
Supplement to

Evaluation of methods for generative modeling of cell

and nuclear shape

Xiongtao Ruan
Computational Biology Department, School of Computer Science

Carnegie Mellon University Pittsburgh, PA 15213

Robert F. Murphy
Computational Biology Department, School of Computer Science

Carnegie Mellon University Pittsburgh, PA 15213
murphy@cmu.edu

Supplementary methods

1 Simulation process of simulated cells

1.1 Detailed simulation process of SNL cells

The simulation process was:

• Sampling of cell body. First, we sample the cell body as the combination of two half
ellipses, using radial coordinates. The two half ellipses share the same semiminor axis
as b ∼ U(10, 20), and the two semimajor axis a1 and a2 also have distribution uniform
distribution U(10, 20). Then a Gaussian random noise with standard deviation 0.1 are added
into the coordinates. In the next step, we morph and smooth the cell body using spline
smoothing method. We randomly sample the proportion of points as control points with
distribution U(0.01, 0.20). After randomly choosing control points, we allow the points to
randomly move along it’s normal direction, and the step size follows U(1, 1.5) ∗N(0, 0.1),
which is the combination of uniform and Normal distribution. Then the moved control
points are used for spline smoothing. At last, we add some Gaussian noises to the shape
with standard deviation 0.05.

• Sampling of Neurites. The neurite number N can be either fixed or randomly sampled
following a truncated Poisson distribution with λ = 1 for a given range of allowed neurite
number (0-2 for SNL 3D center slice). First we sample the total length of neurites following
U(20N, 25N). To assign proportions of length for the two neurites, we use a truncated
Dirichlet distribution Dirichlet(2, 1) and force the smaller proportion to be larger than 0.2.

• Sampling of branching. Then, we may decide whether a relatively long neurite, which
is longer than 5, could generate branches, with a probability 0.4. We assign the weight
of length using truncated Dirichlet distribution Dirichlet(1, 1, 1) with any weight should
be larger than 0.05. We assign the largest weight to the main part connecting cell body.
Then we sample the angles for the two branches with the major axis of the main part.
θ1 = 0 with probability 0.5, and θ1 ∼ U(−0.45π, 0.45π) with probability 0.5. If θ1 ≥ 0,
θ2 ∼ U(−0.225π, 0.45π); if θ1 < 0, θ2 ∼ U(−0.225π, 0.45π). In this case, we can ensure
the two branches are in the two sides of the major axis.



• Sampling of thickness of neurites. For each neurite, if there is no branching, the thickness T0

at the end point connecting the cell body is sampled with distribution U(2, 3), and the other
end point T1 is sampled as the maximum of U(0.4T0, T0) and T0 − 0.02L + U(0, 0.05),
where L is the length of the neurite. If there is branching, L0 ∼ U(2, 3), the thickness in the
branching point T2 ∼ max(U(0.4T0, T0), L0 − 0.02L1 + U(0, 0.05)). the thickness in the
two end points of the branches follows T3 ∼ max(U(0.4T2, T2), L0−0.02L2+U(0, 0.05))
and T4 ∼ U(0.4T2, T2), where L2 is the length of the first branch.

• Connecting neurites and cell body. We first put two neurites to angle 0 and π relative to
the cell body, then we allow some small perturbations of the angles with truncated normal
distribution N[−0.22,0.22](0, 0.125

2)∗2π. The truncated normal distribution here means that
only the random variable between −0.22 and 0.22 from the distribution will be accepted.
After this step, we connect the neurites and cell body by removing some points in the cell
body while connecting with the end points of neurites, so that it is a valid ordered array for
the outline.

• Post-processing. Lastly, We introduce random rotation and variation in size. The rotation
angle follows U(0, 2π), and the scale factor follows N(0.5, 0.52). We translate the coordi-
nates by [256.5, 256.5] and convert that to a binary image with size 512X512, so that the
shapes are centered.

1.2 Detailed simulation process for SNL (NR2) 3D datasets

The simulation process was:

• Sampling of central slice. A central slice is sampled from the SNL 2d simulator, as described
above. For SNL 3D dataset, the neurite number ranges randomly from 0-2. For SNL 3D
dataset, the neurite number is fixed as 2.

