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1. Supplementary Materials and Methods

DNA extraction
Historic calculus

Each piece of calculus was put into a new 1.5 mL Eppendorf tube and crushed with an
individual, sterile micropestle. To remove loosely bound contaminants, 1.5 mL of 0.5M EDTA
was added to each tube, and the tubes were rotated at room temperature for 15 minutes, the
calculus pelleted at 16000 g x 3 min, and the EDTA wash removed. A fresh 1.5 mL 0.5M
EDTA was added to the tube and the pellet resuspended. Tubes were rotated for 72 hours at
room temperature in the dark to decalcify. Samples were then centrifuged at 16000 g x 3 min,
and 900 uL supernatant removed to a new tube. 90 uL proteinase K was then added to the
supernatant, the tube gently vortexed, and rotated overnight at room temperature in the dark.
The historic samples had proteinase K added after decalcification in order to allow for separate
downstream proteomic analysis of the cellular debris pellet.

DNA was then extracted from the supernatant using a modified QIAGEN MinElute. In
brief, the supernatant was transferred to a Zymo reservoir attached to a MinElute tube and
diluted with 13 mL buffer PB, and gently mixed by pipetting. The mixture was centrifuged at
1500 g for 4 min, rotated 90°, centrifuged an additional 2 min at 1500 g, and the MinElute
column transferred to a clean 2 mL tube. The MinElute was spun at 4000 g x 2 min, washed
twice by adding 750 mL buffer PE and spinning at 800 g for 1 min. The MinElute column was
transferred to a fresh 2 mL tube and DNA was eluted twice with the addition of 30 uL buffer
EB directly to the MinElute membrane, followed by a 5 minute benchtop incubation, and then
centrifugation at 200 g for 1 min. Approximately 50 uL of eluted DNA were collected and and
stored at -800C to be built into libraries. One sample did not have sufficient calculus for analysis
and yielded no DNA, as determined by Qubit. A blank extraction control was processed
simultaneously with the calculus samples for each extraction batch.

Modern calculus

All of the work on modern calculus samples was performed in the lab facilities of the
Max Planck Institute for the Science of Human History in Jena, Germany. Every batch of each
protocol includes a blank control which were also sequenced. Each calculus sample (2-10mg)
was washed with 1ml of 0.5M pH 8.0EDTA (Life Technologies) for 15min, while rotating at
room temperature. The samples were then centrifuged for 1min at 16000 g and the supernatant
stored at -20°C. Calculus was powdered with a clean metal pestle, and an extraction solution
of 250uL of 0.5M pH 8.0 EDTA (Life Technologies) and 12.5ulL 10mg/ml Proteinase K were
added, and then incubated for 24-48h at room temperature on a rotator in the dark until the
inorganic fraction was dissolved.

For the following steps the Dneasy Power Soil Kit (Qiagen) was used. The supernatants
were transferred into Power Bead Tubes and gently vortexed. After adding 60ulL C1-Solution,
the tubes were inverted 5 times and secured on a flat-bed vortex pad. The samples were then
vortexed at maximum speed for 10min. After centrifuging the samples for 30sec at 10000 g,
the supernatants were transferred into a fresh collection tubes and mixed by vortexing with
200uL C3-Solution. After an incubation at 4°C for Smin the samples were centrifuged for 1min
at 10000 g, and each supernatant was homogenised by vortexing for 5sec with 1.2ml C4-
solution. 675uLL of each supernatant was loaded on a Spin Filter, centrifuged for 1 min at
10,000xg and the flow-through discarded. This step was repeated until the solution was
completely loaded. After loading 500uL of C5-Solution, the samples were centrifuged again
(1min 10000 g), the flow-through were discarded, followed by a dry-spin step (1min 10000 g).
The Spin Filter was placed into a fresh collection tube, and the DNA eluted with 100uL C6-
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Solution, incubating for 1min on the 3 membrane, followed by a 30sec at 10,000xg
centrifugation. The DNA extracts were then stored at -20°C.

The DNA was sheared using a M220 Focused-ultrasonicator (Covaris). For each extract
250 ng of DNA was mixed with AFA-Grade Water (Covaris) and set up for the
DNA 0200bp 050 ul Screw Cap microTUBE program as supplied by the manufacturer.
The resulting sheared fragments had lengths of between 200 and 240bp, as measured by a 4200
TapeStation NucleicAcid System on the D1000 Kit (Agilent).

