80808417	80808439
RPE65-OF7	С	А	Т	С	т	G	Т	С	С	Т	G	т	С	Т	Т	С	А	G	G	Т	Т	G	G	21	-	21012624	21012646
RPE65-OF8	С	А	Т	G	А	С	Т	Α	С	Т	А	А	С	С	Т	С	А	G	G	Т	Т	G	G	2	-	20195444	20195466
RPE65-OF9	С	А	Т	т	т	С	Т	Α	С	Т	т	А	G	т	Т	С	А	G	G	Т	A	G	G	14	+	81537161	81537183
RPE65-OF10	G	А	G	А	С	С	Т	С	Α	Т	А	А	С	Т	Т	С	А	G	G	Т	С	A	G	2	-	24436599	24436621
RPE65-OF11	С	А	Т	А	G	С	G	А	С	А	А	А	С	Т	Т	С	А	G	G	Т	Т	G	G	2	-	173678502	173678524
RPE65-OF12	А	А	Т	G	А	А	Т	С	С	Т	А	А	С	Т	Т	С	А	G	G	Т	G	A	G	14	+	20442316	20442338
RPE65-OF13	G	А	Т	А	Т	С	Т	т	Α	А	А	А	С	Т	Т	С	А	G	G	Т	Т	G	G	17	-	11634934	11634956
RPE65-OF14	С	С	Т	С	С	А	Т	С	С	Т	А	А	С	т	Т	С	А	G	G	Т	G	G	G	2	+	218577991	218578013
RPE65-OF15	т	т	Т	А	Т	т	Т	С	С	С	А	А	С	Т	Т	С	А	G	G	Т	A	A	G	20	-	41219765	41219787
RPE65-OF16	С	С	Т	G	Т	G	Т	С	С	А	А	А	С	Т	Т	С	А	G	G	Т	G	G	G	12	-	76712189	76712211
RPE65-OF17	т	А	Т	С	С	С	Т	С	С	Т	А	А	С	Т	Т	С	А	U	U	А	С	Α	G	7	+	82392310	82392332
RPE65-OF18	А	А	Т	А	С	С	Т	Α	С	Т	А	А	С	Т	Т	С	А	G	G	А	Т	G	G	3	-	128451040	128451062
RPE65-OF19	С	А	G	А	Т	С	Т	С	С	Т	С	А	A	т	Т	С	А	G	G	Т	G	G	G	6	+	167581892	167581914
RPE65-OF20	С	С	Т	А	С	С	Т	С	С	Т	т	А	т	т	Т	С	А	G	G	Т	Т	G	G	10	+	69872858	69872880
RPE65-OF21	С	А	С	А	Т	А	С	С	С	Т	А	т	С	т	Т	С	А	G	G	Т	A	G	G	16	-	52342604	52342626
RPE65-OF22	G	G	Т	т	Т	С	А	С	С	Т	А	А	С	Т	Т	С	А	G	G	Т	A	G	G	10	-	57853408	57853430
RPE65-OF23	А	А	Т	Α	Α	С	Т	Α	Т	Т	A	A	С	Т	Т	С	A	G	G	Т	G	G	G	20	-	32437696	32437718

Primer name	Sequence (5'-3')	Product length (bp)	Usage
TTR-ON-249-F	TTTTTCGGGCTCTGGTG	240	
TTR-ON-249-R	TATGAGGTGAAAACACTGCTT	249	
RPE65-ON-248-F	TGTCATTGCCTGTGCTCA	249	
RPE65-ON-248-R	ACATGAGGCAGGAGGACAA	248	
COL9A2-ON-269-F	GCCTCTGGATCTCAGTTTC	200	
COL9A2-ON-269-R	ACAGAGTTGGTAACAAGGCA	269	
KCNJ11-ON-237-F	TCCTGATCCTCATCGTGC	227	On-target
KCNJ11-ON-237-R	TGGTGGTCTTGCGTACCA	257	detection
ALDOB-ON-238-F	AGGCAGACAGGGTCAAGG	220	
ALDOB-ON-238-R	GGATTGGAGGAAAAGTTGC	238	
SITE6-ON-230-F	GGGAAACGCCCATGCAATTA	220	
