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Genes for Good: Engaging the Public
in Genetics Research via Social Media

Katharine Brieger,1,2,12 Gregory J.M. Zajac,2,12 Anita Pandit,2,12,* Johanna R. Foerster,2 Kevin W. Li,2

Aubrey C. Annis,2 Ellen M. Schmidt,2,3 Chris P. Clark,2 Karly McMorrow,2 Wei Zhou,4 Jingjing Yang,5

Alan M. Kwong,2 Andrew P. Boughton,2 Jinxi Wu,6 Chris Scheller,2 Tanvi Parikh,7

Alejandro de la Vega,7 David M. Brazel,7,8 Maia Frieser,7,9 Gianna Rea-Sandin,10 Lars G. Fritsche,2

Scott I. Vrieze,11 and Gonçalo R. Abecasis2,*

The Genes for Good study uses social media to engage a large, diverse participant pool in genetics research and education. Health history

and daily tracking surveys are administered through a Facebook application, and participants who complete a minimum number of sur-

veys are mailed a saliva sample kit (‘‘spit kit’’) to collect DNA for genotyping. As of March 2019, we engaged >80,000 individuals, sent

spit kits to >32,000 individuals who met minimum participation requirements, and collected >27,000 spit kits. Participants come from

all 50 states and include a diversity of ancestral backgrounds. Rates of important chronic health indicators are consistent with those esti-

mated for the general U.S. population using more traditional study designs. However, our sample is younger and contains a greater per-

centage of females than the general population. As one means of verifying data quality, we have replicated genome-wide association

studies (GWASs) for exemplar traits, such as asthma, diabetes, body mass index (BMI), and pigmentation. The flexible framework of

the web application makes it relatively simple to add new questionnaires and for other researchers to collaborate. We anticipate that

the study sample will continue to grow and that future analyses may further capitalize on the strengths of the longitudinal data in com-

bination with genetic information.
Introduction

More than 10,000 genetic loci have been successfully

linked to common and complex diseases.1 In previous de-

cades, the major challenge for human genetic studies was

the cost and complexity of the genotyping itself; however,

researchers now face the bigger hurdle of obtaining large

enough samples that also include useful, linked medical

and health data. The study designs typically used to collect

such data are expensive and often exclude individuals

based on location or demographics. We reasoned that

using social media platforms would not only allow us to re-

cruit a large population cohort, but also help us to reach

populations that might not typically participate in genetic

studies due to the time commitment or distance to a

research center. Potential advantages of social media-based

study designs include the ability to reach diverse popula-

tions and the ability to engage participants in research

over time. Potential concerns include representativeness

and the ability of this approach to reproduce findings ob-

tained using more traditional designs.

We present a new study design to take advantage of

recent developments in health survey methods using

social media and widespread interest in direct-to-consumer

genetic testing.2,3 Genes for Good is an ongoing, large-
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scale study of health, genetic, and behavioral information.

We aim to engage tens of thousands of individuals in

research through a Facebook application, reducing the

expense of traditional epidemiologic designs and the

exclusivity and high socioeconomic status associated

with current direct-to-consumer efforts.4

Our model of using social media for genetic research in-

vites participants to complete online health assessments at

their convenience, as has been successfully applied in

numerous studies of health, behavior,5 and psychology,6

including studies of rare genetic diseases (J.E. Abiad et al.,

2018, ACMG Ann. Clin. Genet. Meeting, abstract), child-

birth preferences,7 and prediction of personality traits.6

When a consenting participant has completed a minimum

number of health history and health tracking surveys, they

are mailed a spit kit to collect DNA for analysis. After gen-

otyping, we test genetic variants for association with

health, disease, and environmental information collected

through online assessments.

In this paper, we demonstrate that the Genes for Good

study model is a viable complement to more traditional

research study designs. The phenotypic and genotypic

data we have collected thus far appear valid and reliable.

Further, the incentive structure of Genes for Good—

namely, altruism combined with the return of survey
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response summaries and genetic data to participants—is

effective, as demonstrated by exponential recruitment

from all 50 US states. Importantly, the recruitment

happened organically, with participants publicizing the

study through their own networks, without relying on

paid advertising. We briefly explored the use of study

recruitment websites (such as ResearchMatch8), but only

several hundred participants were recruited this way. We

also saw large influxes of participants after online articles

appeared in Reddit and Buzzfeed (Web Resources). While

resources still go toward answering questions about the

study and resolving technical issues, efficient participant

recruitment and engagement allowed us to dedicate a

larger fraction of resources to sample collection, process-

ing, and downstream analyses. The long-term goals of

the study fall broadly into five main categories: (1) to iden-

tify novel genetic loci associated with a variety of pheno-

types, (2) to longitudinally track an array of health and

behavioral measures, (3) to enable genotype-first study de-

signs (such as detailed phenotypic assessments of partici-

pants with naturally occurring knockout variants), (4) to

educate participants and make the data available to

them, and (5) to encourage data sharing among re-

searchers. Here, we present our study design and methods,

as well as initial findings about our sample demographics

and important health indicators.

One particular advantage of hosting our study on social

media is that we can reach participants in an environment

that many already visit regularly as part of their daily rou-

tines. Social media use in the US has dramatically increased

in the last decade—rising from 7% in 2005 to more than

65% in 2015 according to the Pew Research Center (see

Web Resources)—and so we have the potential to reach a

majority of the US population through our application.

In the last few years, several research groups have recog-

nized the major advantages social media offers: flexible

timing, the possibility of incentives and reminders, and

the ability to reach non-urban communities. There has

already been substantial success in recruiting for studies

via Facebook9 as well as in using it to prevent loss-to-

follow-up.10 Further, the flexible framework of Genes for

Good allows us and other research groups to continue add-

ing new surveys and activities to address future research

questions. Our study takes advantage of the opportunity

for repeated contact that social media offers and represents

the first large genetic study of tens of thousands of individ-

uals conducted via Facebook.

Considering their ubiquity and ease of use, social media

andmobile devices as research tools are important avenues

to explore further.11 However, we recognize some of the

potential disadvantages we are likely to face: (1) inaccurate

data, (2) low response rate,12 (3) high attrition, and (4) a

sample limited to those who have a Facebook account. In

the first year of the study, we prioritized testing and

combatting several of these expected limitations. With

the aforementioned challenges in mind, we implemented

various methods to assess the quality of our data. First,
66 The American Journal of Human Genetics 105, 65–77, July 3, 2019
we looked at common diseases and phenotypes to validate

our results—and thus our approach to data collection—by

comparing them to prior findings from traditional research

and meta-analysis designs. When expected phenotypic re-

lationships hold true, such as that between BMI and type 2

diabetes, we gain confidence in the quality of the survey re-

sponses we are collecting. Additionally, we assessed the

quality of the genetic data by replicating findings from

genome-wide association studies (GWASs) for a variety of

traits that are known to have genetic components, such

as diabetes, asthma, BMI, hair color, and eye color, con-

firming that our data yields the expected signals. We also

examined rates of chronic health conditions, such as

hypertension and diabetes, to explore how our study

participants compare to the overall U.S. population.
Material and Methods

We have implemented a large, IRB-approved genetic study using

social media. Participants must be at least 18 years old, live in the

US, and have a Facebook account. They are recruited via snowball

sampling, i.e., by finding our Genes for Good Facebook application

through friends, family, and social media connections. Once a per-

son has consented, they are invited to complete online health his-

tory assessments at their convenience. The surveys consist of health

history questionnaires, daily tracking surveys, and an optional

health conditions module in which participants can list other con-

ditions that they have. Once they have completed a minimum

number of required questionnaires, they are mailed a spit kit to

collect DNA for analysis. The cost of each participant is about

$80, which includes postage, DNA extraction, and genotyping;

there is essentially no cost associated with recruitment or data

collection. Throughout the course of the study, we have typically

employed 2–3 full-time staff (study coordinator, developers), several

graduate and undergraduate students, and a part-time administra-

tive assistant to assist with sending and receiving spit kits.
Genetic Analysis
DNA is genotyped at �600,000 SNPs using either the Illumina In-

finium CoreExome-24 v.1.0 or v.1.1 arrays, which include both

nonsynonymous exonic variants and a panel of common

genome-wide markers (see Web Resources). The standard set of

markers on the array is augmented with missense, loss-of-func-

tion, and potential lipid- andmyocardial infarction-associated var-

iants identified in the HUNT whole-genome sequencing and

whole-exome sequencing projects;13 height-associated variants

from GIANT;14 potential stop-gain variants in 96 genes at loci

potentially implicated in type 2 diabetes, blood lipid levels, Alz-

heimer disease, nicotine/alcohol metabolism, and several others

with mutations implicated in serious but treatable health condi-

tions; complex trait-associated variants in the EBI/NHGRI GWAS

catalog;1 a random subset of Neanderthal SNPs from the 1000

Genomes Project;15 ancestry informative markers identified by

Paschou et al. that were highly correlated with the principal

components of Human Genome Diversity Project samples;16 and

pain-related variants proposed by Dr. Chad Brummett of the

University of Michigan Division of Pain Research. Genotypes at

an additional >30 million variants in the 1000 Genomes Phase

3 panel17 are imputed using Minimac3.18 After quality control,



local genetic ancestry is estimated using RFMix,19 global ancestry

with ADMIXTURE,20 and principal components analysis per-

formed with TRACE,21 using the Human Genome Diversity Proj-

ect samples as a reference panel22 for all three analyses.We provide

each Genes for Good participant with a section in the app to view

these estimates of genetic ancestry on the sample they provided.