• Sampling of upper slices. Starting from the central slice, image erosion is applied to the
current slice, with a disk kernel with a random kernel size. The kernel size is randomly
sample between 1-3 with probabilities 0.45, 0.35, 0.2, for the first five slices, and between
2-5 with probabilities 0.3125, 0.2625, 0.2625, 0.1625, after the first five slices. The erosion
is stopped until the area of the current slice is equal or smaller than 500 pixels.

• Sampling of bottom slices. Similar as sampling for upper slices, starting from the central
slice, image erosion or dilation is applied to the current slice, with a disk kernel with a
random kernel size. The probability of erosion and dilation are 0.5 and 0.5. The kernel size
is randomly sample between 0 - 3 with probabilities 0.25, 0.45, 0.2, 0.1, for the first ten
slices, and between 0-4 with probabilities 0.25, 0.25, 0.2, 0.2, 0.2, after the first ten slices.
The erosion or dilation is stopped until the ratio of the area of the current slice to that of
the central slice is between 0.85 and 1.15. After that, the 3D image is stacked with bottom
slices, central slice and upper slices.

• Adding random noise. The positions of seeds are randomly sampled with probability 0.005
in the image. Then image dilation with sphere kernel with size 1 is applied to the seeds
to get the random noise image. The same process is repeated to get another random noise
image. Then the first noise image is added to the cell image, followed by the subtraction of
the second noise image. Then the cell image with noise is binarized by threshold of positive
values. Only the largest connected component is kept and holes are filled.

• Image cropping and resizing. The cell image is cropped to slice number 24 by keeping
middle 24 slices. Finally the image is resized to the size 256× 256× 24.

2 Deep networks

2.1 Structures of 2D networks

2.1.1 Definition of residual blocks

In the main paper we briefly described the network architecture without introduce residual network
blocks. Here we show the detailed structure for residual network blocks for both encoder and decoder
networks in following three tables.

2



Layer name Layer type Parent Layer Tensor size Miscellaneous

B1 Input None 2m× 2m× n0

B2 Conv2d B1 m×m× n downsample via subsampling 2× 2
B3 BatchNorm B2 m×m× n contains ReLu activation

B4 Conv2d B3 m×m× n
B5 BatchNorm B4 m×m× n contains by ReLu activation

B6 Conv2d B5 m×m× n
B7 Merge B6, B2 m×m× n sum the output of two layers

B8 Output B7 m×m× n
Residual block type 1 in the encoder network (EB1). Here B1-B8 represent layer names to distinguish
these layers here (not same as the implementations); Layer type uses names quit similar to those used
in TensorLayer. Input and Output are not actual layers, but just illustrate the start and end of the flow.
Parent Layer means the layer that the current layer connects. Tensor size represents the output size.
Here 2m× 2m are abstract input data size, n0 is the filter number of previous block and n is the filter
number for current block. Basically the block down sample the image size 2× 2, changes filter size
from n0 to n. Miscellaneous column shows some detailed explanations.

Layer name Layer type Parent Layer Tensor size Miscellaneous

B1 Input None (m+ 2h)× (m+ 2h)× n0

B2 Conv2d B1 m×m× n No downsampling and no padding.

B3 BatchNorm B2 m×m× n contains ReLu activation

B4 Conv2d B3 m×m× n
B5 BatchNorm B4 m×m× n contains by ReLu activation

B6 Conv2d B5 m×m× n
B7 Merge B6, B2 m×m× n sum the output of two layers

B8 Output B7 m×m× n
Residual block type 2 in the encoder network (EB2). The basic structure is similar as EB1, except
that there is no downsampling and no padding in B2 layer, in order to change the image size. Here
(m+ 2h)× (m+ 2h) are abstract input data size, where m is the output image size for the block,
2h is the size that is reduced in convolution, h = ⌈(k − 1)/2⌉, where k is the filter size. n0 is the
filter size of previous block and n is the filter number for current block. Miscellaneous column shows
some detailed explanations.

