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A Appendices

A.1 AuROC and AuPRC for identifying TAL motif

Similar to Fig. 4, the auROC and auPRC curves for identifying the TAL motif using importance scores are shown in fig A.1.

Fig. A.1: GkmExplain outperforms ISM at identifying TAL1 motifs. Analogous to Fig. 4, but using 16bp windows (the length of the TAL1_known1
motif) rather than 10bp windows.
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A.2 Connection to Integrated Gradients

This section elucidates the theoretical connections between the formulas in Sec. 5.1 and the method of Integrated Gradients [16].
For any output function F (X), where X is a vector in Rn, and a path function π : [0, 1] → Rn, the Path Integrated Gradients [16] importance on

the ith feature Xi is defined as:

PathIntegratedGradientsπi ::=

∫ β=1

β=0

∂F (π(β))

∂πi(β)

dπi(β)

dβ
dβ (18)

Applying this definition to the objective function for SVMs in Eqn. 1 we get:

SVM_PIGπi ::=

∫ β=1

β=0

m∑
j=1

αjy
j ∂K(Zj , π(β))

∂πi(β)

dπi(β)

dβ
dβ (19)

The primary hurdle when applying Integrated Gradients to support vector machine string kernels is that the formula for Integrated Gradients requires
the kernel function K to be differentiable. Because DNA sequence is discrete, most string kernels are not differentiable. To circumvent this issue, we
introduce vector of variables ηSx where each element ηSx

i can be interpreted as the “intensity” of the base at position i of sequence Sx. Let Six denote
the identity of base i in sequence Sx, let l be the length of the l-mers, and let 1{Six = Sjx} be an indicator function that takes the value of 1 if Six = Sjx
and 0 otherwise. We rewrite the wgkm kernel between an input sequence Sx and a support vector sequence Sz as a function of ηSx as follows:

K
(Sx,Sz)
wgkm (ηSx ) =

∑
i

∑
j

wiwjh(fm(uSx
i , uSz

j ))∥∥∥fSx
wgkm

∥∥∥∥∥∥fSz
wgkm

∥∥∥
l−1∑
k=0

ηSx
i+k1{Si+kx = Sj+kz }

l − fm(uSx
i , uSz

j )

 (20)

When ηSx
i = 1 for all i, K(Sx,Sz)

wgkm (ηSx ) is equal to Kwgkm(Sx, Sz).

Recall that wiwjh(fm(uSx
i , uSz

j )) is the contribution of the l-mer pair (uSx
i , uSz

j ) to 〈fSx
wgkm, f

Sz
wgkm〉. In the expression above,

wiwjh(fm(uSx
i , uSz

j )) is scaled according to the total intensity of all the l − fm(uSx
i , uSz

j ) matching bases between uSx
i and uSz

j .

Let len(Sx) be a function that returns the length of the sequence Sx. Because Eqn. 20 is differentiable, we can compute the partial derivative
∂K

(Sx,Sz)
wgkm (ηSx )

∂η
Sx
i

as:

∂K
(Sx,Sz)
wgkm (ηSx )

∂ηSx
i

=

min(i,len(Sx)−l)∑
j=max(i−(l−1),0)

∑
k

(
wkwjh(fm(uSx

j , uSz
k ))

‖fSx‖‖fSz‖
1{Six = S

k+(i−j)
z }

l − fm(uSx
j , uSz

k )

)
(21)

Intuitively, the expression looks at each l-mer uSx
j in Sx that overlaps position i, compares it to every l-mer uSz

k in Sz , and increments the gradient

proportionally to wiwjh(fm(uSx
j , uSz

k )) only if the base at position (i− j) in uSx
j is a match to the corresponding base in uSz

k . Note that the number
of l-mers in sequence Sx is (len(Sx)− (l − 1))

Rewriting the formula for Path Integrated Gradients in Eqn. 19 using the differentiable reparameterization in Eqn. 20, we get:

wgkm_SVM_PIG(π,Sx)
i ::=

∫ β=1

β=0

m∑
j=1

αjy
j
∂K

(S
zj
,Sx)

wgkm (π(β))

∂πi(β)

dπi(β)

dβ
dβ (22)

If we now consider the path πi(β) = β (i.e. if we linearly scale the intensities ηSx
i uniformly between 0 and 1), we would have dπi(β)

dβ
= 1. This

choice of path is the standard “Integrated Gradients” path. Because the partial derivative in Eqn. 21 is constant with respect to ηSx
i , simplifying the

expression above results in the formula for the importance of individual bases in a wkgm SVM that was presented earlier in Eqn. 11, reproduced below
for convenience:

wgkm_SVM_IGSx
i = φ

wgkmsvm
i,Sx

=

m∑
j=1

αjy
jφ

wgkm
i,Sx,Szj

(23)

Where Szj , αj and yj are, respectively, the sequence, weight and label of support vector j.
For the case of the wgkmrbf kernel (Eqn. 7), we once again reparameterize the kernel in terms of ηSx

i as follows:

K
(Sx,Sz)
wgkmrbf (ηSx ) = exp

(
γ(K

(Sx,Sz)
wgkm (ηSx )− 1)

)
(24)

By the chain rule, we get:

∂K
(Sx,Sz)
wgkmrbf (ηSx )

∂ηSx
i

= γ
∂K

(Sx,Sz)
wgkm (ηSx )

∂ηSx
i

exp
(
γ(K

(Sx,Sz)
wgkm (ηSx )− 1)

)
(25)