For the GWAS of Genes for Good participants’ BMI, the BMI

measurements were calculated from the height and weight survey

in the app, which was derived from height and weight question-

naires available from PhenX Toolkit.23 Weight measurements for

the first several thousand genotyped participants were bottom-

coded at 80 lb and top-coded at 251 lb; then, the top-coded value

was changed to 381 lb partway through the study to capture a

greater range of variation. For participants that were pregnant at

the time of answering the survey, we used their pre-pregnancy

weight obtained from the same survey. The BMI values were

then regressed on sex, age, array chip version, and the first five

principal components; the residuals were inverse-normal trans-

formed in order to compare effect size estimates to the largest pub-

lished meta-analysis of BMI24 and to reduce the impact of extreme

observations. We used the SAIGE software25 to run a mixed model

GWAS, accounting for sample relatedness and population struc-

ture. Polygenic risk scores were calculated using PLINK.26
Participant Engagement
We provide participants with several ways to interact with both

their own data and the research study as a whole. After each health

history survey is completed, we provide charts summarizing the in-

formation, in some cases comparing each participant’s answers to

the Genes for Good study population (example in Figure 7). Simi-

larly, for daily tracking surveys, we generate summaries of each par-

ticipant’s health behavior over time as well as summary statistics

for the entire study (example in Figure 8). In addition to providing

this ongoing feedback and summary of the survey responses, we

also offer participants who submit a sample a breakdown of their

genetic ancestry; the current version includes seven continental

human populations (Europe, Africa, East Asia, Central/South

Asia, West Asia/North Africa, Americas, and Oceania), and results

are served in the form of a global ancestry estimate, local ancestry

inference, and principal components analysis using the methods

described previously (RFMIX, ADMIXTURE, TRACE). Before seeing

their estimates of genetic ancestry, they are required to watch a

short video on how to interpret their results. Participants can also

download their array and imputed genotypes.
Privacy and Data Security
All Genes for Good data are divided into two classes: (1) personally

identifiable information, such as email addresses, Facebook user

IDs, and physical mailing addresses; and (2) research information,

such as survey responses and genetic data. Each class of data is

stored in a distinct relational database and served from a distinct

server. Extracts for outside researchers include only research-spe-

cific data. We plan to ask participants to allow use of their mailing

address to link to information such as geocode pollution, built

environment (for instance, the number of fast food outlets or pub-

lic parks within a certain radius of one’s home), and census tract

data. In these cases, the participants’ physical address would still

be withheld from external collaborators, but variables generated

using addresses could be shared upon request.

The privacy of Genes for Good data is monitored by the Univer-

sity ofMichigan Institutional Review Board. All genetic and survey
The
results are stored in a secure server on campus that is not directly

connected to the public internet, and DNA samples are stored in

physically secure spaces with restricted access. In addition, all

archived data are de-identified to protect subject privacy including

participants’ demographic summary and genetic information.

Even though Genes for Good uses Facebook to authenticate login,

Facebook does not access information we collect through the app

and we do not use participant’s social media postings and connec-

tions in our research.Wemake efforts to communicate with partic-

ipants about the extensive measures we take in ensuring the

privacy of their data and to ease their worries about using social

media as a platform for genetic research.

All communication to and from the application is encrypted.

Participants are authenticated using a Facebook account and

Facebook’s OAuth implementation, ensuring that participants

have access only to their own data once inside the application.

Communication with Facebook servers is limited to authentica-

tion only; although Facebook receives and retains information

about which Facebook accounts have accessed the Genes for

Good app, all other information provided by participants is pro-

vided directly to Genes for Good servers. Facebook cannot see

any of the data entered by participants.

Once participants have their genetic data analyzed, they are

notified that they may access results inside the app with a Results

Access Code, a randomly generated alphanumeric code that must

be requested by the participant and will be delivered to the email

address on the participant’s Genes for Good profile. Participant

genotype data is processed internally on University of Michigan

servers and is distributed to participants upon request via Box, a

secure third-party file-sharing platform. Participants may request

their raw genotypes as often as they like from within the genetic

results section of the app. Each request compresses and uploads

raw genotype data and supplementary information to a private,

password-protected Box account directory. For security purposes,

all requested genotypes automatically expire from Box servers

3 days after being uploaded.
Results

Since the launch of Genes for Good on January 19th, 2015

(Martin Luther King Jr. Day), we have seen steadily

increasing participant recruitment and consistent use of

the Facebook application. Genes for Good nowhas enough

participants to begin conductingmeaningful analyses with

the data. As of March 2019, 117,652 participants had tried

the app, with 81,110 signing the electronic consent form.

Consenting users have completed more than 2.9 million

surveys, answering >22 million questions. Genes for

Good has mailed 33,427 spit kits to eligible participants,

of which 27,470 have been returned (as of March 2019).

The genetic data freeze used for this paper contains data

from 20,232 participants whose genotypes passed quality

control checks as of mid-2018.
Sample Characteristics and Phenotypes

Participants were recruited successfully from all 50 states,

with areas of peak participant density roughly overlapping

with major US population centers (Figure 1). About 90% of

users have residential addresses outside of Michigan.
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Figure 1. Geographic Distribution
The geographic distribution of Genes for Good participants as of October 2017. The colors indicate the number of participants who have
logged into the app from that county, with darker colors representing higher density.
Compared to the US population, our sample is younger

(Genes for Good median age of 33, US adult median age

of 44) and enriched for females (74% of participants are

women, compared to 51% for US adults, Table 1). Our sam-

ple closely resembles the US population on household in-

come, although it is enriched for individuals from mid-

dle-income households with an annual income of

$35,000–$100,000; Table 2). In contrast, the majority of

the participants in the research cohort from 23andMe are
Table 1. Demographics

Genes
for Gooda US Populationb

Facebook-Using
Populationc

Age

Median, years 33 44d

18–24 17.0% 13.2% 19.5%

25–34 37.1% 17.1% 27.0%

35–44 21.6% 16.4% 19.6%

45–54 11.9% 18.3% 16.5%

55þ 12.4% 35.5% 17.4%

Sex

Male 25.9% 49.2% 49%

Female 74.1% 50.8% 51%

aData source for our study data is based on all valid responses as of August 9th,
2017
bData for US population from the 2010 U.S. Census51
cData for Facebook population from Statistica (see Web Resources)
dMedian age of US persons over age 18 reported in the US 2010 Census
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from households with an annual income more than

$100,000 (J.Y. Tung et al., 2011, ASHG, abstract). To

confirm the quality of the data collected from our sample,

we also compared disease rates to those in the general US

population (Table 3). In looking at important risk factors

for cardiovascular disease, we observed relatively similar

rates of high cholesterol, hypertension, and smoking. How-

ever, our sample had lower rates of disease outcomes such

as stroke and myocardial infarction. Our genotype data

freeze contained 20,232 individuals, of which 76.3% were

non-Hispanic white, 3.8% Asian, 2.7% African American,

8.8%multi-racial/other, and 8.3%Hispanic/Latino as deter-

mined by self-report through our demographics survey.

In addition to the phenotype information collected

from survey responses, 12,216 participants have reported
Table 2. Income Distribution

Income Category
Genes for
Good (%)

US Populationa

(%)
23andMeb

(%)

Less than $35,000 28.0 30.2 10.2

$35,000 to $50,000 18.9 12.9 7.2

$50,000 to $75,000 19.8 17.0 13.9

$75,000 to $100,000 14.5 12.3 14.7

More than $100,000 18.9 27.7 54.0

Distribution of household income among Genes for Good participants based
on answers to the demographics survey as of August 9, 2017, compared to
the general US population.
aData from US Census Table H-1727
bData describing 23andMe research cohort approximated from 2011 ASHG
poster (J.Y. Tung et al., 2011, ASHG, abstract)



Table 3. Chronic Health Indicators in Study Sample Compared to
Overall US Population

Genes for Gooda US Populationb

BMI, mean, kg/m2 29.80 29.38

Underweight (BMI < 18.5) 1.9% 1.6%

Normal weight (BMI 18.5–24.9) 31.6% 27.2%

Overweight (BMI 25–29.9) 26.0% 31.6%

Obese (BMI R 30) 40.4% 39.7%

High cholesterol 26.1% 29.3%

Hypertension 24.9% 29%

Previous stroke 1.3% 2.9%

Previous MI 1.5% 4.5%

Diabetes (type 1 or 2) 6.5% 9.3%

Current smoker 17.0% 15.1%

aData source for our study data is based on all valid responses as of August 9th,
2017
bData from nationally representative samples to determine US rates of obesity
(see CDC: National Health and Nutrition Examination Survey Data in Web
Resources), high cholesterol, hypertension,28 stroke,29 MI, diabetes, and
smoking30

Figure 2. Relationship between BMI and Diabetes Rates in
Participants Is Consistent with that Seen in the General US
Population
Type 2 diabetes is a phenotype of particular interest because of its
increasing prevalence, impact on cardiovascular health, and rela-
tively well-characterized genetics. Here, we have compared the
rates of diabetes in Genes for Good participants to the rates found
in the nationally representative studies SHIELD and NHANES.32
64,401 cases of 3,067 health conditions in an optional sec-

tion of the app that allows participants to search for and

report disorders using the Systematized Nomenclature of

Medicine (SNOMED) dictionary.31 These participant-

entered data show that Genes for Good has attracted an

unusually high proportion of individuals with certain

rare diseases, like Ehlers-Danlos syndrome (565 cases or

0.93% of GfG participants compared to �0.02% preva-

lence worldwide) (see GeneReviews in Web Resources).

