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A Supplementary Text

A.1 Combinatorial Structure and Complexity

A.1.1 Combinatorial Characterization of Optimal Solutions

(Main Text) Theorem 1. Given input trees T = {T1, . . . , Tn}, there exists a consensus tree R with minimum
distance d(T , R) =

∑n
i=1 d(Ti, R) that is a maximum weight spanning arborescence in the parent-child graph GT .

(Main Text) Lemma 1. There exists an optimal consensus tree R to SCT instance T where each edge (u, v) of R
occurs in an input tree.

Proof. By Theorem 1, a maximum weight spanning arborescence is an optimal solution to T . Consider such a
maximum weight spanning arborescence R′. By construction, the edge set of the parent-child graph GT equals the
union of all edges in the set T of input trees. As such,R′ does not contain an edge (u, v) that is not present in T .

(Main Text) Lemma 2. There exists an optimal consensus tree R to SCT instance T where if an edge (u, v) is
present in all trees T then (u, v) is an edge of the consensus tree R.

Proof. Consider an edge (u, v) that is present in all input trees T . By Theorem 1 a maximum weight spanning
arborescence is an optimal solution to T . Consider such a maximum weight arborescence R′. We distinguish two
cases. First, v is not the root of R′. Let u′ be the unique parent of v in R′. By construction, the edge set of the
parent-child graph GT equals the union of all edges in the set T of input trees. We have that u is the parent of v in
each input tree Ti ∈ T . As such, u′ = u.

Second, v is the root of R′. Let w be the unique parent of u in R′ We construct a new tree R′′ = (V,E(R′′)),
where we remove the edge (w, u) and introduce the edge (u, v). That is, E(R′′) = E(R′) \ {(w, u)}∪{(u, v)}. Let
`(R) be the sum of weights of all its edges inGT , i.e. `(R) =

∑
(u,v)∈E(R)`(u,v). By construction of the parent-child

graph GT , we have that `(u, v) = n ≥ `(w, u). Therefore `(R′) ≤ `(R′′). Since R′ is an optimal tree, we know
that R′′ is also an optimal tree. Moreover, R′′ contains the edge (u, v), thereby proving the lemma.

(Main Text) Lemma 3. The total distance d(T , R) =
∑

i=1 d(Ti, R) of any spanning arborescence R = (V,ER)
of parent-child graph GT to input trees T = {T1, . . . , Tn} equals 2[n(m− 1)− `(R)].

Proof. Let 1T (u, v) be an indicator function, where 1T (u, v) = 1 if (u, v) is an edge of T , and 0 otherwise. Using
that |Ei| = |ER| = m− 1 for any input tree Ti = (V,Ei) ∈ T , we have

d(Ti, R) = (|Ei| − |Ei ∩ ER|) + (|ER| − |Ei ∩ ER|) (1)

= 2(m− 1)− 2
∑

(u,v)∈ER

1Ti(u, v). (2)

The total cost is

∑
i

d(Ti, R) =

n∑
i=1

2(m− 1)− 2
∑

(u,v)∈ER

1Ti(u, v)

 (3)

= 2n(m− 1)− 2

n∑
i=1

∑
(u,v)∈ER

1Ti(u, v) (4)

= 2n(m− 1)− 2
∑

(u,v)∈ER

∑
i

1Ti(u, v) (5)

= 2(n(m− 1)−
∑

(u,v)∈ER

`(u, v)) (6)

= 2[n(m− 1)− `(R)]. (7)
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(Main Text) Proposition 1. Given a clustering σ : [n] → [k], the MCT problem decomposes into k independent
SCT problems.

Proof. Consider a clustering σ. Let Ts be the set {Ti ∈ T | σ(i) = s} of input trees assigned to cluster s. Let
R = {R1, . . . , Rk} be optimal solutions to the k SCT instances {T1, . . . , Tk} and let R′ = {R′1, . . . , R′k} be an
optimal solution to the MCT instance T constrained to clustering σ. We claim that d(Ts, Rs) = d(Ts, R′s) for all
clusters s.

Suppose for a contradiction that there exists a cluster s where d(Ts, Rs) 6= d(Ts, R′s). If d(Ts, Rs) < d(Ts, R′s)
thenR′ is not an optimal set of consensus trees, yielding a contradiction. If d(Ts, Rs) > d(Ts, R′s) then Rs is not an
optimal consensus tree to Ts, which contradicts Theorem 1. Hence, d(Ts, Rs) = d(Ts, R′s) for all clusters s.

