
“output” — 2019/3/22 — page 10 — #10

10 Sayyari et al.

Supplemental Materials: Phylogeny-aware data augmentation for enhancing machine learning
applied to microbiome data

A Supplementary Lemmas and proofs
A.1 Main Lemmas

Lemma S1. Consider the phylogeny T on the OTU set S. For each internal node u of T , let Cu be random variable giving the number of observed
sequences contained under the node u and let cu be the observed value of Cu for one sample. Assume C

l(u) ⇠ Bin(pu, Cu) where where l(u) is the
left child of u and let Cr(u) = C

u � C
l(u) where r(u) is the right child of u. The joint maximum likelihood estimate of all pu values is given by

(p̂1, . . . , p̂u, . . . , p̂n�1) = (
c
l(1)

c1
, . . . ,

c
l(u)

cu
, . . .

c
l(n�1)

cn�1
) . (1)

Proof. Consider a sample with the count vector X = (x1, x2, . . . , xn) at the leaves of the tree. Recall the root is indexed 1 and thus
P

n

i=1 xi = c
1.

Let pathu
v indicate the path from the leaf node v to the node u. The likelihood of observing the count vector x = (x1, x2, . . . , xn) given the phylogeny

T , and the conditional probability vector p = (p1, . . . pu, . . . , pn�1) equals

L(X = (x1, x2 . . . , xn);P = {(p1, . . . , pu . . . , pn�1, pn, . . . , pu+n�1, . . . , p2n�2, T ) = �(X, c
1)

nY

i=1

(
Y

k2pathroot
i

pk)
xi

where pn+e�1 = 1� pe, and �(X, c
1) is a normalization function that doesn’t depend on the conditional probability vector p. Consider the left child

of the root, l(1), and recall the probability of sequences falling below it is p1. All the root-to-leaf paths descending from l(1) have the branch connecting
the root to l(1); thus, for these, the probability p1 is multiplied each time. A similar argument works for the right child of the root with the probability
1� p1. So the likelihood could be written as

L(X;P, T ) =�(X, c
1)[

nY

i=1

(
Y

k2path
lr(1,i)
i

pk)
xi ].(p1)

(
P

i2a(l(1)) xi)
.(1� p1)

(
P

i2a(r(1)) xi) =

L(x;P, T l).L(x;P, T r).(p1)
c
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.(1� p1)
c
1�c

l(1)

where lr(1, i) = l(1) for leaves under the left child of 1 and lr(1, i) = r(1) for leaves under the right child of 1, a(u) is the set of leaves under the node
u, and Pl and Pr indicate the left and right subtrees of the root. This means we could compute the L(x;P, T ) as the product of the likelihood of the
left subtree, the likelihood of the right subtree of the root, and the probability of observing a total of cl(1) counts for the T l.

Note that p1 (same is true for 1 � p1) does not contribute to the likelihood of T l or T r and, hence, to find p1 we could consider
L(x;P, T r).L(x;P, T l) as a constant and ignore. Instead of maximizing the (p1)c

l(1)
.(1� p1)c

1�c
l(1)

, we could maximize log of this function

f(cl(1), c1; p1) = c
l(1) log(p1) + (c1 � c

l(1)) log(1� p1)

and, hence

p̂1 =
c
l(1)

c1
.

This gives us p̂1 for the edges descending from the root. We can use the same argument recursively and compute other probabilities as

p̂u =
c
l(u)

cu
.
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Lemma S2. Consider the phylogeny T on the OTU set S and samples s1, . . . , sw . Let the total number of sequences in each sample be C =

{c11, c12 . . . , c1w}. Assume that the probability of observing a sequence from a species under the left subtree of the node u follows a beta distribution
p
l
u ⇠ Beta(µu, ⌫u) where ⌫u is a fixed parameter which depends only on the phylogeny, T , and is therefore given, and µu 2 M is a parameter

shared between all samples. Assume that the number of observed sequences contained under the left subtree of u given p
l
u follows a binomial distribution

C
l(u) ⇠ Bin(plu, c

u). Then, the method of moments estimate for µu is
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P
w
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l(u)
jP

w
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u
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(2)

where l(u) is the left subtree of u, and c
u

j
is the number of observed sequences contained under u in the sample sj .