SITE6-ON-230-R	GTCAACCAGTATCCCGGTGC	230	
SITE2-ON-236-F	AGCTCCTGAGATACAGTCACGAG	220	
SITE2-ON-236-R	AGCTTCCTGAAATGCTGTGCGTGT	230	
RPE65-OF1-257-F	CCAGAGCCCACTGATGTTGAT	257	
RPE65-OF1-257-R	AAAGCAGGCTGGGGGGA	257	
RPE65-OF2-252-F	TGGGCAGTGTATATTAATTGG	252	
RPE65-OF2-252-R	ACAGCTACAGCCAAGTCAGA	252	
RPE65-OF3-241-F	GACGGTTACCAGAGTGCG	241	
RPE65-OF3-241-R	ATCCCTGTGGCTCTCAATA	241	
RPE65-OF4-238-F	AGTCCCTTCTCCTGCCTAC	220	
RPE65-OF4-238-R	GAGAAAAGAAAAGCAAGGC	238	
RPE65-OF5-250-F	TCAACTAATTACTCAAAGAGAAA	250	
RPE65-OF5-250-R	GGACATAAATAAATGCCCTA	250	
RPE65-OF6-243-F	TTCCACTGCTGAGACCCT	242	
RPE65-OF6-243-R	CCACTGTATCCTGGCTTG	245	
RPE65-OF7-262-F	ATTTCTACTCCTGGTTTTGC	262	Off-target
RPE65-OF7-262-R	CAGAGACCCAAGGAGAGC	202	for RPE65
RPE65-OF8-274-F	AAACATCTGAAATGATTCCTAAC	274	
RPE65-OF8-274-R	AGCCATTATCAGTAAACACCTC	274	
RPE65-OF9-275-F	GTAAATTAAAGTTTTCATGCATA	275	
RPE65-OF9-275-R	CAAACATACTCCTCCACAATC	275	
RPE65-OF10-250-F	AATGAACAGAAACAACACCTAAG	250	
RPE65-OF10-250-R	TGGCAACAGAGCGAGACT	230	
RPE65-OF11-246-F	AGACCACTTTTCCTAAGTCACTA	246	
RPE65-OF11-246-R	GAGGAAGAGTCAATAAAATGCT	240	
RPE65-OF12-267-F	AAGACAGTCTGGGAGGCAA	267	
RPE65-OF12-267-R	TTGGGGTAGTGCCAGAAA	207	
RPE65-OF13-273-F	CCATACCTGGTCATTCTGC	272	
RPE65-OF13-273-R	CCCTTGCTTTAAGTCAACG	2/3	

Supplementary Table 4 Primers used in the study

RPE65-OF14-248-F	CCCCTTTGGTTACTGGATTGT	249	
RPE65-OF14-248-R	GCTTTTTTCCTCCTTTCCCA	248	
RPE65-OF15-249-F	AGCAAGCCCTATAACTCAAGA	240	
RPE65-OF15-249-R	CTGATAGAGTAGCCGCCAT	249	
RPE65-OF16-245-F	TTTTAATAGAGACGGGGTTTC	245	
RPE65-OF16-245-R	CCTTCTTGCTATTTGCTGATT	245	
RPE65-OF17-239-F	CCAACCTTTGAATGATGCC	220	
RPE65-OF17-239-R	AAAAATGAGGTTACTCCGACA	239	
RPE65-OF18-237-F	TCTTCCCTTCTGCCTCCTGT	227	
RPE65-OF18-237-R	CTGCCATCGCCATCACG	237	
RPE65-OF19-274-F	CGTGGCTAACTTGACCTCTG	274	
RPE65-OF19-274-R	CTGGGACTGCTACCAATGTG	274	
RPE65-OF20-234-F	TTGAAACCGTAAGAAGAGCC	224	
RPE65-OF20-234-R	GGGTTTTGAAGGTGGAGC	234	