(Main Text) Proposition 2. The minimum total distance of an MCT instance (T , k) is monotonically decreasing
with increasing number k of clusters.

Proof. Let T = {T1, . . . , Tn} be a set of input trees. Consider k < n number of clusters. Let (R, σ) be the optimal
solution for MCT instance (T , k), with total distance d(T ,R, σ). Since k < n, there must exist a cluster s with
|Ts| > 1 trees. By definition, the input trees in Ts must be distinct from one another. Hence, there exists an input
tree Ti ∈ Ts that differs from the consensus tree Rs. Consider a new clustering σ′ where σ′(j) = σ(j) if j 6= i and
σ′(i) = k + 1. Thus, σ′ contains an additional cluster k + 1. Choosing the consensus tree Rk+1 of this cluster to
be equal to Ti results in a distance d(Ti, Rk+1) of 0. The distance of d(Ts \ {Ti}, Rs) similarly decreases as Ti is
distinct from Rs. Hence, d(T ,R, σ) > d(T ,R∪Rk+1, σ)

′.

A.1.2 Complexity

(Main Text) Lemma 4. The cost of a clustering σ : [n] → [k] that partitions T into parts of sizes n1, . . . , nk is at
least 2[(c− 1) · |E(H)| −

∑k
s=1

(
ns

2

)
]. This bound is tight if and only if the input trees Ts assigned to each cluster s

encode a clique in the undirected graph H .

Proof. Recall that each input tree Ti ∈ T corresponds to vertex vi of the undirected graph H . Let R1, . . . , Rk be
the corresponding optimal consensus trees of clustering σ.

Consider cluster s ∈ [k]. Let ns be the number of input trees assigned to cluster s. Consider the parent-
child graph GTs obtained from the input trees Ts assigned to cluster s. This graph must contain the directed edges
{(r,⊥), (r, v1), . . . , (r, vn)}, as these edges occur in each input tree Ti ∈ T . As such, these directed edges will have
weight `(r,⊥) = `(r, v1) = . . . = `(r, vn) = ns. Now consider the remaining vertices of the parent-child graph
GTs corresponding to edges {e1, . . . , em} of H . We distinguish three cases for each edge e = (vi, vj).

1. Trees Ti and Tj are assigned to cluster s.

Each of Ti and Tj contains the directed edge (⊥, e), as edge e = (vi, vj) is incident to both vi and vj . By
construction, each remaining tree Ti′ ∈ Ts \ {Ti, Tj} does not contain the directed edge (⊥, e) but instead
contains the directed edge (vi′ , e). Thus, the parent-child graph GTs of cluster s contains the directed edge
(⊥, e) with weight `(⊥, e) = 2, and directed edges (vi′ , e) with weight `(vi′ , e) = 1 for each tree Ti′ ∈
Ts \ {Ti, Tj}.

2. Only one of trees Ti and Tj is assigned to cluster s.

Without loss of generality assume that tree Ti is assigned to cluster s (and Tj is not assigned to cluster s).
By construction, tree Ti contains the directed edge (⊥, e) and each remaining tree Ti′ ∈ Ts \ {Ti} contains
the edge (vi′ , e). Thus, the parent-child graph GTs of cluster s contains the directed edge (⊥, e) with weight
`(⊥, e) = 1, and directed edges (vi′ , e) with weight `(vi′ , e) = 1 for each tree Ti′ ∈ Ts \ {Ti}.