Proof. Consider the new random variable
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A.2 Using a Beta-Binomial distribution with two parameters

Following lemma S2, instead of using a ⌫u which only depends on the phylogeny T , we could use a model where (µu, ⌫u) both depend only on
class/cluster label y. In this model for each internal node u of the phylogeny, the probability of observing a species on the left subtree of u follows a beta
distribution, (i.e. plu ⇠ Beta(µu, ⌫u)), and the number of observed sequences contained under the left subtree of node u follows a binomial distribution
(i.e. Cl(u) ⇠ Bin(pu, cu), where c

u is the total number of sequences under the node u). In this section, for the ease of calculation, we use the other
formulation of the beta distribution, i.e. plu ⇠ Beta(↵u,�u), where µu = ↵u

↵u+�u
, and the relationship between ⌫u, µu, and the variance of the beta

distribution is given in Section 2.2.1; and hence these notations are interchangeable. Now, using method of moments, we could estimate ↵u and �u from
the class-y samples as follow
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where Mu and Qu are the first and second moments of the observed sequences contained under the left child of the node u in T . In a special case where
the total number of observed sequences contained under the node u are all the same (i.e. cu = c

u

1 = c
u

2 = . . . = c
u
w), the distribution becomes the

beta-binomial distribution, cu = c
(1)
u , and (cu)2 = c

(2)
u . In this case, the ↵
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(MOM) equal (Tripathi et al., 1994)
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Proof. Consider the internal node u of the phylogeny T . Based on our model, Cl(u)
i

⇠ Bin(cu
i
, p

l
u), where p
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We will compute the expected value for the weighted average of random variables Cl(u)
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hence
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In order to evaluate the performance of these estimators, we used simulations, whereµ’s and counts (cu’s) are generated from known beta and binomial
distributions respectively (Figure S1). Figure S4 shows results of these estimators on the IBD dataset.
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Figure S1. The ↵ estimation error using the method of moments in simulations. 10,000 points are drawn from the hierarchical model and accuracy of the method of moments estimator
is shown. The x-axis shows the average number of reads, the y-axis shows the ratio between estimated and the real ↵ (top) and � (bottom). Each row corresponds to the true ↵ values and
each column corresponds to the true � values.
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B Supplementary Figures and Algorithms

Algorithm S1 Algorithm to compute the average tip-to-tip distances of tree. Length of each node is defined as the length of the edge above it.
1: procedure Average_tip_to_tip(T )
2: for u 2 postorder traversal of T do
3: if u is a leaf then
4: u.num = 1

5: u.avg = 0

6: u.sum = 0

7: else
8: v, w = left and right children of u
9: u.num = v.num + w.num
10: u.avg = (w.sum ⇥ v.num + v.sum ⇥ w.num)/(v.num ⇥w.num) +tv + tw

11: u.sum = v.sum + w.sum + tv ⇥ v.num + tw ⇥ w.num
12: return T
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Figure S2. In the clustering scenario, we first group samples using k-means clustering applied to the Bray-curtis distances between samples. We then generate new samples for each group
separately.
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Figure S3. Impact of the choice of k and q. On E1, we show results with different augmentation levels. Area Under Curve (AUC) is shown for both Neural Networks(NN) and Random
Forest (RF) classifiers and on both Gevers IBD dataset and AGP BMI dataset. Colors show k ⇥ q (set to 1, 5, 20, or 50). For SV, q = 1 in all cases. For TVSV, k = 1, except for the case
where k ⇥ q = 25, where, k = q = 5.

.
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Figure S4. Computing ⌫ from data versus fixing it using the phylogeny. Using the method of moments described in Section A.2, we estimate both µu and ⌫u from data (instead of
fixing ⌫u from phylogeny as in our main results). We call the resulting method TADA-TVSV*. Results on the E1 dataset indicate that computing ⌫u from variance of the data not only fails
to improve accuracy, but can even reduce it.


