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SUPPLEMENTAL FIGURES

Figure S1. Workflow for the adiponectin exome-array meta-analysis and follow-up analyses. 
MAF, minor allele frequency; BMI, body mass index.
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Figure S2. Adiponectin association results for models unadjusted for BMI or fat percentage.



Figure S3. QQ plots of the exome-wide variants in the adiponectin unadjusted analysis
 [X-axis: Expected –log10(P); Y-axis: Observed -log10(P)]. (A) All ancestries sex-combined additive 
model; (B) All ancestries men-specific additive model; (C) All ancestries women-specific additive
model.

A

C

B

Expected -log10P-value Expected -log10P-value

Expected -log10P-value

O
bs

er
ve

d 
-lo

g 10
P-

va
lu

e

O
bs

er
ve

d 
-lo

g 10
P-

va
lu

e

O
bs

er
ve

d 
-lo

g 10
P-

va
lu

e



Figure S4. Adiponectin associaiton results for models adjusted for fat percentage.
(A) Manhattan plot showing the exome-wide variants in the adiponectin adjusted for 
fat percentage analysis [X-axis: Chromosome number; Y-axis: -log10(P) for the all ancestries 
sex-combined additive model]. Green highlighted variants show the previously identified loci that
 also achieved P<2x10-6 in this dataset. Horizontal lines mark P-value thresholds 2x10-7 (top; 
array-wide significance level) and 2x10-6 (suggestive; bottom). (B) Miami plot showing the exome-
wide variants in sex-specific analyses [X-axis: Chromosome number; Top panel y-axis: 
-log10P(Women); Bottom panel y-axis: -log10P(Men) for the all ancestries additive model]. Green 
highlighted variants show the previously identified loci that also achieved P<2x10-6 in each dataset. 
Horizontal lines mark P-value thresholds 2x10-7 (array-wide significance level) and 2x10-6 (suggestive). 
Circles, triangles, squares correspond to MAF≥0.05, MAF<0.01 and MAF<0.05, respectively. Blue symbols 
represent novel associations with P<2x10-7.
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Figure S5. QQ plots showing the exome-wide variants in the adiponectin adjusted for fat percent
 analysis [X-axis: Expected –log10(P); Y-axis: Observed -log10(P)]. (A) All ancestries sex-combined 
additive model; (B) All ancestries men-specific additive model; (C) All ancestries women-specific 
additive model.
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Figure S6. Effect size vs. minor allele frequency (MAF) for variants in the primary adiponectin
analysis [X-axis: MAF; Y-axis: effect size for the all ancestries, sex-combined and women-specific
additive model]. Gray, orange, and green variants show the novel and previously identified loci
that also achieved P<2x10-7 in the combined and women-specific analyses as labeled. Vertical
lines mark MAF=0.01 and MAF=0.05.
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Figure S7. Adiponectin associaiton results for models adjusted for BMI.
(A) Manhattan plot showing the exome-wide variants in the adiponectin adjusted for 
body mass index analysis [X-axis: Chromosome number; Y-axis: -log10(P) for the all ancestries 
sex-combined additive model]. Green highlighted variants show the previously identified loci 
that also achieved P<2x10-6 in this dataset. Horizontal lines mark P-value thresholds 2x10-7 
(top; array-wide significance level) and 2x10-6 (suggestive; bottom). (B) Miami plot showing the 
exome-wide variants in sex-specific analyses [X-axis: Chromosome number; Top panel y-axis: 
-log10(PWOMEN); Bottom panel y-axis: -log10(PMEN) for the all ancestries additive model]. Green 
highlighted variants show the previously identified loci that also achieved P<2x10-6 in each dataset. 
Horizontal lines mark P-value thresholds 2x10-7 (array-wide significance level) and 2x10-6 (suggestive). 
Circles, triangles, squares correspond to MAF≥0.05, MAF<0.01 and MAF<0.05, respectively. Blue symbols represent 
novel associations wtih P<2x10-7.
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Figure S8. QQ plots showing the exome-wide variants in the adiponectin adjusted for BMI
 analysis [X-axis: Expected –log10(P); Y-axis: Observed -log10(P)]. (A) All ancestries sex-combined 
additive model; (B) All ancestries men-specific additive model; (C) All ancestries women-specific 
additive model.
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Figure S9. Plots of five previously unreported adiponectin-associated loci in sex-combined exome-wide 
meta-analysis. 
A) FAM13A, B) SLC39A8, C) SNX13, D) RIC8B, and E) SLC38A8. The upper plots show the current 
exome-wide meta-analysis, and the lower plots show the genome-wide ADIPOGen consortium meta-
analysis from Dastani, et al., 2012. In E, rs145119400 was not included in the ADIPOGen consortium 
meta-analysis. Each point represents a variant in the meta-analysis, plotted with P-value (on a -log10 
scale) on the y-axis and genomic position (hg19) on the x-axis. In each plot, the index variant identified
 in the exome chip meta-analysis is represented in purple, and the color of all other variants indicate the 
LD with the index variant in European ancestry haplotypes from the 1000 Genome Phase 3 reference 
panel. In A, C, and D, the lead variant from the exome-wide analysis may not be the best representative 
of the adiponectin-associated signal. 
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Figure S10. Plot of novel adiponectin-associated OPLAH only observed in females. A) Females 
only from exome-wide meta-analysis, B) Sex-combined results from exome-wide meta-analysis, C) 
Males only from exome-wide meta-analysis, and D) Sex-combined genome-wide ADIPOGen meta-
analysis. Each point represents a variant in the meta-analysis, plotted with P-value (on a -log10 scale)
 on the y-axis and genomic position (hg19) on the x-axis. In each plot, the index variant identified in 
the exome chip meta-analysis is represented in purple, and the color of all other variants indicate the 
LD with the index variant in European ancestry haplotypes from the 1000 Genome Phase 3 reference 
panel. Sex-specific data were not available from the ADIPOGen consortium meta-analysis.
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Figure S11. Three adiponectin loci exhibit multiple distinct association signals. A) ADIPOQ with nine 
exome-wide association signals, B) DNAH10-CCDC92 with two exome-wide association signals, and 
C) CDH13-region with four exome-wide association signals. Each point represents a variant in the 
meta-analysis, plotted with P-value (on a -log10 scale) on the y-axis and genomic position (hg19) on 
the x-axis. Asterisks (*) indicate variants identified as a distinct association signal in the Exome Chip 
analysis but were not present in the ADIPOGen data. Given that many noncoding variants were not
 tested in this exome-wide analysis, the number of signals and lead variants may differ in genome-wide 
analyses..
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Figure S12. Subcutaneous adipose eQTLs for AMT and NICN1 colocalize with the DALRD3 novel 
adiponectin exome-wide locus. rs3087866 (purple diamond) shows the strongest association with 
adiponectin levels in the exome-wide meta-analysis at this locus). rs3087866 and 85 proxy variants 
(r2>0.80; 1000Gp3) are nominally associated with adiponectin levels.  The same variants exhibit the 
strongest association with expression of AMT (A) and NICN1 (B) in subcutaneous adipose tissue. Each
 point represents a variant in the meta- or eQTL analysis, plotted with their P-value (on a -log10 scale)
 on the y-axis and genomic position (hg19) on the x-axis. The color of all other variants indicates the LD
 with the index variant in European ancestry haplotypes from the 1000 Genome Phase 3 reference 
panel. Based on eQTL colocalization with the adiponectin-associated variants, AMT, NICN1, and PRKAR2A
 are candidate genes at this locus.
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