Layer name Layer type Parent Layer Tensor size Miscellaneous

B1 Input None m×m× n0

B2 Conv2d B1 m×m× n
B3 BatchNorm B2 m×m× n contains ReLu activation

B4 Conv2d B3 m×m× n
B5 BatchNorm B4 m×m× n contains by ReLu activation

B6 Conv2d B5 m×m× n
B7 Merge B6, B2 m×m× n sum the output of two layers

B8 UpSampling B7 2m× 2m× n upsample 2× 2
B9 Output B8 2m× 2m× n

Residual block in the decoder network (DB1). The table has almost the same interpretation as last
table for encoder network. There are some differences: for layer B2, there is no down sampling in the
convolutional layer, instead it has an additional layer after layer B7 for upsampling to change the
image size from m×m to 2m× 2m.

2.1.2 Network Structure for Valina autoencoders for CYTO, HPA CL, SNL datasets

These three datasets share the same network structures, which is defined as follows:

3



Block Input EB1 EB1 EB1 EB1 EB1 EB1 EB1 Flatten Fully Connected

Filter size - (3, 3, 2) (3, 3, 4) (3, 3, 8) (3, 3, 16) (3, 3, 32) (3, 3, 64) (3, 3, 128) l

Output size (512, 512, 1) (256, 256, 2) (128, 128, 4) (64, 64, 8) (32, 32, 16) (16, 16, 32) (8, 8, 64) (4, 4, 128) 2048 × 1 l × 1

Encoder network for CYTO, HPA CL and SNL datasets for Valina autoencoders. l is the desired
latent dimension. The input image size is 512× 512. For the size of filters, the first two numbers are
the width and height of the filter and the third one is for the filter number. The output size has the
same format, that is, the numbers are width, height and number of channels. The layers/blocks are
ordered from left to right in the network (below the same).

Using the output of encoder network as input, the decoder network is defined as:

Block Input Fully Connected Reshape DB1 DB1 DB1 DB1 DB1 DB1 DB1 Conv2d

Filter size - 2048 - (3, 3, 128) (3, 3, 64) (3, 3, 32) (3, 3, 16) (3, 3, 8) (3, 3, 4) (3, 3, 2) (3, 3, 1)

Output size l × 1 2048 × 1 (4, 4, 128) (4, 4, 128) (8, 8, 64) (16, 16, 32) (32, 32, 16) (64, 64, 8) (128, 128, 4) (256, 256, 2) (512, 512, 1)

Decoder network for CYTO, HPA CL and SNL datasets for Valina autoencoders. l is the desired
latent dimension.

2.1.3 Network Structure for Valina autoencoders for H1299 datasets

Similar as above, the encoder and decoder networks are defined as:

Block Input EB1 EB1 EB1 EB1 EB1 EB2 Flatten Fully Connected

Filter size - (3, 3, 16) (3, 3, 32) (3, 3, 64) (3, 3, 128) (3, 3, 256) (3, 3, 512) l

Output size (80, 80, 1) (40, 40, 16) (20, 20, 32) (10, 10, 64) (5, 5, 128) (3, 3, 256) (1, 1, 512) 512 × 1 l × 1

Encoder network for H1299 dataset for Valina autoencoders. l is the desired latent dimension. The
input image size is 80× 80. For the size of filters, the first two numbers are the width and height of
the filter and the third one is for the filter number. The output size has the same format, that is, the
numbers are width, height and number of channels.

Block Input Fully Connected Reshape DB1 DB1 PadLayer DB1 DB1 DB1 DB1 Conv2d

Filter size - 512 - (3, 3, 128) (3, 3, 64) (3, 3, 32) (3, 3, 16) (3, 3, 8) (3, 3, 4) (3, 3, 2) (3, 3, 1)

Output size l × 1 512 × 1 (1, 1, 512) (2, 2, 512) (4, 4, 256) (5, 5, 256) (10, 10, 128) (20, 20, 64) (40, 40, 32) (80, 80, 16) (80, 80, 1)

Decoder network for H1299 dataset for Valina autoencoders. l is the desired latent dimension.

