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Supplementary figures and legends
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Supplementary figure 1. Isolation and characterization of human endometrial stem cells.

Schematic representation showing the isolation procedures of human endometrial stem cells (A). The

isolated cells were positive for the stem cell markers CD44, CD73, CD105, and CD140b and negative

for the hematopoietic markers CD34 and CD45 (B). The capacity of these stem cells to differentiate

into multiple lineages, specifically osteoblasts and adipocytes, was determined by alizarin red staining

and oil red O staining, respectively. The relative quantification of calcium mineral content and lipid

droplet formation was performed by measuring the absorbance at 570 nm and 500 nm, respectively

(C). The data are presented as the mean + SD of three independent experiments.
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Supplementary figure 2. H,O, treatment increased pro-apoptotic caspase 3 activity and
subsequent DNA fragmentation. H,O, treatment-induced apoptotic DNA fragmentation and
condensation were visualized using DAPI staining (A). Elevated levels of cleaved caspase-3
following GnRH treatment were assessed by western blotting (B). DAPI staining was used to label the
nuclei. B-actin was used as the internal control. The data are presented as the mean + SD of three

independent experiments.
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Supplementary figure 3. Replicative senescence commonly activates various senescence-

associated phenotypes. Replicative senescence was induced by continuous subculture until passage

10; subsequent changes in stem cell aging were determined by measuring SA-p-Gal activity (A) and

senescence markers such as IL-6, p16, p18, and p21 (B). The data are presented as the mean £ SD of

three independent experiments.
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Supplementary figure 4. SHH attenuates oxidative stress-induced senescence marker expression.
Oxidative stress-mediated senescence were induced by 700 nM hydrogen peroxide (H,O,) exposure
for 1 h, and then endometrial stem cells were treated with or without SHH (4 uM). The ability of SHH
to attenuate oxidative stress-induced senescence marker expression (RB1 and P14ARF) was
determined by real-time PCR (A-B). The data are presented as the mean + SD of three independent

experiments.
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Supplementary figure 5. SHH promotes growth, migratory, and transdifferentiation capacity of
endometrial stem cells in vitro. The stimulation of endometrial stem cell viability by SHH (4 uM)
treatment for 72 h was determined by an MTT assay (A). Endometrial stem cells were treated with
SHH for 24 h, and the effect of SHH on the migration ability was then evaluated using a transwell
migration assay. The SHH treatment significantly increased stem cell migration across the membrane
compared with the negative control (B). The effects of SHH on osteoblast differentiation were
determined by alizarin red staining. The relative quantification of calcium mineral content was
determined by measuring the absorbance at a wavelength of 570 nm (C). The results are presented as

the mean = SD from three independent experiments.
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Supplementary figure 6. Isolation and characterization of mouse adipose tissue-derived stem
cells. Schematic representation describing the isolation procedures of mouse adipose tissue-derived
stem cells (A). Their capacity to differentiate into multiple lineages, specifically osteoblasts (B) or
adipocytes (C), was determined by alizarin red and oil red O staining, respectively. The relative
quantification of the calcium mineral content and lipid droplet formation was determined by

measuring the absorbance at 570 nm and 500 nm, respectively. The data represent the mean + SD

from three independent experiments.
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Supplementary figure 7. SHH expression was downregulated and replicative senescence

commonly activates in endometrial stem cells derived from aged mice, recpectively. Endometrial

stem cells were isolated from both young and aged endometrial tissues. Both mRNA and protein

levels of SHH were evaluated using real-time PCR and western blotting, respectively (A). The

changes in stem cell aging were determined by measuring SA-B-Gal activity (B) and senescence

markers such as IL-6, p16, pl18, and p21 (C). p-actin was used as an internal control. The data are

presented as the mean + SD of three independent experiments.
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Negative correlation between PTCH1-related pathways and cellular senescence
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Supplemental Figure 8. Negative correlation between SHH- or PTCH1-related pathways and
cellular senescence. Differentially expressed genes from nonsenescent proliferative cells and
senescent cells (GSE32474) were applied to ingenuity pathway analysis (IPA) software
(http://wvww.ingenuity.com) to predict the activation state (either activated or inhibited) of the SHH (A)
or PTCH1 (B) level itself and its related signaling pathways. Clinical big data were analyzed using the
Seiber dataset (GSE43996 and GSE9452) from ‘R2: Genomics Analysis and Visualization Platform

(http://r2.amc.ml)’.  Signaling network analysis was performed using GeneMANIA

(http://www.genemania.org) to predict the connections between SHH or PTCH1 and cell growth or

migration (C).


http://r2.amc.ml)/
http://www.genemania.org/

Supplementary Figure 9
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Supplemental Figure 9. The expression of SHH and its receptor PTCH1 was significantly

H:20: - +

decreased in senescent stem cells. Replicative and oxidative stress-mediated senescence were
induced by continuous subculture until passage 10 and 700 nM hydrogen peroxide (H,O,) exposure
for 1 h, respectively. Cells were stained with antibodies that were specific for SHH (A) or PTCH1 (B).
DAPI staining was used to label the nuclei within each field. The results represent the means = SD

from three independent experiments.
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Supplemental Figure 10. Knockdown efficiency of shRNAs targeting SERPINB2. Endometrial
stem cells were stably transduced with shRNA, which targets SERPINB2, or with a nontargeting
control shRNA (A). Successful knockdown of SERPINB2 was verified based on the RNA (B) and
protein (C) levels in endometrial stem cells. f-actin was used as the internal control. The results

represent the mean + SD from three independent experiments.
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Supplemental Figure 11. Positive correlation between SERPINB2-related pathways and cellular
senescence. Differentially expressed genes from nonsenescent proliferative cells and senescent cells
were applied to ingenuity pathway analysis (IPA) software (http://www.ingenuity.com) to predict the
activation state (either activated or inhibited) of the SERPINB2 level itself and its related signaling
pathways (A). Signaling network analysis was performed using GeneMANIA

(http://www.genemania.org) to predict the connections between SERPINB2 and cell growth or

migration (B).


http://www.genemania.org/