As before, we consider the path πi(β) = β (i.e. we linearly scale the intensities ηSx
i uniformly between 0 and 1). From Eqn. 20, we note that

K
(Sx,Sz)
wgkm (ηSx ) is linear in the values of ηSx

i . Thus, we can write:
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wgkmrbf_SVM_IGSx
i =

∫ β=1

β=0

m∑
j=1

αjy
jγ
∂K

(Sx,Sz)
wgkm (ηSx )

∂πi(β)
exp
(
γβKwgkm(Sx, Sz)− γ

)
dβ

Recall that
∂K

(Sx,Sz)
wgkm (ηSx )

∂πi(β)
is constant with respect to πi(β). After performing the integral with respect to β, we obtain Eqn. 13, reproduced below

for convenience:

wgkmrbf_SVM_IGSx
i = φ

wgkmrbfsvm
i,Sx

=

m∑
j=1

αjy
jφ

wgkmrbf
i,Sx

(26)
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A.3 Normalization of scores for TF-MoDISco

Empirically, we found that the following normalization of the importance scores produces improved results with TF-MoDISco. Let fh(Sx, i, B∗) be
a function that returns the hypothetical importance of base B∗ at position i in sequence Sx, and let Six be the original base at position i in sequence
Sx. To normalize the hypothetical importance scores at position i, we divide by the sum of all hypothetical scores at position i with the same sign as
fh(Sx, i, Six). The rationale is that if a different base at position i could produce a score of higher magnitude than Six, then Six is relatively less important.
Let 1{x > 0} be an indicator function that returns 1 if x is positive and 0 otherwise. Formally, the normalized hypothetical importance for base B∗ at
position i is defined as:

f̄h(Sx, i, B
∗) ::=

fh(Sx, i, B∗)fh(Sx, i, Six)∑
B′ fh(Sx, i, B′)1{(fh(Sx, i, B′)fh(Sx, i, Six)) > 0}

(27)

Similarly, we define the normalized importance score as the value of the normalized hypothetical importance score for the base that is actually present
in the original sequence:

f̄i(Sx, i) ::= f̄h(Sx, i, S
i
x) (28)

We find that the normalized importance scores appear to be less noisy relative to the unnormalized importance scores, as illustrated in Fig. A.2.

Fig. A.2: Normalization of GkmExplain importance scores for TF-MoDISco. A gkmrbf SVM was trained as described in Sec. 6.1. Shown are
unnormalized GkmExplain importance scores (top row), normalized hypothetical importance scores (Eqn. 27), and normalized importance scores (Eqn.
28) on a single sequence. The blue star indicates the location of an embedded GATA1 motif (GATAAG), and the red star indicates the location of an
embedded TAL1 motif (CAGATG). The normalized importance scores appear less noisy than the unnormalized importance scores.
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A.4 AuROC on dsQTL data

Performance in terms of auROC on the dsQTL dataset is shown in Fig. A.3. Although GkmExplain gives a weaker auROC than ISM in 4 out of 5
cases, the difference is not statistically significant by a Wilcoxon test (possibly owing to the small number of samples). We note that when negatives
greatly outnumber positives, auPRC is generally considered a more useful performance metric than auROC. We also note that GkmExplain consistently
outperforms deltaSVM.

Fig. A.3: AuROC for dsQTL identification. Analogous to Fig. 8, but showing auROC instead of auPRC. The GkmExplain and ISM methods consistently
outperform deltaSVM.
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A.5 Integrated Gradients for interpreting other non-linear SVMs

To explore the general applicability of Integrated Gradients (IG) to SVM interpretation beyond genomics, we used the MADELON dataset [1]. This
dataset has a training set of 2000 examples and a validation set of 600 examples, all with 500 features, of which 20 features are informative and the
remaining are “distractor" features with no predictive power. Because the Gaussian SVM had a strong tendency to overfit to the full dataset, we created
10 reduced feature sets, each with the same set of examples in the training and validation sets, but with 20 likely informative features (identified based
on the challenge submission results) and a different set of 20 distractor features in each set. Each of these 10 sets served as a distinct data point on which
to evaluate the accuracy of the importance scoring algorithm in question (Integrated Gradients or SHAP). Each feature in each set was normalized by
subtracting the average feature value and dividing by the standard deviation. We trained Gaussian kernel SVM on each of the datasets and achieved
approximately 0.8 accuracy on the validation set. These classifiers were then provided to the importance scoring algorithms.

When applying Integrated Gradients, we used a reference that was the average feature value of the negative labeled training points and approximated the
integration of the partial derivatives using 10 linearly-spaced intermediate points between each test point and the reference. With SHAP, we experimented
with 10 and 50 samples around the test points using the same reference as was used for IG. We judged the quality of each importance scoring algorithm
by feeding the top 10 most important features reported by the algorithm to a Gaussian kernel SVM and measuring the SVM’s accuracy on the validation
set. The results are shown in Figure A.4. Integrated Gradients is significantly faster than SHAP and tends to be more accurate than when SHAP is used
with a small number of perturbation samples. With a larger number of perturbation samples, SHAP is more accurate, though it is still slower. A notebook
demonstrating how to use Integrated Gradients on a non-genomic dataset is at:
https://colab.research.google.com/drive/1LUGMIwOHLKDdK3deg7IIZ71kb2Nu1qv2.

Fig. A.4: Comparison of Integrated Gradients with SHAP for Gaussian kernel SVM interpretation on the Madelon dataset. Dashed lines indicate
means. IG appears to be pareto optimal in the sense that it can provide more accurate results faster than compared to SHAP used with a small number of
perturbation samples.
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