2.1.4 Network Structure for Valina autoencoders for MCF7 datasets

Similar as above, the encoder and decoder networks are defined as:

Block Input EB1 EB1 EB1 EB1 EB1 EB1 EB2 Flatten Fully Connected

Filter size - (3, 3, 4) (3, 3, 8) (3, 3, 16) (3, 3, 32) (3, 3, 64) (3, 3, 128) (3, 3, 512) l

Output size (160, 160, 1) (80, 80, 4) (40, 40, 8) (20, 20, 16) (10, 10, 32) (5, 5, 64) (3, 3, 128) (1, 1, 512) 512 × 1 l × 1

Encoder network for MCF7 dataset for Valina autoencoders. l is the desired latent dimension. The
input image size is 160× 160. For the size of filters, the first two numbers are the width and height
of the filter and the third one is for the filter number. The output size has the same format, that is, the
numbers are width, height and number of channels.

Block Input
Fully

Connected
Reshape DB1 DB1 PadLayer DB1 DB1 DB1 DB1 DB1 Conv2d

Filter size - 512 - (3, 3, 512) (3, 3, 128) (3, 3, 64) (3, 3, 32) (3, 3, 16) (3, 3, 8) (3, 3, 4) (3, 3, 2) (3, 3, 1)

Output size l × 1 512 × 1 (1, 1, 512) (2, 2, 512) (4, 4, 128) (5, 5, 128) (10, 10, 64) (20, 20, 32) (40, 40, 16) (80, 80, 8) (160, 160, 4) (160, 160, 1)

Decoder network for MCF7 dataset for Valina autoencoders. l is the desired latent dimension.

4



2.2 Structures of 3D networks

2.2.1 Definition of residual blocks

In the main paper we briefly described the network architecture without introduce residual network
blocks. Here we show the detailed structure for residual network blocks for both encoder and decoder
networks in the following three tables.

Layer name Layer type Parent Layer Tensor size Miscellaneous

B1 Input None am× am× bt× n0

B2 Conv3d B1 m×m× t× n subsampling with size (a, a, b).

B3 BatchNorm B2 m×m× t× n contains ReLu activation

B4 Conv3d B3 m×m× t× n
B5 BatchNorm B4 m×m× t× n contains by ReLu activation

B6 Conv3d B5 m×m× t× n
B7 Merge B6, B2 m×m× t× n sum the output of two layers

B8 Output B7 m×m× t× n
Residual block in the 3D encoder network (EB3D). Here B1-B8 represent layer names to distinguish
these layers here (not same as the implementations); Layer type uses names quit similar to those used
in TensorLayer. Input and Output are not actual layers, but just illustrate the start and end of the flow.
Parent Layer means the layer that the current layer connects. Tensor size represents the output size.
Here am× am× bt are abstract input data size, n0 is the filter number of previous block and n is the
filter number for current block. Basically the block downsamples the image size a× a× b, changes
filter size from n0 to n. Miscellaneous column shows some detailed explanations.

Layer name Layer type Parent Layer Tensor size Miscellaneous

B1 Input None m×m× t× n0

B2 Conv3d B1 m×m× t× n
B3 BatchNorm B2 m×m× t× n contains ReLu activation

B4 Conv3d B3 m×m× t× n
B5 BatchNorm B4 m×m× t× n contains by ReLu activation

B6 Conv3d B5 m×m× t× n
B7 Merge B6, B2 m×m× n sum the output of two layers

B8 UpSampling B7 am× am× bt× n upsample a× a× b
B9 Output B8 am× am× bt× n

Residual block in the 3D decoder network (DB3D). The table has almost the same interpretation as
last table for encoder network. There are some differences: for layer B2, there is no down sampling
in the convolutional layer, instead it has an additional layer after layer B7 for upsampling to change
the image size from m×m× t to am× am× bt.

2.2.2 Network Structure for Valina autoencoders for HeLa, SNL 3D and SNL NR2 3D
datasets

These three datasets share the same network structure, which is defined as follows:

Block Input EB3D EB3D EB3D EB3D EB3D EB3D EB3D Flatten Fully Connected

Filter size - (3, 3, 3, 2) (3, 3, 3, 4) (3, 3, 3, 8) (3, 3, 3, 16) (3, 3, 3, 32) (3, 3, 3, 64) (3, 3, 3, 128) l

(a, b) - (2, 2) (2, 2) (2, 2) (2, 1) (2, 1) (2, 1) (2, 1)

Output size (256, 256, 24, 1) (128, 128, 12, 4) (64, 64, 6, 8) (32, 32, 3, 16) (16, 16, 3, 32) (8, 8, 3, 64) (4, 4„ 3, 64) (2, 2, 3, 128) 1536 × 1 l × 1

Encoder network for 3D datasets for Valina autoencoders. l is the desired latent dimension. The input
image size is 512 × 512. For the size of filters, the first two numbers are the width and height of
the filter and the third one is for the filter number. The output size has the same format, that is, the
numbers are width, height and number of channels.