For each sample 100 ng of the sheared DNA was used to build a Illumina NGS library.
The blunt ends of the DNA were repaired with 0.4 U T4 DNA Polymerase and 0.024 U T4
Polynucleotide Kinase (New England Biolabs), including NEB Buffer 2 (New England
Biolabs), ImM ATP (New England Biolabs), 0.8mg/ml BSA(New England Biolabs) 0.25mM
dNTP’s (Thermo Scientific), and balanced with water. The reactions were incubated for 15min
at 15°C followed by 15min for 25°C. Afterwards the DNA was cleaned by MinElute
Purification (Qiagen) with the manufacturers protocol, eluted in 20ul. EB-Buffer (Qiagen)
containing 0.05% Tween 20 (Sigma-Aldrich). The adapters were ligated with the Quick
Ligation Kit (New England Biolabs) using 1x Quick Ligase Buffer, 18uL of the blunt end
repaired DNA and 0.25uM of the Adapter Mix, and incubated for 20min at 22°C. Afterwards
the DNA was purified again with the MinElute Purification Kit (Qiagen), but eluting in 22ulL
of the EB-/Tween buffer. Adapter fill in was performed with 0.4 U Bst 2.0 DNA Polymerase
(New England Biolabs) using 1x Isothermal Buffer (New England Biolabs), 0.25nM dNTP’s
(ThermoScientific), and balanced with Water and 20uL of the adapter ligated DNA. Incubation
was for 30min at 37°C followed by 10min for 80°C.

DNA library construction and high-throughput sequencing
Historic samples

The DNA concentration of each Radcliffe sample was determined with a Qubit
fluorometer using the dsDNA high sensitivity assay, and 100 ng of DNA was used to build
libraries. A library blank control was processed simultaneously with the DNA samples.
Libraries were built with a protocol based on [55], and had one internal index and one external
index. Blunt ends were repaired by incubating 100 ng DNA at 25,C x 15 min followed by 12.C
for 5 min with the following master mix: 1X Tango Buffer (ThermoFisher), 100 uM dNTPs, 1
mM ATP, 0.5 U/uL T4 polynucleotide kinase, 0.1 U/uL T4 DNA polymerase, balance dH20.
Blunt-end repaired samples were then cleaned with a QIAGEN MinElute kit as follows:
samples were diluted in 350 uL buffer PB, and mixed by pipetting. Samples were spun at 6000
g for 1 min, washed with 750 uL buffer PE and spun at 10000 g for 1 min, then spun an
additional 1 min to remove residual buffer. DNA was eluted by adding 21 uL buffer EB,
incubating samples at room temperature for 5 minutes, then followed by centrifugation at
13000 g for 1 min. Adapters with internal indexes were ligated to the samples as follows.
Adapter ligation master mix was prepared with the following concentrations: 1X T4 DNA
ligase buffer, 5% PEG-4000, 2.5 uM adapter mix, 0.125 U/uL, balance water. An equal volume
of adapter ligation mix was added to the eluate from blunt end repair and incubated at 22,C x
30 min. Libraries were cleaned by adding all 40 uL to 200 uL buffer PB, mixing, and
transferring the entire volume to a QiaQuick column. Columns were spun at 6000 g for 1 min
and again at 10000 g for 1 min. DNA was eluted by adding 21 uL buffer EB, incubating
samples at room temperature for 5 minute, followed by centrifugation at 13000 g for 1 min.
Adapters were filled in by adding an equal volume of the following master mix to the adapter
ligation eluate and incubating at 37,C x 20 min: 1X ThermoPol reaction buffer, 250 uM each
4 dANTP, 0.3 U/uL Bst polymerase (large fragment), balance H2O. The Bst enzyme was
inactivated by incubation at 800C for 20 min, and samples were stored at -200C.
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The single-index library samples were then double indexed using PCR amplification.
A calibration RT-PCR was set up for each sample. The number of cycles used for PCR
amplification of each library was chosen by selecting two cycles after the amplification plot
reached plateau. A PCR for library amplification was prepared and run for each sample as
above, but using the indexing primer with the appropriate external index. Each amplified
library was then checked with an Agilent Tape Station to determine the insert size range and
concentration. The AccuPrime PFX-generated libraries were pooled at equimolar
concentrations into 4 separate groups, while the KAPA HiFi Uracil+-generated libraries were
pooled into a single group at equimolar concentrations. Pooled libraries were cleaned with a
QIAGEN QiaQuick kit and then size-selected using a PippinPrep, keeping only libraries in the
size range of 150-400bp. The size-selected libraries were run on the Tape Station to check
fragment length distribution and concentration and then sent for sequencing. All samples were
sequenced on an Illumina HiSeq2500 using 150bp paired-end RapidRun chemistry at the
University of Copenhagen National High-Throughput DNA Sequencing Centre.