The 5 most commonly reported disorders were generalized

anxiety disorder (1,803 cases), asthma (1,389), hypothy-

roidism (941), depressive disorder (920), and migraine

(918). Higher BMI was associated with increased risk for

all 5 conditions in logistic regression of each of the five

traits on BMI, sex, and age (odds ratios of 1.02, 1.03,

1.04, 1.01, 1.03 per unit higher BMI, p values of 7.6 3

10�9, 2.1 3 10�20, 3.9 3 10�24, 1.5 3 10�4, 6.3 3 10�14).

To evaluate the quality of our data, we used our survey

data to verify known phenotypic relationships. Taking dia-

betes as an example, we analyzed the association of the dis-

ease with BMI. Given the rapidly increasing prevalence of

diabetes in the US, this is a particularly important outcome

to examine. Over the past three decades, the number of

diagnosed Americans has more than tripled, from 5.6

million in 1980 to 21 million in 2012 (see CDC: National

Diabetes Statistics Report in Web Resources). And because

about one-third of diabetics are undiagnosed, national sur-

vey statistics consistently underestimate the true preva-

lence of diabetes (see CDC: National Diabetes Statistics

Report in Web Resources). We compared rates of diabetes

in our sample, within each BMI bracket, to those reported

from nationally representative samples32 and found a

similar trend of increasing diabetes prevalence as BMI
The
increased (Figure 2). We further explored this relationship

by calculating the estimated effect of BMI on diabetes

status, adjusting for age, sex, and race, using NHANES

and Genes for Good data separately. We found that the

relationship between BMI and diabetes was comparable be-

tween studies (95% CI for odds ratio per 1-unit increase in

BMI, NHANES: 1.07–1.10; 95%CI, GFG: 1.08–1.10). When

comparing simple correlation coefficients between BMI

and diabetes status across studies, we found no notable

difference between Genes for Good and NHANES

(rGFG ¼ 0.18, rNHANES ¼ 0.19, p ¼ 0.83). Though our sample

is quite different from NHANES in terms of wealth, age dis-

tribution, and ethnic diversity, we observe similar trends in

both cohorts when comparing diabetes-affected case sub-

jects and control subjects: diabetics typically have higher

rates of obesity, higher age, lower income, and lower edu-

cation (Table S1).
Genetic Associations

To validate the quality of our self-reported phenotypes, we

analyzed a data freeze of 20,232 genotypes to see whether

we could replicate known genetic associations. We first

analyzed traits related to pigmentation and BMI, because

these traits are known to have strong genetic factors. For

example, most variation in eye color is determined by six

SNPs in HERC2 and OCA2.33 Figure 3 shows the number

of participants with each combination of eye color and ge-

notype at one of the SNPs with the strongest association

signal, rs12913832. We observed strong evidence of associ-

ation between eye color and genotype (X2¼ 15,599, df¼ 8,

p ¼ 10�3376, n ¼ 19,974), and the direction of effects is

consistent with what was previously reported. Other

pigmentation traits like hair color, skin sun response,

and hair texture are also consistent with prior studies.
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Figure 3. Eye Color Distribution
Distribution of eye color among partici-
pants with different genotypes at
rs12913832 (the top signal when perform-
ing GWAS using blue eye color in Genes
for Good participants), a marker in
HERC2 known to play a role in eye color
determination.

Figure 4. Effect Size Estimates of a GWAS for BMI in Our Study
Sample Compared to Findings from a Meta-analysis
We compare effect estimates from Genes for Good to published
findings from the Locke et al. meta-analysis of BMI GWAS.24

Specifically, we looked at the top ten reported signals and were
able to replicate all of these effects in direction and nominal signif-
icance (p < 0.05). The forest plot on the right compares effect size
estimates across studies; the dashed lines represent the confidence
intervals around the Genes for Good estimates, while the solid
lines represent results from Locke et al. Given the relatively small
sample size available in this data freeze, our estimates have fairly
wide confidence limits. However, Locke’s estimates are completely
contained within our limits for eight of ten SNPs. Asterisk indi-
cates imputed variant.
Table S2 shows detailed GWAS results, and Table S3 com-

pares our results to several larger studies. We show that

Genes for Good replicates the top pigmentation associa-

tions in prior studies at least nominally (p < 0.05)

and frequently does so at genome-wide significance

(p < 5 3 10�8).

We next compared results for a mixed model GWAS of

BMI, using measurements obtained from the height and

weight health history survey, to results from the GIANT

consortium.24 We obtained effect sizes consistent with

those published for the top ten GIANT loci. We also ob-

tained nominally significant (p < 0.05) association results

at all ten loci. Figure 4 summarizes the comparison of our

results with published GIANT results, showing consistency

of direction of effect, magnitude, and relative significance

(Figure 5 shows regional association in our top signal, at

FTO). Given the relatively small sample size of our data,

our effect estimates necessarily have wider confidence

limits compared to the meta-analysis. However, the

meta-analysis point estimates are contained within these

limits for nearly every SNP, which provide evidence that

self-reported phenotypes collected within our cohort are

reliable.

We next expanded our comparison of GWAS results ob-

tained with Genes for Good data to include the traits of

type 1 diabetes, type 2 diabetes, and asthma. For all traits

except asthma, our association signals are consistent

with reports from published large GWASs and show some

significant hits (Tables S2, S3, and S4; Figure S1). Our

asthma analysis did not give any genome-wide significant

results, but whenwe examined the 18 SNPs associated with

asthma in the study of Demenais et al.,34 we found that all

had a consistent direction of effect in Genes for Good data

but with smaller effect sizes (Table S4). Our asthma-

affected case and control subjects were defined based on

answers to ‘‘Was your asthma ever confirmed by a doctor?’’

with 4,378 case subjects and 11,715 control subjects re-

ported. Given the large proportion of case subjects

(27.2%), we believe that some individuals who answered

‘‘yes’’ did not meet the standard for an asthma diagnosis

used in Demenais et al.34 A similar observation has been

made in other studies of self-reported phenotypes—for

example, in a study of psoriasis including data from
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23andMe customers, it was estimated

that only �36% of individuals who

self-reported having psoriasis met

the criteria used in clinical studies,

diluting association signals and effect
size estimates.35 We did an adjustment proposed by Duffy

et al. to account for the apparent over-reporting of case

subjects.36 We also did a power calculation at the 0.05 sig-

nificance level to determine our ability to replicate the

findings in Demenais et al. and estimated that we should

replicate approximately 7 of 18 SNPs (summing estimated

power across 18 variants gives expected number of 6.8

replicated signals). After the Duffy adjustment, more

than half of our odds ratios were closer to the effect sizes



Figure 5. LocusZoom Plot Showing Single-Variant Association Results for BMI in FTO
This result is consistent with other studies that reported their strongest evidence for association in this gene. The effect size at the nearby
SNP rs1558902 (0.081) was consistent with the effect size (0.081) reported previously in Locke et al.24
reported in Demenais et al., though some odds ratios were

overcorrected to have effect sizes larger than those re-

ported in Demenais et al. As our power calculation sug-

gested, we were able to replicate 7 of the 18 SNPs at the

0.05 significance level (Table S4).34,35 Reassuringly, we

also found that, when we calculated polygenic risk scores

(PRS) for type 1 and type 2 diabetes using publicly available

GWAS summary statistics,37,38 PRS for type 2 diabetes was

strongly associated with self-reported type 2 diabetes status

(OR increase per PRS quintile¼ 1.47; p¼ 7.633 10�37) and

that PRS for type 1 diabetes PRS was strongly associated

with self-reported type 1 diabetes status (OR increase per

PRS quintile ¼ 1.66; p ¼ 5.13 3 10�9) (Figure 6). We found

similar support for an association between asthma PRS and

self-reported asthma (OR increase per PRS quintile ¼ 1.16;

p ¼ 3.17 3 10�26) (Figure 6).

Somewhat unexpectedly, we observed that in our type

2 diabetes results the signal at CDKAL1 was stronger

than at TCF7L2, which is typically the top signal re-

ported for type 2 diabetes GWASs. Hypothesizing that

this might be due to the younger age of Genes for

Good participants, we split the Genes for Good data at

the median age to test for changes in diabetes risk be-
The
tween the below-median age and above-median age

groups for the TCF7L2 and CKDAL1 variants (median

age ¼ 32; casesBelow-Median ¼ 65, controlsBelow-Median ¼
8,385; casesAbove-Median ¼ 722, controlsAbove-Median ¼
7,728). Although we saw a trend to a larger diabetes

risk for carriers of the TCF7L2 variant rs7903146 in

the above-median group (ORBelow-Median ¼ 1.21,

ORAbove-Median ¼ 1.34), we saw the same trend for carriers

of the CDKAL1 variant rs7756992 (OR Below-Median ¼
1.04, ORAbove-Median ¼ 1.37). Regardless, the differences

between the below-median and above-median age

groups for both SNPs were not significant (p > 0.05).
Discussion

We set out to recruit a large, diverse sample of engaged vol-

unteers that might provide information about the diverse

US population. For each volunteer, we used surveys to

collect health and behavioral data that might inform a va-

riety of genomic research studies. With rapid and inexpen-

sive recruitment, we have quickly developed a participant

pool with which to validate the quality of the data. We are
American Journal of Human Genetics 105, 65–77, July 3, 2019 71



Figure 6. Prevalence for Self-Reported Type 1 and Type 2 Diabetes across Polygenic Risk Score Quintiles (Five Bins of Equal
Sample Size)
An increase in the genetic risk score is associatedwith increasing prevalence of disease.We also evaluated associations between polygenic
risk score quintile and type 1 diabetes, type 2 diabetes, and asthma status, adjusted for age and sex. We found that all three self-reported
traits were significantly associated with calculated PRS quintile (pT1D ¼ 5.13 3 10�9, pT2D ¼ 7.63 3 10�37, pasthma ¼ 3.17 3 10�26).
optimistic about our ability to obtain the large sample size

required for valid genetic association studies of complex

diseases and behaviors. With our current analysis of

20,232 individuals, we have successfully validated several

known genotype-phenotype relationships and contrib-

uted to several consortium meta-analyses.39–42

We have good representation with respect to geography,

age, and gender, though our sample does have some

noticeable differences from a sample of random U.S.

adults. One characteristic that presents both an opportu-

nity and a challenge is the younger age of Genes for

Good participants compared to the US adult population.