RPE65-OF21-244-F	AAATAAATAAATAGCATCCTTCA	244	
RPE65-OF21-244-R	TTCACCTCAGACCAGCCT	244	
RPE65-OF22-250-F	AAGTATTAGAAGTTTGAGAGAAG	250	
RPE65-OF22-250-R	AAAGTTTTAGCCCTGGTT	250	
RPE65-OF23-236-F	CCTGAGCTCTCCTGCAAG	226	
RPE65-OF23-236-R	CCCTGTGCTGGCTTCTTT	230	
TTR-OF1-236-F	ACCTAAATGGGAGGCTTGC	226	
TTR-OF1-236-R	AGGACTCAACAACGCCCA	230	
TTR-OF2-235-F	CAGTGCGTTTCCAGGTAGT	225	
TTR-OF2-235-R	TGGTAGCAGTGGTAGGTGA	233	
TTR-OF3-242-F	AAATGTGTTTGAAGGAGCGAG	242	
TTR-OF3-242-R	GGGCTGGGACAGACCTCA	272	
TTR-OF4-236-F	GGAGGAAGCAGCAAAGAAG	236	
TTR-OF4-236-R	CCCACAGGACCACAGACC	230	
TTR-OF5-265-F	GCCCCGTCTCGCCCTAT	265	
TTR-OF5-265-R	CAGGGCAGTGACTACAGCGG	203	
TTR-OF6-243-F	TGCCAGGTGACAGTCAGAAC	2/13	Off-target
TTR-OF6-243-R	TATTTAGGGCATCTTGAGTCTCT	243	for TTR
TTR-OF7-235-F	ATCAGCCACCTTGGACAT	235	
TTR-OF7-235-R	TTAGAGTGAGGGTTGAGTTTG	233	
TTR-OF8-239-F	CAGATGAAGATGGGAGAAAG	230	
TTR-OF8-239-R	GCTACTTCAAAAATACCAGGA	233	
TTR-OF9-250-F	CAGGACTAGGAGCAAGATTG	250	
TTR-OF9-250-R	GGGGACCTAGCACATTTG	250	
TTR-OF10-255-F	TTCATCACCTTCCCCTCAA	255	
TTR-OF10-255-R	GGGTGTCCCTGCTTCTCC	200	
TTR-OF11-242-F	TTCCTTCCAGAGCACTTTC	2/2	
TTR-OF11-242-R	TCTTCCATTTCAGTCACACC	272	
TTR-OF12-247-F	GAAGCGTGGTCAGGTTGT	247	

TTR-OF12-247-R	CTATGAGCAGAGCTGGAAGA	
TTR-OF13-265-F	GGAGTGTGGGCGGCGAA	265
TTR-OF13-265-R	TTCTGCATCTTGGCGCACTC	205
TTR-OF14-243-F	CTCAAGAGTTCCAGACCCA	242
TTR-OF14-243-R	TACAAATAAGACCCCACATAA	245
TTR-OF15-258-F	AGTGCCTCTGTGCAGTGGA	250
TTR-OF15-258-R	TGGGACACCAGTGCTCTCT	238
TTR-OF16-246-F	ATAATCCCACTACAGTCCCA	246
TTR-OF16-246-R	GCTGGTGAGAGCATCCC	240
TTR-OF17-258-F	GCCAGGGAAAGCTTGAAG	250
TTR-OF17-258-R	CCTCTCTACTGGCAGGTCAT	238
TTR-OF18-237-F	GGAGCGAACACCAGGCG	222
TTR-OF18-237-R	CCTGCGCGAGATCGAGTC	257
TTR-OF19-257-F	TGATAACGCCGCCTCTCTA	257
TTR-OF19-257-R	ATTCTCCCTGCCAACCTTT	257
TTR-OF20-272-F	AAGGTGAAGGGTTTCCAGT	272
TTR-OF20-272-R	CTCTGGGTCTTGGCACTT	272
TTR-OF21-267-F	TGACATAAGCACACCATTCT	267
TTR-OF21-267-R	AACTATGAGCAATAAACTTCTGT	207