Using the output of encoder network as input, the decoder network is defined as:

5



Block Input
Fully

Connected
Reshape DB3D DB3D DB3D DB3D DB3D DB3D DB3D Conv3d

Filter size - 2048 - (3, 3, 3, 128) (3, 3, 3, 64) (3, 3, 3, 32) (3, 3, 3, 16) (3, 3, 3, 8) (3, 3, 3, 4) (3, 3, 3, 2) (3, 3, 3, 1)

(a, b) (2, 1) (2, 1) (2, 1) (2, 1) (2, 2) (2, 2) (2, 2)

Output

size
l × 1 1536 × 1 (2, 2, 3, 128) (4, 4, 3, 128) (8, 8, 3, 64) (16, 16, 3, 32) (32, 32, 6, 16) (64, 64, 6, 8) (128, 128, 12, 4) (256, 256, 24, 2) (256, 256, 24, 1)

Decoder network for 3D datasets for Valina autoencoders. l is the desired latent dimension.

2.3 Network structure for variational autoencoders

The basic network structures for encoders and decoders for variational autoencoders are mostly the
same as those for the corresponding Valina autoencoders, except that there are two fully-connected
layers to get the output for mean and log of standard deviations, which is the "reparameteriza-
tion trick" in variational autoencoders [3]. The input for the decoder is the sampled input with
"reparameterization trick".

2.4 Network structure for outline autoencoder

The basic structure is a multiple stacks of basic blocks consisting of fully-connected layer, batch
normalization layer and ReLu activation layer. The encoder and decoder have four such blocks
respectively. The number of filters in the blocks are 2,000, 1,000, 500, 300, respectively for the
encoder and in a reversed older for the decoder. In encoder, the input outlines (spharm descriptor)
are reshaped as vectors as input for the blocks. The output of the last bock is used as the input for
a fully-connected layer to generate the encoded information with given latent dimension. For the
decoder, the encoded information is used as input as the blocks and the output from the last block
is the input for a fully-connected layer, whose outputs are reshaped to the same shape as the input
outlines.

2.5 Parameter setting in the training

Deep autoencoders and variational autoencoders share almost the same hyperparameter setting. The
optimizer for deep autoencoders, variational autoencoders and outline autoencoder is adam optimizer
[2]. Xavier initializer is applied [1]. The batch size is 100 for autoencoders in 2.1.2, 2.1.3, 2.1.4,
2.3(2D), 2.4 and 10 for that in 2.2.2, 2.3(3D). The number of epoches is 1,000 for autoencoder in
2.1.2, 800 for autoencoders in 2.1.3 and 2.1.4, 5,00 for autoencoder in 2.2.2 and 2.4. A step learning
rate scheduler is used for the training. Basically the learning rate is around 1e-3 to 5e-4 in the
beginning, and reduces to half around 100-150 epoches before stopping, and finally reduces to around
1e-5 around 50 epoches before stopping. The details are shown in the corresponding scripts in the
package.

References

[1] Xavier Glorot and Yoshua Bengio. Understanding the difficulty of training deep feedforward neural networks. In Proceedings of the

thirteenth international conference on artificial intelligence and statistics, pages 249–256, 2010.

[2] Diederik P Kingma and Jimmy Ba. Adam: A method for stochastic optimization. arXiv preprint arXiv:1412.6980, 2014.

[3] Diederik P Kingma and Max Welling. Auto-encoding variational bayes. arXiv preprint arXiv:1312.6114, 2013.

6



Figure S1: Examples images from the CYTO dataset. 100 randomly chosen cell images are shown.

7



A-431 A-549

CACO-2 HEK 293

HeLa Hep-G2

Figure S2: Example images from the HPA cell lines dataset. For each cell line, 100 randomly selected
cell images are shown. The name of a cell line is under the corresponding panel.