3. Neither Ti nor Tj is assigned to cluster s.

By construction, each tree Ti′ ∈ Ts contains the directed edge (vi′ , e). Thus, the parent-child graph GTs of
cluster s contains the directed edge (vi′ , e) with weight `(vi′ , e) = 1 for each tree Ti′ ∈ Ts.
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Consider the consensus tree Rs = (U,A′s) for cluster s obtained from the optimal solution (R, σ). By Theo-
rem 1, Rs is a spanning tree of the parent-child graph of cluster s with maximum weight `(Rs). What is the largest
value that `(Rs) can attain? To answer this question, observe that vertices {⊥, v1, . . . , vn} each have a unique par-
ent r in the parent-child graph GTs , with a corresponding edge weight of ns. This amounts to a total weight of
ns(n + 1). Consider the remaining vertices {e1, . . . , e|E(H)|}. First, observe that there are no edges among these
vertices in the parent-child graph. Thus, including an edge in Rs to any one vertex in {e1, . . . , e|E(H)|} does not
affect any other vertex in the same set. In other words, the maximum weight spanning tree Rs will contain for each
e ∈ {e1, . . . , e|E(H)|} a directed edge to e with maximum weight. Now, the maximum weight of 2 for such an edge
is achieved when e = (vi, vj) is an edge that corresponds to input trees Ti and Tj that are assigned to cluster s. Let
Es be the subset of edges of H whose two incident vertices correspond to two input trees assigned to cluster s, i.e.
Es = {(vi, vj) ∈ E(H) | σ(i) = σ(j) = s}. As for the remaining edgesE(H)\Es, the maximum weight spanning
tree Rs will contain for each e ∈ E \ Es a directed edge to e with weight 1. Hence,

`(Rs) = ns(n+ 1) + 2|Es|+ |E \ Es| (8)

= ns(n+ 1) + 2|Es|+ (|E(H)| − |Es|) (9)

= ns(n+ 1) + |Es|+ |E(H)|. (10)

Clearly, |Es| ≤
(
ns

2

)
; this bound is tight if and only if the vertices of H corresponding to input trees Ts assigned to

cluster s form a clique . Thus,

`(Rs) ≤ ns(n+ 1) +

(
ns
2

)
+ |E(H)|. (11)

By Lemma 3, we have that the sum d(Ts, Rs) of the distances of Rs to each input tree Ti ∈ Ts equals 2[ns(1 + n+
|E(H)|)− `(Rs)]. Thus,

d(Ts, Rs) = 2[ns(1 + n+ |E(H)|)− `(Rs)] (12)

≥ 2[ns(1 + n+ |E(H)|)− (ns(n+ 1) +

(
ns
2

)
+ |E(H)|)] (13)

= 2[(ns − 1) · |E(H)| −
(
ns
2

)
] (14)

The cost of (R, σ) equals
∑k

s=1 d(Ts, Rs), which we can bound from below as follows.

k∑
s=1

d(Ts, Rs) ≥
k∑
s=1

2[(ns − 1) · |E(H)| −
(
ns
2

)
] (15)

= 2

[(
k∑
s=1

ns − k

)
· |E(H)| −

k∑
s=1

(
ns
2

)]
(16)

= 2

[
(n− k) · |E(H)| −

k∑
s=1

(
ns
2

)]
(17)

= 2

[
(c− 1) · |E(H)| −

k∑
s=1

(
ns
2

)]
(18)

The bound is tight if and only if |Es| =
(
ns

2

)
for every cluster s ∈ [k], which follows directly from Lemma 3 and

Equation (10).

(Main Text) Lemma 5. The cost of any clustering σ : [n]→ k of (T , k) is at least 2[(c− 1) · |E(H)| −
(
c
2

)
]. This

bound is tight if and only if σ contains k − 1 singleton clusters and one cluster with c trees that encode the vertices
of a clique in the undirected graph H .
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Proof. We prove the lemma by showing that any optimal minimum-cost clustering σ : [n] → [k] has cost at least
2[(c − 1) · |E(H)| −

(
c
2

)
]. Let T1, . . . , Tk be the sets of input trees that are assigned to the same cluster, i.e.

Ts = {Ti | σ(i) = s}. Let ns = |Ts|. By Lemma 4, the cost of (R, σ) is at least 2[(c− 1) · |E(H)| −
∑k

s=1

(
ns

2

)
].

k∑
s=1

d(Ts, Rs) ≥ 2[(c− 1) · |E(H)| −
k∑
s=1

(
ns
2

)
] (19)

= 2(c− 1) · |E(H)| −
k∑
s=1

ns(ns − 1) (20)

= 2(c− 1) · |E(H)| −
k∑
s=1

[(ns − 1)2 + (ns − 1)] (21)

= 2(c− 1) · |E(H)| −
k∑
s=1

(ns − 1)2 − [(
k∑
s=1

ns)− k] (22)

= 2(c− 1) · |E(H)| −
k∑
s=1

(ns − 1)2 − (n− k) (23)