While a younger demographic may be more interesting

for some measures (behavioral data, activity levels), it

will be less useful for others (age-associated cancers and

development of other late-onset chronic disease). We do

see slightly lower rates of the chronic conditions examined

here compared to the general US population, which we

attribute to the lower average age of our participants;

even if participants have the relevant risk factors, they

may not have had the time to develop those long-term out-

comes. For instance, we see much lower rates of heart

attack in our participants despite comparable hypertension

rates, and we see lower rates of type 2 diabetes despite com-

parable BMI (Figure 2). At the same time, Genes for Good’s

recruitment strategy may have led to an enrichment of in-

dividuals with certain rare diseases like Ehlers-Danlos syn-

drome, perhaps because of network effects within these

communities.

Most participants completed the minimum number of

health history surveys required to receive a spit kit (15 sur-

veys), with many going well above that number. Comple-

tion of daily tracking surveys was modest, with most gen-

otyped participants completing only the minimum

number required to obtain a spit kit. None of our surveys

are mandatory and it is certainly possible that partici-

pants will avoid surveys that are more onerous or which
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they are not comfortable with, introducing ascertainment

biases (for example, individuals who are not skilled at

reasoning puzzles might choose to skip the reasoning).

The most completed surveys were generally those that

appear higher in the list of available surveys within our

app (Figure S2; Figure S3 provides additional details of

survey completion rates).

Another challenge we face is that our sample is heavily

skewed female. While targeted recruitment in the future

may bring the gender distribution into balance, we also

recognize the immediate potential to conduct a large-scale

study of women’s health and have implemented relevant

survey measures regarding polycystic ovarian syndrome

and pregnancy outcomes.

Genetic Information, Privacy, and Ethics

There are a number of incentives for participation in Genes

for Good besides the altruistic contribution and potential

positive impact of genetics research on society. First, we

provide interactive graphs and visualizations by which

users can compare their survey responses to those of other

participants (examples in Figures 7 and 8). Second, Genes

for Good allows participants to view estimates of their ge-

netic ancestry and download their raw genetic data, which

some have argued should be the fundamental right of par-

ticipants who contribute DNA to research.38 When down-

loading genetic data, we require participants to review a

short slide show explaining that the data we generate are

suitable for a research study but do not meet the standards

used for clinical genetic tests. We emphasize that,

compared to the data used in clinical tests, research data

might be more susceptible to error. Around 70% of partic-

ipants with genotypes available have requested a down-

load link for their raw genetic data, which we provide in

23andMe format, a format known to be widely accepted

at third-party interpretation sites. Many participants

have told us they upload their data to third-party sites to



Figure 7. Example Health History Result
An example of how participants’ results to the personality survey are displayed within the Genes for Good app. The bars show this
participant’s percentile scores on the five personality attributes measured by the survey.
obtain more detailed ancestry estimates, find DNA rela-

tives, and even seek health interpretation. A recent review

paper43 investigating reactions to a clinical genetic risk

assessment concluded that in general, patients do not

engage in risk-reducing behavior after receiving informa-

tion about genetic predisposition. We expect that Genes

for Good participants are unlikely to base major health

or life decisions on the research-grade data we have re-

turned. In addition, we will continue to develop Genes

for Good web-based software applications to promote liter-

acy of individuals about their genetic information.

Along with raw genetic data, we also return to partici-

pants their genetic ancestry information based on DNA

analysis. The primary anticipated risk of the return of

ancestry information is the discovery or suspicion of

non-paternity and/or secret adoption by participants, i.e.,

discovering that one’s ancestry is inconsistent with what

the participant knows about the ancestry of their suppos-

edly biological parents. This has the potential to cause

emotional or psychological stress on participants and their

families, and we provide education about this risk during

the informed consent.

Significance and Future Directions

The online platform implemented in Genes for Good is a

viable study design for population-based genetic research.

Now in the study’s fourth year, we have already had great

success in recruitment, health history survey analysis,

and genetic analysis. We are currently exploring the

more than 300 phenotypes collected so far and continue

to participate in ongoing collaborations. As the sample

size grows, our power to detect novel associations and
The
our ability to contribute more meaningful data to re-

searchers will increase.

The flexibility of the study design and our ongoing rela-

tionship with participants also makes it possible to imple-

ment new methods of data collection with relative ease.

Additional data collection techniques are being developed

and validated in a wide array of studies, including wireless

sensors for continuous collection of data related to physical

activity,44,45 heart rate,46 body temperature, sleep,47 and

GPS location logging to infer habits and environmental ex-

posures.48 These measures and more are currently available

through a combination of smartphone and wrist sensors

(e.g., FitBit), and many more wireless sensors exist for

more specialized tasks (e.g., breathalyzers, insulin levels,

QT interval). These and other novel data collection

methods are developing rapidly, holding great promise in

the near future for the efficient collection of large quantities

of precise longitudinal data with minimal participant

burden. The implementation of such devices would facili-

tate the collection of tracking data within Genes for Good.

Having verified the quality of our data and several

known associations with particular loci, we are now poised

to begin exploring new genotypic-phenotypic relation-

ships, such as those with behavioral and health tracking

information. Research in other settings with Genes for

Good data show that our results are consistent with those

of prior studies. Liu et al.49 show that a PRS calculated from

SSGAC’s educational attainment data is effective in pre-

dicting 4% of the trait variance, which is consistent with

previously reported out-of-sample predictive power for

educational attainment.50 We are also working to stream-

line data sharing methods to facilitate collaborations
American Journal of Human Genetics 105, 65–77, July 3, 2019 73



Figure 8. Example Daily Tracking Result
An example of how participants’ answers to the daily sleep tracking survey are displayed, showing (A) average hours of sleep for this
participant, compared to other participants of the same age range and sex, and to all other Genes for Good participants, (B) average hours
of sleep reported for different days of the week when this participant has taken the survey, (C) average hours of sleep over the past 7 days,
past 30 days, and over all responses from this participant, and (D) average hours of sleep reported for different days of the week for all
Genes for Good participants stratified by sex.
with other researchers. Finally, we are actively developing

new tools to provide participants with meaningful data

summaries at the personal and study level. We believe

that these steps will keep participants engaged and in-

vested in the genetic research and will also help encourage

longitudinal survey completions.

As we seek opportunities for long-term funding of the

study, we are currently not collecting spit kits from new

participants. Although enrollment has decreased since we
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stopped offering spit kits (we currently collect only health

survey responses), interest remains high, as evidenced by

the email inquiries we receive on a weekly basis. We plan

to collect and genotype additional samples when future

funding becomes available; when doing so, we expect to

implement several changes to study protocol that will

solve issues observed throughout the course of the study.

For example, we noticed that survey completion correlates

with the order that the survey appears on the app



homepage (Figure S2); we have recently randomized the

order of survey display to remedy this.

Supplemental Data

Supplemental Data can be found online at https://doi.org/10.

1016/j.ajhg.2019.05.006.
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wwwn.cdc.gov/Nchs/Nhanes/Search/DataPage.aspx?Component¼
Examination&CycleBeginYear¼2015

GeneReviews, Levy, H.P. (2018). Hypermobile Ehlers-Danlos Syn-

drome, https://www.ncbi.nlm.nih.gov/books/NBK1279/

Genes for Good Facebook application, https://app.genesforgood.

org

Genes for Good full text survey, https://genesforgood.org/

for_researchers

Genes for Good informational website, https://www.

genesforgood.org

Illumina Infinium CoreExome BeadChip, https://www.illumina.

com/content/dam/illumina-marketing/documents/products/

datasheets/datasheet_human_core_exome_beadchip.pdf

Pew Research Center, Social Networking Usage (2005-2015),

https://www.pewinternet.org/2015/2010/2008/social-networking-

usage-2005-2015
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(2016). 23andMe: a new two-sided data-banking market

model. BMC Med. Ethics 17, 19.

3. Royal, C.D., Novembre, J., Fullerton, S.M., Goldstein, D.B.,

Long, J.C., Bamshad,M.J., and Clark, A.G. (2010). Inferring ge-

netic ancestry: opportunities, challenges, and implications.

Am. J. Hum. Genet. 86, 661–673.

4. Agurs-Collins, T., Ferrer, R., Ottenbacher, A., Waters, E.A.,

O’Connell, M.E., and Hamilton, J.G. (2015). Public Awareness

of Direct-to-Consumer Genetic Tests: Findings from the

2013 U.S. Health Information National Trends Survey.

J. Cancer Educ. 30, 799–807.

5. Pedersen, E.R., and Kurz, J. (2016). Using Facebook for Health-

related Research Study Recruitment and Program Delivery.

Curr Opin Psychol 9, 38–43.

6. Kosinski, M., Matz, S.C., Gosling, S.D., Popov, V., and Stillwell,

D. (2015). Facebook as a research tool for the social sciences:

Opportunities, challenges, ethical considerations, and prac-

tical guidelines. Am. Psychol. 70, 543–556.