8



MCF-7 PC-3

U-251 MG U-2 OS

Figure S2 (Continued): Example images from the HPA cell lines dataset.

9



Figure S3: Example images from the H1299 dataset. 100 randomly chosen cell images are shown.

10



Figure S4: Example images from the SNL dataset. 100 randomly chosen cell images are shown.

11



Figure S5: Example images from the MCF7 dataset. 100 randomly chosen cell images are shown.

12



Figure S6: Illustration of representative reconstruction for CYTO dataset. Reconstructions after
modeling with different numbers of latent dimensions are shown for cells that have different quantiles
of reconstruction errors from PCA model with 100 latent dimensions. Pink color is for diffoemorphic
model (only in latent dimension 7), black is the ground truth, blue is for PCA, red is for SCA and
green is for autoencoder. The titles are for different latent dimensions and the labels in y-axis are
quantiles.

13



Figure S7: Illustration of representative reconstruction for H1299 dataset. Reconstructions after
modeling with different numbers of latent dimensions are shown for cells that have different quantiles
of reconstruction errors from PCA model with 100 latent dimensions. Black is the ground truth, blue
is for PCA, red is for SCA and green is for autoencoder. The titles are for different latent dimensions
and the labels in y-axis are quantiles.

14



Figure S8: Illustration of representative reconstruction for MCF7 2D dataset. Reconstructions after
modeling with different numbers of latent dimensions are shown for cells that have different quantiles
of reconstruction errors from PCA model with 100 latent dimensions. Black is the ground truth, blue
is for PCA, red is for SCA and green is for autoencoder. The titles are for different latent dimensions
and the labels in y-axis are quantiles.

15



Figure S9: Illustration of representative reconstruction for SNL 2D dataset. Reconstructions after
modeling with different numbers of latent dimensions are shown for cells that have different quantiles
of reconstruction errors from PCA model with 100 latent dimensions. Black is the ground truth, blue
is for PCA, red is for SCA and green is for autoencoder. The titles are for different latent dimensions
and the labels in y-axis are quantiles.

16



Figure S10: Illustration of SNL 3D parameterization. 5 cells were randomly selected, and the
parameterizations for different methods are illustrated with the same cell in the same row. Each face
is colored by the order of the z-axis of the its faces.

17



Figure S11: Illustration of SNL NR2 3D parameterization. 4 cells were randomly selected, and the
parameterizations for different methods are illustrated with the same cell in the same row. Each face
is colored by the order of the z-axis of the its faces.

18



Figure S12: Comparison of convergence process between SPHARM-PDM and SPHARM-RPDM.
The parameterization processes for 4 randomly chosen cells are shown. L and L∗ are the loss function
and the optimal loss (defined as the last iteration when converged), respectively.

19



Figure S13: Illustration of Hela 3D reconstruction using a Valina autoencoder. The cells were chosen
based on the quantile of reconstruction errors in 300 latent dimensions as listed on the left side. The
reconstruction with different numbers of latent dimensions are shown with same cell in the same row,
along with the ground truth.

20



Figure S14: Illustration of SNL 3D reconstruction for SPHARM-SPDM method. The cells were
chosen based on the quantile of reconstruction errors in 300 latent dimensions as listed in the left
side. The reconstruction of different numbers of latent dimensions are shown with same cell in the
same row, along with the ground truth.

21



Figure S15: Illustration of SNL 3D reconstruction for Valina autoencoder. The cells were chosen
based on the quantile of reconstruction errors in 300 latent dimensions as listed in the left side. The
reconstruction of different latent dimensions are shown with same cell in the same row, along with
the ground truth.

22



Figure S16: Illustration of SNL NR2 3D reconstruction by the SPHARM-RPDM method. The cells
were chosen based on the quantile of reconstruction errors in 300 latent dimensions as listed on the
left side. The reconstruction of different latent dimensions are shown with same cell in the same row,
along with the ground truth.

23



Figure S17: Illustration of SNL NR2 3D reconstruction for Valina autoencoder. The cells were
chosen based on the quantile of reconstruction errors in 300 latent dimensions as listed on the left
side. The reconstruction of different latent dimensions are shown with same cell in the same row,
along with the ground truth.