Observing that (a1 + . . .+ at)
2 ≥ a21 + . . .+ a2t provided that ai ≥ 0 for all i ∈ [t], we obtain

k∑
s=1

d(Ts, Rs) ≥ 2(c− 1) · |E(H)| −

[
k∑
s=1

(ns − 1)

]2
− (n− k) (24)

= 2(c− 1) · |E(H)| − (n− k)2 − (n− k) (25)

= 2

[
(c− 1) · |E(H)| − (n− k)(n− k − 1)

2

]
(26)

Finally, plugging in k = n− c+ 1, we obtain

k∑
s=1

d(Ts, Rs) ≥ 2[(c− 1) · |E(H)| −
(
c

2

)
]. (27)

For this bound to be tight, we need Equations (19) and (24) to be tight. That is, we require
∑k

s=1 d(Ts) = 2[(c −
1) · |E(H)| −

∑k
s=1

(
ns

2

)
] and

∑k
s=1(ns − 1)2 = [

∑k
s=1(ns − 1)]2 to be satisfied simultaneously.

By Lemma 4, we know that the first equality is satisfied if and only if the input trees Ts assigned to each cluster
s encode a clique in the undirected graph H . As for the second equality, we observe the following: Provided that
ai ≥ 0 for all i ∈ [t], we have (a1 + . . .+ at)

2 = a21 + . . . a2t if and only if there exists at most one i ∈ [t] such that
ai > 0. Therefore, there is at most one s ∈ [k] such that ns−1 > 0. Without loss of generality, suppose n1−1 > 0.
Then n2 = . . . = nk = 1, and n1 = n − (n2 + . . . + nk) = n − (k − 1) = c. In other words, the clustering
σ contains k − 1 singleton clusters and one cluster of size c. Combining the two conditions together, we conclude
that this bound is tight if and only if σ contains k − 1 singleton clusters and one cluster with c trees that encode the
vertices of a clique in the undirected graph H .

(Main Text) Lemma 6. There is a clique of size c in the undirected graph H if and only if the corresponding MCT
instance (T , k) has an optimal solution with cost 2[(c− 1) · |E(H)| −

(
c
2

)
].

Proof. ⇒: By the premise, undirected graph H contains a clique of size c. Without loss of generality, let v1, . . . , vc
be distinct vertices that form a clique in H . Let (T , k) be the MCT instance corresponding to CLIQUE instance
(H, c). We construct a clustering σ : [n]→ [k] as follows.

σ(i) =

{
1, 1 ≤ i ≤ c,
i− c, c < i ≤ n.

(28)
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We apply Theorem 1, to obtain R = {R1, . . . , Rk} from T and σ. By Lemma 5, we have that the cost of (R, σ) is
2[(c− 1) · |E(H)| −

(
c
2

)
]. By the same lemma, we have that the cost of any feasible solution (R′, σ′) to the instance

(T , k) is at least 2[(c− 1) · |E(H)| −
(
c
2

)
]. Hence, (R, σ) is an optimal solution.

⇐: We prove the contrapositive: Given that there is no clique of size c in H , there is no optimal solution to
MCT instance (T , k) with cost 2[(c− 1) · |E(H)| −

(
c
2

)
]. This follows directly from Lemma 5. That is, the absence

of a clique of size c in H implies that there is no clustering σ with cost 2[(c− 1) · |E(H)| −
(
c
2

)
].

A.2 Methods

A.2.1 Mixed Integer Linear Program

We have the following MILP.

min n(m− 1)−
n∑
i=1

k∑
s=1

m∑
p=1

m∑
q=1

wi,s,p,q

s.t.
k∑
s=1

xi,s = 1 ∀i ∈ [n]

n∑
i=1

xi,s ≥ 1 ∀s ∈ [k]

m∑
p=1

zs,p = 1 ∀s ∈ [k]

m∑
q=1

ys,p,q = 1− zs,p ∀s ∈ [k], p ∈ [m]

ys,p,q ≤ bp,q ∀s ∈ [k], p, q ∈ [m]∑
(p,q)∈δ−(U)

ys,p,q +
∑
p∈U

zs,p ≥ 1 ∀s ∈ [k], U ⊆ [m]

wi,s,p,q ≤ ai,p,q ∀i ∈ [n], s ∈ [k], p, q ∈ [m]