7. Arcia, A. (2014). Facebook Advertisements for Inexpensive

Participant Recruitment Among Women in Early Pregnancy.

Health Educ. Behav. 41, 237–241.

8. Harris, P.A., Scott, K.W., Lebo, L., Hassan, N., Lightner, C., and

Pulley, J. (2012). ResearchMatch: a national registry to recruit

volunteers for clinical research. Acad. Med. 87, 66–73.

9. Fenner, Y., Garland, S.M., Moore, E.E., Jayasinghe, Y., Fletcher,

A., Tabrizi, S.N., Gunasekaran, B., and Wark, J.D. (2012). Web-

based recruiting for health research using a social networking

site: an exploratory study. J. Med. Internet Res. 14, e20.

10. Mychasiuk, R., and Benzies, K. (2012). Facebook: an effective

tool for participant retention in longitudinal research. Child

Care Health Dev. 38, 753–756.

11. Steinhubl, S.R., Muse, E.D., and Topol, E.J. (2015). The

emerging field of mobile health. Sci. Transl. Med. 7, 283rv3.

12. Kapp, J.M., Peters, C., and Oliver, D.P. (2013). Research recruit-

ment using Facebook advertising: big potential, big chal-

lenges. J. Cancer Educ. 28, 134–137.

13. Krokstad, S., Langhammer, A., Hveem, K., Holmen, T.L., Mid-

thjell, K., Stene, T.R., Bratberg, G., Heggland, J., and Holmen,

J. (2013). Cohort Profile: the HUNT Study, Norway. Int. J. Epi-

demiol. 42, 968–977.

14. Wood, A.R., Esko, T., Yang, J., Vedantam, S., Pers, T.H., Gustafs-

son, S., Chu, A.Y., Estrada, K., Luan, J., Kutalik, Z., et al.; Elec-

tronic Medical Records and Genomics (eMEMERGEGE) Con-

sortium; MIGen Consortium; PAGEGE Consortium; and

LifeLines Cohort Study (2014). Defining the role of common

variation in the genomic and biological architecture of adult

human height. Nat. Genet. 46, 1173–1186.

15. Sankararaman, S., Mallick, S., Dannemann, M., Prüfer, K.,

Kelso, J., Pääbo, S., Patterson, N., and Reich, D. (2014). The

genomic landscape of Neanderthal ancestry in present-day

humans. Nature 507, 354–357.

16. Paschou, P., Lewis, J., Javed, A., and Drineas, P. (2010).

Ancestry informative markers for fine-scale individual assign-

ment to worldwide populations. J. Med. Genet. 47, 835–847.
American Journal of Human Genetics 105, 65–77, July 3, 2019 75

https://doi.org/10.1016/j.ajhg.2019.05.006
https://doi.org/10.1016/j.ajhg.2019.05.006
https://www.box.com/industries/healthcare
https://www.box.com/industries/healthcare
https://www.buzzfeed.com/virginiahughes/a-new-facebook-app-wants-to-test-your-dna
https://www.buzzfeed.com/virginiahughes/a-new-facebook-app-wants-to-test-your-dna
https://www.cdc.gov/diabetes/pdfs/data/statistics/national-diabetes-statistics-report.pdf
https://www.cdc.gov/diabetes/pdfs/data/statistics/national-diabetes-statistics-report.pdf
https://wwwn.cdc.gov/Nchs/Nhanes/Search/DataPage.aspx?Component=Examination&amp;CycleBeginYear=2015
https://wwwn.cdc.gov/Nchs/Nhanes/Search/DataPage.aspx?Component=Examination&amp;CycleBeginYear=2015
https://wwwn.cdc.gov/Nchs/Nhanes/Search/DataPage.aspx?Component=Examination&amp;CycleBeginYear=2015
https://wwwn.cdc.gov/Nchs/Nhanes/Search/DataPage.aspx?Component=Examination&amp;CycleBeginYear=2015
https://www.ncbi.nlm.nih.gov/books/NBK1279/
https://app.genesforgood.org
https://app.genesforgood.org
https://genesforgood.org/for_researchers
https://genesforgood.org/for_researchers
https://www.genesforgood.org
https://www.genesforgood.org
https://www.illumina.com/content/dam/illumina-marketing/documents/products/datasheets/datasheet_human_core_exome_beadchip.pdf
https://www.illumina.com/content/dam/illumina-marketing/documents/products/datasheets/datasheet_human_core_exome_beadchip.pdf
https://www.illumina.com/content/dam/illumina-marketing/documents/products/datasheets/datasheet_human_core_exome_beadchip.pdf
https://www.pewinternet.org/2015/2010/2008/social-networking-usage-2005-2015
https://www.pewinternet.org/2015/2010/2008/social-networking-usage-2005-2015
https://www.reddit.com/r/freebies/comments/67v9c5/free_dna_test_from_the_university_of_michigan/
https://www.reddit.com/r/freebies/comments/67v9c5/free_dna_test_from_the_university_of_michigan/
https://www.statista.com/statistics/187041/us-user-age-distribution-on-facebook
https://www.statista.com/statistics/187041/us-user-age-distribution-on-facebook
https://www.statista.com/statistics/398136/us-facebook-user-age-groups
https://www.statista.com/statistics/398136/us-facebook-user-age-groups
http://refhub.elsevier.com/S0002-9297(19)30192-2/sref1
http://refhub.elsevier.com/S0002-9297(19)30192-2/sref1
http://refhub.elsevier.com/S0002-9297(19)30192-2/sref1
http://refhub.elsevier.com/S0002-9297(19)30192-2/sref1
http://refhub.elsevier.com/S0002-9297(19)30192-2/sref1
http://refhub.elsevier.com/S0002-9297(19)30192-2/sref2
http://refhub.elsevier.com/S0002-9297(19)30192-2/sref2
http://refhub.elsevier.com/S0002-9297(19)30192-2/sref2
http://refhub.elsevier.com/S0002-9297(19)30192-2/sref3
http://refhub.elsevier.com/S0002-9297(19)30192-2/sref3
http://refhub.elsevier.com/S0002-9297(19)30192-2/sref3
http://refhub.elsevier.com/S0002-9297(19)30192-2/sref3
http://refhub.elsevier.com/S0002-9297(19)30192-2/sref4
http://refhub.elsevier.com/S0002-9297(19)30192-2/sref4
http://refhub.elsevier.com/S0002-9297(19)30192-2/sref4
http://refhub.elsevier.com/S0002-9297(19)30192-2/sref4
http://refhub.elsevier.com/S0002-9297(19)30192-2/sref4
http://refhub.elsevier.com/S0002-9297(19)30192-2/sref5
http://refhub.elsevier.com/S0002-9297(19)30192-2/sref5
http://refhub.elsevier.com/S0002-9297(19)30192-2/sref5
http://refhub.elsevier.com/S0002-9297(19)30192-2/sref6
http://refhub.elsevier.com/S0002-9297(19)30192-2/sref6
http://refhub.elsevier.com/S0002-9297(19)30192-2/sref6
http://refhub.elsevier.com/S0002-9297(19)30192-2/sref6
http://refhub.elsevier.com/S0002-9297(19)30192-2/sref7
http://refhub.elsevier.com/S0002-9297(19)30192-2/sref7
http://refhub.elsevier.com/S0002-9297(19)30192-2/sref7
http://refhub.elsevier.com/S0002-9297(19)30192-2/sref8
http://refhub.elsevier.com/S0002-9297(19)30192-2/sref8
http://refhub.elsevier.com/S0002-9297(19)30192-2/sref8
http://refhub.elsevier.com/S0002-9297(19)30192-2/sref9
http://refhub.elsevier.com/S0002-9297(19)30192-2/sref9
http://refhub.elsevier.com/S0002-9297(19)30192-2/sref9
http://refhub.elsevier.com/S0002-9297(19)30192-2/sref9
http://refhub.elsevier.com/S0002-9297(19)30192-2/sref10
http://refhub.elsevier.com/S0002-9297(19)30192-2/sref10
http://refhub.elsevier.com/S0002-9297(19)30192-2/sref10
http://refhub.elsevier.com/S0002-9297(19)30192-2/sref11
http://refhub.elsevier.com/S0002-9297(19)30192-2/sref11
http://refhub.elsevier.com/S0002-9297(19)30192-2/sref12
http://refhub.elsevier.com/S0002-9297(19)30192-2/sref12
http://refhub.elsevier.com/S0002-9297(19)30192-2/sref12
http://refhub.elsevier.com/S0002-9297(19)30192-2/sref13
http://refhub.elsevier.com/S0002-9297(19)30192-2/sref13
http://refhub.elsevier.com/S0002-9297(19)30192-2/sref13
http://refhub.elsevier.com/S0002-9297(19)30192-2/sref13
http://refhub.elsevier.com/S0002-9297(19)30192-2/sref14
http://refhub.elsevier.com/S0002-9297(19)30192-2/sref14
http://refhub.elsevier.com/S0002-9297(19)30192-2/sref14
http://refhub.elsevier.com/S0002-9297(19)30192-2/sref14
http://refhub.elsevier.com/S0002-9297(19)30192-2/sref14
http://refhub.elsevier.com/S0002-9297(19)30192-2/sref14
http://refhub.elsevier.com/S0002-9297(19)30192-2/sref14
http://refhub.elsevier.com/S0002-9297(19)30192-2/sref15
http://refhub.elsevier.com/S0002-9297(19)30192-2/sref15
http://refhub.elsevier.com/S0002-9297(19)30192-2/sref15
http://refhub.elsevier.com/S0002-9297(19)30192-2/sref15
http://refhub.elsevier.com/S0002-9297(19)30192-2/sref16
http://refhub.elsevier.com/S0002-9297(19)30192-2/sref16
http://refhub.elsevier.com/S0002-9297(19)30192-2/sref16


17. Auton, A., Brooks, L.D., Durbin, R.M., Garrison, E.P., Kang,

H.M., Korbel, J.O., Marchini, J.L., McCarthy, S., McVean,

G.A., Abecasis, G.R.; and 1000 Genomes Project Consortium

(2015). A global reference for human genetic variation. Nature

526, 68–74.