Modern calculus

For the modern calculus samples, a 1:50 dilution of the libraries were produced to
quantify with the IS7 and IS8 Primers in a quantitative Real-time PCR(qPCR; DyNamo SYBR
Green qPCR Kit; ThermoScientific) on a LightCycler 48 (Roche). The libraries were split in
1*10710 Copies of DNA for the following indexing step. With the PfuTurbo DNA Polymerase
(Agilent), the libraries were double indexed (Meyer and Kircher 2010 Cold spring Harbour
Protocols, Kircher et al. 2012 Nucleic Acid Research). Libraries were amplified in a 100uL
reaction using 1x Pfu Turbo Buffer (Agilent), 0.3mg/ml BSA (New England Biolabs), 0.38mM
dNTP’s (Thermo Scientific), 0.025 U of the Pfu Turbo Polymerase (Agilent) and 0.2 uM (each)
of the specific P5 and P7 Primer, again balancing with Water. Incubation was for Smin at 95°C,
followed by 10 cycles of 1min at 95°C, 30 sec at 58°C, Imin at 72°C, ended with an elongation
for 10min at 72°C.The reactions were cleaned up with the MinElute Purification Kit as above,
eluting in 50ul of EB Buffer (Qiagen) containing 0.05% Tween 20 (Sigma-Aldrich).With a
1:1000 dilution, the libraries were quantified with the IS5 and IS6 Primers with the qPCR
method (see above).

Afterwards the nM was checked by TapeStation with the D1000- Kit (Agilent). An
equimolar Pool of the libraries (blanks separately) of 10nM each library were prepared.
Shotgun sequencing was performed on a NextSeq500 platform from Illumina with 40 Million
reads per sample and 2 Million reads per blank.
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Figure S1. SourceTracker analysis of Radcliffe dental calculus samples. A.
SourceTracker source proportion estimates of all calculus samples included in the
analysis rarefied to 5500 reads, with supra- and subgingival plaque sources
combined as “oral plaque”. B. SourceTracker source proportion estimates of all
calculus samples plus the dentin and soil sample rarefied to 758 reads to enable
inclusion of the soil sample. The calculus samples show a predominantly oral plaque
signature, while the dentin and soil samples show predominantly gut and soil
signatures, respectively.
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Figure S2. DNA damage patterns authenticate historic calculus samples. MapDamage plots
reveal cytosine to thymine transitions at the ends of molecules and breakpoints coinciding with
depurination. The 6 samples shown are those for which we have DNA, protein, and metabolite
data. Smoothness of curves is related to the number of reads that mapped. Left-panel
mapDamage plots of reads mapped to the Tannerella forsythia genome. Right- panel
mapDamage plots of reads mapped to the Homo sapiens genome.
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Figure S3. Dental plaque and dental calculus contain distinct microbial communities. Same as
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Figure S9. Historic healthy- and caries-site calculus microbial community profiles
overlap. A. Principal components analysis (PCA) does not cluster historic healthy-
and caries-site calculus distinctly. B. Historic healthy- and caries-site calculus do not
contain sufficient discriminatory taxa for distinct clustering by sparse partial least
squares-discriminant analysis (sPLS-DA). Samples with a black ring are from teeth
with both caries and periodontal disease. C. Taxa that contribute to discriminating
healthy- and caries-site samples along component 1 of the sPLS-DA.
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Figure S10b. Microbial co-exclusion patterns do not reflect cell wall structure or
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exclusions. Nodes are colored based on cell wall structure (Gram stain) (left) and
phylum (right). Patterns of co-exclusion based on cell wall structure or phylum are n%
evident.
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Figure S12. Bubble charts presenting the relative abundance of species comprising
Socransky’s complexes in plaque and calculus, separated by health status. All
species in the Yellow complex are in the genus Streptococcus. The relative
abundance of species are summed for each sample category in Figure 6.
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Figure S13. Bubble charts presenting the relative abundance of select species in
plaque and calculus, separated by health status. The relative abundance of species
are summed for each sample category in Figure 6.
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Figure S14. Functional metabolic profiles of plaque and calculus. A. Principal
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(plaque vs. historic healthy-site calculus) along component 1 from sPLS-DA. C.
SEED categories contributing to classification of sample type (Historic healthy-site vs.
periodontitis-site calculus) along component 1 from sPLS-DA.
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Figure S16. Network graph presenting the strongest canonical correlations (=0.82)

between species and proteins in historic dental calculus.
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Figure S19. Network graph presenting the strongest canonical correlations (=0.9)
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