wi,s,p,q ≤ xi,s ∀i ∈ [n], s ∈ [k], p, q ∈ [m]

wi,s,p,q ≤ ys,p,q ∀i ∈ [n], s ∈ [k], p, q ∈ [m]

wi,s,p,q ≥ 0 ∀i ∈ [n], s ∈ [k], p, q ∈ [m]

ys,p,q ≤
n∑
i=1

ai,p,qxi,s ∀s ∈ [k], p, q ∈ [m]

ys,p,q ≥
n∑
i=1

ai,p,qxi,s −
n∑
i=1

xi,s + 1 ∀s ∈ [k], p, q ∈ [m]

n∑
i=1

xi,s ≥
n∑
i=1

xi,s+1 + 1 ∀s ∈ [k − 1]

xi,s ∈ {0, 1} ∀i ∈ [n], s ∈ [k]

ys,p,q ≥ 0 ∀s ∈ [k], p, q ∈ [m]

zs,p ≥ 0 ∀s ∈ [k], p ∈ [m]

A.3 Supplementary Results

We have the following supplementary figures and tables.
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Table S1: Characteristics of simulated instances. The table shows the number of simulated instances for varying
combinations of numbers of mutation clusters and bulk samples. The mean number of trees for each combination is
shown in brackets.

#bulk #mutation clusters totalsamples m = 9 m = 11 m = 13
5 9 [30] 8 [38] 10 [138] 27 [72]
10 8 [10] 4 [9] 6 [10] 18 [9]

total 17 [20] 12 [28] 16 [89] 45 [47]

Table S2: Number of instances solved to optimality. For each set of instances (small, medium or large) and
number k ∈ {1, . . . , 5} of clusters, the table shows the number of instances solved to optimality by the mixed integer
linear program (MILP 1 h) and the brute force algorithm (BF 1 h), each restricted to a running time of 1 hour. The
instances that were solved to optimality by MILP include all instances solved to optimality by BF. In addition, the
table shows the number of instances for which the coordinate ascent algorithm identified the same optimal solutions
as the MILP using a time limit of 1 hour (CA 1 h) or restricted to 100 restarts (CA 100 r.).

#clusters k MILP (1 h) BF (1 h) CA (1 h) CA (100 r.)

sm
al

l(
16

) 2 16 16 16 16
3 16 16 16 16
4 16 16 16 16
5 16 14 16 16

m
ed

iu
m

(1
5) 2 15 13 15 15

3 13 7 13 13
4 12 0 12 12
5 10 0 10 10

la
rg

e
(1

4) 2 3 0 3 3
3 0 0 0 0
4 0 0 0 0
5 0 0 0 0

• Table S1: Characteristics of simulated instances.

• Table S2: Number of instances solved to optimality.

• Fig. S1: The optimality gap of MILP increases with increasing number n of input trees and number k of
clusters.

• Fig. S2: Set T of input trees in a simulated instance with n = |T | = 9 trees.

• Fig. S3: The identified number k of clusters increases with increasing number n of input trees.

• Fig. S4: Set T of input trees in lung cancer patient CRUK0013 with n = |T | = 8 trees.

• Fig. S5: Set T of input trees in lung cancer patient CRUK0037 with n = |T | = 17 trees.
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Figure S1: The optimality gap of MILP increases with increasing number n of input trees and number k of
clusters. LB indicates lower bound of MILP, corresponding to a feasible (integral) solution, whereas UB indicates
the upper bound which is the objective value of the linear programming relaxation. The optimality gap is defined as
(UB-LB)/LB. Thus, an optimality gap of 0 indicates an optimal solution (i.e. LB=UB). All small instances (a) were
solved to optimality, as opposed to medium (b) and large (c) instances.
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Figure S2: Set T of input trees in a simulated instance with n = |T | = 9 trees.
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Figure S3: The identified number k of clusters increases with increasing number n of input trees. The number
of simulated instances with k selected by BIC, colors indicate the size of the solution space. See Main Text Fig. 3a
for the distribution of number of input trees for each category.
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Figure S4: Set T of input trees in lung cancer patient CRUK0013 with n = |T | = 8 trees.
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Figure S5: Set T of input trees in lung cancer patient CRUK0037 with n = |T | = 17 trees.
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