18. Das, S., Forer, L., Schönherr, S., Sidore, C., Locke, A.E., Kwong,

A., Vrieze, S.I., Chew, E.Y., Levy, S., McGue, M., et al. (2016).

Next-generation genotype imputation service and methods.

Nat. Genet. 48, 1284–1287.

19. Maples, B.K., Gravel, S., Kenny, E.E., and Bustamante, C.D.

(2013). RFMix: a discriminative modeling approach for rapid

and robust local-ancestry inference. Am. J. Hum. Genet. 93,

278–288.

20. Alexander, D.H., Novembre, J., and Lange, K. (2009). Fast

model-based estimation of ancestry in unrelated individuals.

Genome Res. 19, 1655–1664.

21. Wang, C., Zhan, X., Liang, L., Abecasis, G.R., and Lin, X.

(2015). Improved ancestry estimation for both genotyping

and sequencing data using projection procrustes analysis

and genotype imputation. Am. J. Hum. Genet. 96, 926–

937.

22. Li, J.Z., Absher, D.M., Tang, H., Southwick, A.M., Casto, A.M.,

Ramachandran, S., Cann, H.M., Barsh, G.S., Feldman, M.,

Cavalli-Sforza, L.L., and Myers, R.M. (2008). Worldwide hu-

man relationships inferred from genome-wide patterns of

variation. Science 319, 1100–1104.

23. Hamilton, C.M., Strader, L.C., Pratt, J.G., Maiese, D., Hender-

shot, T., Kwok, R.K., Hammond, J.A., Huggins, W., Jackman,

D., Pan, H., et al. (2011). The PhenX Toolkit: get the most

from your measures. Am. J. Epidemiol. 174, 253–260.

24. Locke, A.E., Kahali, B., Berndt, S.I., Justice, A.E., Pers, T.H.,

Day, F.R., Powell, C., Vedantam, S., Buchkovich, M.L., Yang,

J., et al.; LifeLines Cohort Study; ADIPOGen Consortium;

AGEN-BMI Working Group; CARDIOGRAMplusC4D Con-

sortium; CKDGen Consortium; GLGC; ICBP; MAGIC Investi-

gators; MuTHER Consortium; MIGen Consortium; PAGE

Consortium; ReproGen Consortium; GENIE Consortium;

and International Endogene Consortium (2015). Genetic

studies of body mass index yield new insights for obesity

biology. Nature 518, 197–206.

25. Zhou, W., Nielsen, J.B., Fritsche, L.G., Dey, R., Gabrielsen,

M.E., Wolford, B.N., LeFaive, J., VandeHaar, P., Gagliano,

S.A., Gifford, A., et al. (2018). Efficiently controlling for case-

control imbalance and sample relatedness in large-scale ge-

netic association studies. Nat. Genet. 50, 1335–1341.

26. Chang, C.C., Chow, C.C., Tellier, L.C., Vattikuti, S., Purcell,

S.M., and Lee, J.J. (2015). Second-generation PLINK: rising to

the challenge of larger and richer datasets. Gigascience 4, 7.

27. Semega, J.L., Fontenot, K.R., and Kollar, M.A. (2017). House-

holds by Total Money Income, Race, and Hispanic Origin of

Householder: 1967 to 2016. In US Census Bureau, Current

Population Reports, P60-259, Income and Poverty in the

United States: 2016 (Washington, DC: U.S. Government

Printing Office), pp. 23–29.

28. Nwankwo, T., Yoon, S.S., Burt, V., and Gu, Q. (2013). Hyper-

tension among adults in the United States: National Health

and Nutrition Examination Survey, 2011-2012. NCHS Data

Brief, 1–8.

29. Mozaffarian, D., Benjamin, E.J., Go, A.S., Arnett, D.K., Blaha,

M.J., Cushman, M., de Ferranti, S., Després, J.P., Fullerton,

H.J., Howard, V.J., et al.; American Heart Association Statistics

Committee and Stroke Statistics Subcommittee (2015). Heart
76 The American Journal of Human Genetics 105, 65–77, July 3, 2019
disease and stroke statistics–2015 update: a report from the

American Heart Association. Circulation 131, e29–e322.

30. Ward, B.W., Clarke, T.C., Nugent, C.N., and Schiller, J.S.

(2016). Early Release of Selected Estimates Based on Data

From the 2015 National Health Interview Survey. National

Center for Health Statistics, May 2016 https://www.cdc.gov/

nchs/data/nhis/earlyrelease/earlyrelease201605.pdf.

31. Lee, D., Cornet, R., Lau, F., and de Keizer, N. (2013). A sur-

vey of SNOMED CT implementations. J. Biomed. Inform.

46, 87–96.

32. Bays, H.E., Chapman, R.H., Grandy, S.; and SHIELD Investiga-

tors’ Group (2007). The relationship of body mass index to

diabetes mellitus, hypertension and dyslipidaemia: compari-

son of data from two national surveys. Int. J. Clin. Pract. 61,

737–747.

33. Liu, F., van Duijn, K., Vingerling, J.R., Hofman, A., Uitterlin-

den, A.G., Janssens, A.C., and Kayser, M. (2009). Eye color

and the prediction of complex phenotypes from genotypes.

Curr. Biol. 19, R192–R193.

34. Demenais, F., Margaritte-Jeannin, P., Barnes, K.C., Cookson,

W.O.C., Altmüller, J., Ang, W., Barr, R.G., Beaty, T.H., Becker,

A.B., Beilby, J., et al.; Australian Asthma Genetics Consortium

(AAGC) collaborators (2018). Multiancestry association study

identifies new asthma risk loci that colocalize with immune-

cell enhancer marks. Nat. Genet. 50, 42–53.

35. Tsoi, L.C., Stuart, P.E., Tian, C., Gudjonsson, J.E., Das, S.,

Zawistowski, M., Ellinghaus, E., Barker, J.N., Chandran, V.,

Dand, N., et al. (2017). Large scale meta-analysis character-

izes genetic architecture for common psoriasis associated

variants. Nat. Commun. 8, 15382.

36. Duffy, S.W., Warwick, J., Williams, A.R.W., Keshavarz, H., Kaf-

fashian, F., Rohan, T.E., Nili, F., and Sadeghi-Hassanabadi, A.

(2004). A simple model for potential use with a misclassified

binary outcome in epidemiology. J. Epidemiol. Community

Health 58, 712–717.

37. Bycroft, C., Freeman, C., Petkova, D., Band, G., Elliott, L.T.,

Sharp, K., Motyer, A., Vukcevic, D., Delaneau, O., O’Connell,

J., et al. (2018). The UK Biobank resource with deep phenotyp-

ing and genomic data. Nature 562, 203–209.

38. Lunshof, J.E., Church, G.M., and Prainsack, B. (2014). Infor-

mation access. Raw personal data: providing access. Science

343, 373–374.

39. Jiang, Y., Chen, S., McGuire, D., Chen, F., Liu, M., Iacono,

W.G., Hewitt, J.K., Hokanson, J.E., Krauter, K., Laakso, M.,

et al. (2018). Proper conditional analysis in the presence of

missing data: Application to large scale meta-analysis of to-

bacco use phenotypes. PLoS Genet. 14, e1007452.

40. Zhan, X., Chen, S., Jiang, Y., Liu, M., Iacono, W.G., Hewitt,

J.K., Hokanson, J.E., Krauter, K., Laakso, M., Li, K.W., et al.

(2017). Association Analysis and Meta-Analysis of Multi-

allelic Variants for Large Scale Sequence Data. bioRxiv.

https://doi.org/10.1101/197913.

41. Liu, M., Jiang, Y., Wedow, R., Li, Y., Brazel, D.M., Chen, F.,

Datta, G., Davila-Velderrain, J., McGuire, D., Tian, C., et al.;

23andMe Research Team; and HUNT All-In Psychiatry

(2019). Association studies of up to 1.2 million individuals

yield new insights into the genetic etiology of tobacco and

alcohol use. Nat. Genet. 51, 237–244.

42. Sanchez-Roige, S., Fontanillas, P., Elson, S.L., Pandit, A.,

Schmidt, E.M., Foerster, J.R., Abecasis, G.R., Gray, J.C., de

Wit, H., et al.; 23andMe Research Team (2018). Genome-

wide association study of delay discounting in 23,217 adult

http://refhub.elsevier.com/S0002-9297(19)30192-2/sref17
http://refhub.elsevier.com/S0002-9297(19)30192-2/sref17
http://refhub.elsevier.com/S0002-9297(19)30192-2/sref17
http://refhub.elsevier.com/S0002-9297(19)30192-2/sref17
http://refhub.elsevier.com/S0002-9297(19)30192-2/sref17
http://refhub.elsevier.com/S0002-9297(19)30192-2/sref18
http://refhub.elsevier.com/S0002-9297(19)30192-2/sref18
http://refhub.elsevier.com/S0002-9297(19)30192-2/sref18
http://refhub.elsevier.com/S0002-9297(19)30192-2/sref18
http://refhub.elsevier.com/S0002-9297(19)30192-2/sref19
http://refhub.elsevier.com/S0002-9297(19)30192-2/sref19
http://refhub.elsevier.com/S0002-9297(19)30192-2/sref19
http://refhub.elsevier.com/S0002-9297(19)30192-2/sref19
http://refhub.elsevier.com/S0002-9297(19)30192-2/sref20
http://refhub.elsevier.com/S0002-9297(19)30192-2/sref20
http://refhub.elsevier.com/S0002-9297(19)30192-2/sref20
http://refhub.elsevier.com/S0002-9297(19)30192-2/sref21
http://refhub.elsevier.com/S0002-9297(19)30192-2/sref21
http://refhub.elsevier.com/S0002-9297(19)30192-2/sref21
http://refhub.elsevier.com/S0002-9297(19)30192-2/sref21
http://refhub.elsevier.com/S0002-9297(19)30192-2/sref21
http://refhub.elsevier.com/S0002-9297(19)30192-2/sref22
http://refhub.elsevier.com/S0002-9297(19)30192-2/sref22
http://refhub.elsevier.com/S0002-9297(19)30192-2/sref22
http://refhub.elsevier.com/S0002-9297(19)30192-2/sref22
http://refhub.elsevier.com/S0002-9297(19)30192-2/sref22
http://refhub.elsevier.com/S0002-9297(19)30192-2/sref23
http://refhub.elsevier.com/S0002-9297(19)30192-2/sref23
http://refhub.elsevier.com/S0002-9297(19)30192-2/sref23
http://refhub.elsevier.com/S0002-9297(19)30192-2/sref23
http://refhub.elsevier.com/S0002-9297(19)30192-2/sref24
http://refhub.elsevier.com/S0002-9297(19)30192-2/sref24
http://refhub.elsevier.com/S0002-9297(19)30192-2/sref24
http://refhub.elsevier.com/S0002-9297(19)30192-2/sref24
http://refhub.elsevier.com/S0002-9297(19)30192-2/sref24
http://refhub.elsevier.com/S0002-9297(19)30192-2/sref24
http://refhub.elsevier.com/S0002-9297(19)30192-2/sref24
http://refhub.elsevier.com/S0002-9297(19)30192-2/sref24
http://refhub.elsevier.com/S0002-9297(19)30192-2/sref24
http://refhub.elsevier.com/S0002-9297(19)30192-2/sref24
http://refhub.elsevier.com/S0002-9297(19)30192-2/sref25
http://refhub.elsevier.com/S0002-9297(19)30192-2/sref25
http://refhub.elsevier.com/S0002-9297(19)30192-2/sref25
http://refhub.elsevier.com/S0002-9297(19)30192-2/sref25
http://refhub.elsevier.com/S0002-9297(19)30192-2/sref25
http://refhub.elsevier.com/S0002-9297(19)30192-2/sref26
http://refhub.elsevier.com/S0002-9297(19)30192-2/sref26
http://refhub.elsevier.com/S0002-9297(19)30192-2/sref26
http://refhub.elsevier.com/S0002-9297(19)30192-2/sref27
http://refhub.elsevier.com/S0002-9297(19)30192-2/sref27
http://refhub.elsevier.com/S0002-9297(19)30192-2/sref27
http://refhub.elsevier.com/S0002-9297(19)30192-2/sref27
http://refhub.elsevier.com/S0002-9297(19)30192-2/sref27
http://refhub.elsevier.com/S0002-9297(19)30192-2/sref27
http://refhub.elsevier.com/S0002-9297(19)30192-2/sref28
http://refhub.elsevier.com/S0002-9297(19)30192-2/sref28
http://refhub.elsevier.com/S0002-9297(19)30192-2/sref28
http://refhub.elsevier.com/S0002-9297(19)30192-2/sref28
http://refhub.elsevier.com/S0002-9297(19)30192-2/sref29
http://refhub.elsevier.com/S0002-9297(19)30192-2/sref29
http://refhub.elsevier.com/S0002-9297(19)30192-2/sref29
http://refhub.elsevier.com/S0002-9297(19)30192-2/sref29
http://refhub.elsevier.com/S0002-9297(19)30192-2/sref29
http://refhub.elsevier.com/S0002-9297(19)30192-2/sref29
https://www.cdc.gov/nchs/data/nhis/earlyrelease/earlyrelease201605.pdf
https://www.cdc.gov/nchs/data/nhis/earlyrelease/earlyrelease201605.pdf
http://refhub.elsevier.com/S0002-9297(19)30192-2/sref31
http://refhub.elsevier.com/S0002-9297(19)30192-2/sref31
http://refhub.elsevier.com/S0002-9297(19)30192-2/sref31
http://refhub.elsevier.com/S0002-9297(19)30192-2/sref32
http://refhub.elsevier.com/S0002-9297(19)30192-2/sref32
http://refhub.elsevier.com/S0002-9297(19)30192-2/sref32
http://refhub.elsevier.com/S0002-9297(19)30192-2/sref32
http://refhub.elsevier.com/S0002-9297(19)30192-2/sref32
http://refhub.elsevier.com/S0002-9297(19)30192-2/sref33
http://refhub.elsevier.com/S0002-9297(19)30192-2/sref33
http://refhub.elsevier.com/S0002-9297(19)30192-2/sref33
http://refhub.elsevier.com/S0002-9297(19)30192-2/sref33
http://refhub.elsevier.com/S0002-9297(19)30192-2/sref34
http://refhub.elsevier.com/S0002-9297(19)30192-2/sref34
http://refhub.elsevier.com/S0002-9297(19)30192-2/sref34
http://refhub.elsevier.com/S0002-9297(19)30192-2/sref34
http://refhub.elsevier.com/S0002-9297(19)30192-2/sref34
http://refhub.elsevier.com/S0002-9297(19)30192-2/sref34
http://refhub.elsevier.com/S0002-9297(19)30192-2/sref35
http://refhub.elsevier.com/S0002-9297(19)30192-2/sref35
http://refhub.elsevier.com/S0002-9297(19)30192-2/sref35
http://refhub.elsevier.com/S0002-9297(19)30192-2/sref35
http://refhub.elsevier.com/S0002-9297(19)30192-2/sref35
http://refhub.elsevier.com/S0002-9297(19)30192-2/sref36
http://refhub.elsevier.com/S0002-9297(19)30192-2/sref36
http://refhub.elsevier.com/S0002-9297(19)30192-2/sref36
http://refhub.elsevier.com/S0002-9297(19)30192-2/sref36
http://refhub.elsevier.com/S0002-9297(19)30192-2/sref36
http://refhub.elsevier.com/S0002-9297(19)30192-2/sref37
http://refhub.elsevier.com/S0002-9297(19)30192-2/sref37
http://refhub.elsevier.com/S0002-9297(19)30192-2/sref37
http://refhub.elsevier.com/S0002-9297(19)30192-2/sref37
http://refhub.elsevier.com/S0002-9297(19)30192-2/sref38
http://refhub.elsevier.com/S0002-9297(19)30192-2/sref38
http://refhub.elsevier.com/S0002-9297(19)30192-2/sref38
http://refhub.elsevier.com/S0002-9297(19)30192-2/sref39
http://refhub.elsevier.com/S0002-9297(19)30192-2/sref39
http://refhub.elsevier.com/S0002-9297(19)30192-2/sref39
http://refhub.elsevier.com/S0002-9297(19)30192-2/sref39
http://refhub.elsevier.com/S0002-9297(19)30192-2/sref39
https://doi.org/10.1101/197913
http://refhub.elsevier.com/S0002-9297(19)30192-2/sref41
http://refhub.elsevier.com/S0002-9297(19)30192-2/sref41
http://refhub.elsevier.com/S0002-9297(19)30192-2/sref41
http://refhub.elsevier.com/S0002-9297(19)30192-2/sref41
http://refhub.elsevier.com/S0002-9297(19)30192-2/sref41
http://refhub.elsevier.com/S0002-9297(19)30192-2/sref41
http://refhub.elsevier.com/S0002-9297(19)30192-2/sref42
http://refhub.elsevier.com/S0002-9297(19)30192-2/sref42
http://refhub.elsevier.com/S0002-9297(19)30192-2/sref42
http://refhub.elsevier.com/S0002-9297(19)30192-2/sref42


research participants of European ancestry. Nat. Neurosci. 21,

16–18.

43. Hollands, G.J., French, D.P., Griffin, S.J., Prevost, A.T., Sut-

ton, S., King, S., and Marteau, T.M. (2016). The impact of

communicating genetic risks of disease on risk-reducing

health behaviour: systematic review with meta-analysis.

BMJ 352, i1102.

44. Dobkin, B.H., and Dorsch, A. (2011). The promise of

mHealth: daily activity monitoring and outcome assess-

ments by wearable sensors. Neurorehabil. Neural Repair 25,

788–798.

45. Appelboom, G., Camacho, E., Abraham, M.E., Bruce, S.S., Du-

mont, E.L., Zacharia, B.E., D’Amico, R., Slomian, J., Reginster,

J.Y., Bruyère, O., and Connolly, E.S., Jr. (2014). Smart wearable

body sensors for patient self-assessment and monitoring.

Arch. Public Health 72, 28.

46. El-Amrawy, F., and Nounou, M.I. (2015). Are Currently Avail-

able Wearable Devices for Activity Tracking and Heart Rate

Monitoring Accurate, Precise, and Medically Beneficial?

Healthc. Inform. Res. 21, 315–320.
The
47. Montgomery-Downs, H.E., Insana, S.P., and Bond, J.A. (2012).

Movement toward a novel activity monitoring device. Sleep

Breath. 16, 913–917.

48. Glasgow, M.L., Rudra, C.B., Yoo, E.H., Demirbas, M., Merriman,

J., Nayak, P., Crabtree-Ide, C., Szpiro, A.A., Rudra, A.,Wactawski-

Wende, J., andMu,L. (2016).Using smartphones tocollect time-

activity data for long-term personal-level air pollution exposure

assessment. J. Expo. Sci. Environ. Epidemiol. 26, 356–364.

49. Liu, M., Rea-Sandin, G., Foerster, J., Fritsche, L., Brieger,

K., Clark, C., Li, K., Pandit, A., Zajac, G., Abecasis, G.R.,

and Vrieze, S. (2017). Validating Online Measures of

Cognitive Ability in Genes for Good, a Genetic Study of

Health and Behavior. Assessment, 1073191117744048.

50. Branigan, A.R., McCallum, K.J., and Freese, J. (2013). Variation

in the Heritability of Educational Attainment: An Interna-

tional Meta-Analysis. Soc. Forces 92, 109–140.

51. Howden, L.M., and Meyer, J.A. (2011). Age and Sex Composi-

tion: 2010. In Census Briefs, C2010BR-03 (Washington, D.C.:

U.S. Census Bureau), pp. 1–16. https://www.census.gov/prod/

cen2010/briefs/c2010br-2003.pdf.
American Journal of Human Genetics 105, 65–77, July 3, 2019 77

http://refhub.elsevier.com/S0002-9297(19)30192-2/sref42
http://refhub.elsevier.com/S0002-9297(19)30192-2/sref42
http://refhub.elsevier.com/S0002-9297(19)30192-2/sref43
http://refhub.elsevier.com/S0002-9297(19)30192-2/sref43
http://refhub.elsevier.com/S0002-9297(19)30192-2/sref43
http://refhub.elsevier.com/S0002-9297(19)30192-2/sref43
http://refhub.elsevier.com/S0002-9297(19)30192-2/sref43
http://refhub.elsevier.com/S0002-9297(19)30192-2/sref44
http://refhub.elsevier.com/S0002-9297(19)30192-2/sref44
http://refhub.elsevier.com/S0002-9297(19)30192-2/sref44
http://refhub.elsevier.com/S0002-9297(19)30192-2/sref44
http://refhub.elsevier.com/S0002-9297(19)30192-2/sref45
http://refhub.elsevier.com/S0002-9297(19)30192-2/sref45
http://refhub.elsevier.com/S0002-9297(19)30192-2/sref45
http://refhub.elsevier.com/S0002-9297(19)30192-2/sref45
http://refhub.elsevier.com/S0002-9297(19)30192-2/sref45
http://refhub.elsevier.com/S0002-9297(19)30192-2/sref46
http://refhub.elsevier.com/S0002-9297(19)30192-2/sref46
http://refhub.elsevier.com/S0002-9297(19)30192-2/sref46
http://refhub.elsevier.com/S0002-9297(19)30192-2/sref46
http://refhub.elsevier.com/S0002-9297(19)30192-2/sref47
http://refhub.elsevier.com/S0002-9297(19)30192-2/sref47
http://refhub.elsevier.com/S0002-9297(19)30192-2/sref47
http://refhub.elsevier.com/S0002-9297(19)30192-2/sref48
http://refhub.elsevier.com/S0002-9297(19)30192-2/sref48
http://refhub.elsevier.com/S0002-9297(19)30192-2/sref48
http://refhub.elsevier.com/S0002-9297(19)30192-2/sref48
http://refhub.elsevier.com/S0002-9297(19)30192-2/sref48
http://refhub.elsevier.com/S0002-9297(19)30192-2/sref49
http://refhub.elsevier.com/S0002-9297(19)30192-2/sref49
http://refhub.elsevier.com/S0002-9297(19)30192-2/sref49
http://refhub.elsevier.com/S0002-9297(19)30192-2/sref49
http://refhub.elsevier.com/S0002-9297(19)30192-2/sref49
http://refhub.elsevier.com/S0002-9297(19)30192-2/sref50
http://refhub.elsevier.com/S0002-9297(19)30192-2/sref50
http://refhub.elsevier.com/S0002-9297(19)30192-2/sref50
https://www.census.gov/prod/cen2010/briefs/c2010br-2003.pdf
https://www.census.gov/prod/cen2010/briefs/c2010br-2003.pdf


The American Journal of Human Genetics, Volume 105
Supplemental Data
Genes for Good: Engaging the Public

in Genetics Research via Social Media

Katharine Brieger, Gregory J.M. Zajac, Anita Pandit, Johanna R. Foerster, Kevin W.
Li, Aubrey C. Annis, Ellen M. Schmidt, Chris P. Clark, Karly McMorrow, Wei
Zhou, Jingjing Yang, AlanM. Kwong, Andrew P. Boughton, Jinxi Wu, Chris Scheller, Tanvi
Parikh, Alejandro de la Vega, David M. Brazel, Maia Frieser, Gianna Rea-Sandin, Lars G.
Fritsche, Scott I. Vrieze, and Gonçalo R. Abecasis



Table S1.  Comparison of Genes for Good cohort (genotyped diabetes cases and controls) 
to NHANES1 cohort. 
 
Diabetes Cases and 
Controls,  Genotyped 
Samples 

    

 
GfG Cases 
(N=948) 

GfG Controls 
(N=16,581) 

NHANES Cases 
(N=809) 

NHANES 
Controls 
(N=4,796) 

BMI 35.71 (8.63) 29.11 (7.79) 32.58 (7.75) 28.80 (6.83) 
Underweight 1.0% 1.9% 0.5% 1.7% 
Normal weight 8.4% 34.6% 12.5% 30.0% 
Overweight 17.0% 27.4% 29.0% 32.0% 
Obese 73.6% 36.1% 58.0% 36.3% 
Age     
<21 1.1% 6.3% 0.1% 7.0% 
21-30 8.1% 40.0% 2.8% 19.1% 
31-40 21.3% 28.3% 5.7% 18.3% 
41-50 20.1% 11.7% 12.0% 16.4% 
51-60 27.7% 8.2% 21.5% 14.9% 
61-70 16.5% 4.3% 31.1% 12.3% 
>70 5.2% 1.1% 26.7% 11.8% 
Sex     
Female 65.8% 68.5% 45.7% 52.8% 
Male 34.2% 31.5% 54.3% 47.2% 
Race     
Hispanic 7.4% 8.4% 38.1% 29.8% 
Asian 1.0% 3.9% 8.9% 12.5% 
Black 3.1% 2.6% 23.6% 20.8% 
White 79.8% 76.2% 26.1% 33.1% 
Multiracial/Other 8.7% 8.9% 3.3% 3.9% 
Income     
<$35K 33.7% 26.6% 50.6% 38.7% 
$35K-$75K 38.0% 38.1% 30.3% 31.6% 
$75K-$100K 14.4% 15.3% 6.9% 10.8% 
>$100K 13.9% 20.0% 12.2% 19.0% 
Education     
No HS 3.5% 2.0% 32.8% 22.7% 
HS Diploma 16.3% 11.3% 21.9% 23.0% 
Some college or 
Associate's degree 45.8% 41.3% 27.6% 29.6% 
Bachelor's or higher 34.5% 45.5% 17.7% 26.2% 
 
 
Table S2. Genome-wide significant hits for various pigmentation and health phenotypes.  
Note: This table is large and therefore is included as an Excel file. 
All associations are consistent with findings in previous studies2 except for the hair 
texture hits at rs1918719 and rs7499783. CHR, chromosome; POS38, build 38 
chromosome position; EA, effect allele; EAF, effect allele frequency; N, number of 
participants included in analysis; SE, standard error.  
* Associations not reported in previous studies.  
 



 
Table S3. Comparison of Genes for Good top GWAS hits to previously reported results. 
Note: This table is large and therefore is included as an Excel file. 
* Associations not reported in previous studies.  
Replications of the top three hits from various studies of pigmentation and health traits3-11. 
Direction of effect for all variants is consistent between the reference studies and Genes 
for Good, and most Genes for Good results attain at least nominal significance (p < 0.05).  
EA, effect allele; N, number of participants included in analysis; OR, odds (log-additive) 
ratio. 
 
Table S4. Comparison of Genes for Good asthma results to previously reported results. 
Note: This table is large and therefore is included as an Excel file. 
* Associations not reported in previous studies.  
Genes for Good replications of eighteen asthma hits found in Demenais et al.11. 
Adjustments to odds ratios (OR) and sample sizes were made using the approach of 
Duffy et al.12 to correct for response misclassification. Power calculations were made at 
the 0.05 significance level using the Genes for Good adjusted sample size, disease 
frequencies and relative risk values from Demenais et al.11 control samples, 7.7% 
population prevalence, and an additive disease model. EA, effect allele; N, number of 
participants included in analysis.  
 
 
 
 
 



Figure S1. GWAS panel of common traits in Genes for Good.  
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Figure S1. Manhattan plots for GWAS analysis of various pigmentation and health traits. 
The x-axis indicates chromosomal location. The y-axis represents –log10(p-value). The 
red line indicates genome-wide significance (p = 5×10-8). Each genome-wide significant 
locus is labeled with the gene nearest to it.   
 
 
Figure S2. Survey completion count for Health History surveys available in Genes for 
Good. 

 
 
Survey completion count for Genes for Good surveys. Surveys are ordered by date 
implemented, with the oldest surveys at the top. The first ten surveys were all available at 
launch. The Reasoning and Patterns surveys are known to be on the longer side.  



Figure S3. Histogram of Health History and Daily Tracking survey completion.
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