24



Figure S18: Illustrations of shape evolutions for HeLa dataset. Four pairs of cells were randomly
selected. The source, target and intermediate shapes in the linear path between the chosen cells are
shown, with the title showing the relative distance to the source.

25



Figure S19: Illustrations of shape evolutions for SNL NR2 3D dataset. Four pairs of cells were
randomly selected. The source, target and intermediate shapes in the linear path between them are
shown, with the title showing the relative distance to the source.

26



Figure S20: Illustration of joint modeling of 3D HeLa cell and nuclear shapes using different methods.
We chose a cell in the 1.0 quantile of the joint reconstruction errors (worst reconstruction) for
SPHARM-RPDM joint models with 200 latent dimensions. This cell is shown across different
methods and different numbers of latent dimensions, which are indicated in the title and y-axis,
respectively.

27



PCA SCA
Diffeo-
morphic

AE SRAE VAE OAE

7

CYTO 0.174 0.249 0.744 0.157 0.684 0.159 0.170
HPA CL 0.164 0.240 0.436 0.152 0.309 0.157 0.161
H1299 0.097 0.118 – 0.055 0.092 0.184 0.143
MCF7 0.180 0.535 – 0.136 0.447 0.139 0.176
SNL 0.204 0.237 – 0.165 0.714 0.166 0.094

100

CYTO 0.025 0.026 – 0.038 0.142 0.048 0.112
HPA CL 0.024 0.025 – 0.034 0.068 0.046 0.103
H1299 0.089 0.087 – 0.020 0.108 0.336 0.116
MCF7 0.042 0.030 – 0.037 0.082 0.067 0.118
SNL 0.029 0.043 – 0.025 0.075 0.049 0.068

Table S1: Pixel level reconstruction errors for 2D shapes for the four datasets. Due to its extremely
long computing time and inability to sample shapes in high dimensional space, we only show the
results for 7 dimensions for CYTO and HPA cell lines for diffeomorphic model. The computing times
shown here are CPU time for PCA and diffeomorphic models and GPU time for deep autoencoders.

28



Dim Datasets

PCA SCA AE SRAE

sep joint sep joint sep united joint sep joint

cell nuc cell nuc cell nuc cell nuc cell nuc cell nuc cell nuc cell nuc cell nuc

14

CYTO 26.2 6.02 22.1 11.2 31.7 9.40 31.2 10.1 34.5 5.86 27.1 8.10 31.6 8.30 66.5 5.86 52.0 59.6

HPA CL 24.2 5.70 20.4 10.4 29.6 8.81 29.1 9.46 30.2 5.61 24.2 7.71 27.3 7.87 55.9 5.61 38.6 26.8

H1299 1.22 1.19 1.12 1.58 1.56 1.83 1.56 1.80 1.62 9.24 1.35 1.41 1.46 1.41 1.89 9.24 1.74 2.06

MCF7 8.63 1.86 7.24 3.18 9.48 2.56 9.43 2.66 8.93 1.72 7.44 2.31 8.59 1.86 23.2 1.72 9.09 3.77

200

CYTO 4.20 0.655 2.49 1.56 4.41 0.678 2.65 1.60 10.5 1.80 8.09 2.85 9.86 2.05 34.0 1.80 16.9 11.4

HPA CL 3.76 0.646 2.24 1.49 3.95 0.668 2.37 1.53 8.84 1.76 6.98 2.77 8.15 2.01 15.9 1.76 14.5 6.82

H1299 0.219 0.118 0.170 0.218 0.288 0.110 0.190 0.240 0.626 14.9 0.950 1.08 3.58 4.60 1.78 14.9 2.13 2.30

MCF7 1.38 0.460 0.962 0.894 1.41 0.627 0.989 0.888 2.70 1.14 2.68 1.33 2.80 1.18 5.44 1.14 6.26 2.94

Table S2: Reconstruction errors of cell and nuclear errors in joint modeling. The table shows two
latent dimensions 14 and 200 for the four 2D datasets for four representative methods. ‘sep’, ‘joint’
and ‘united’ means separate models, joint models and united models for corresponding methods as
described in Methods.

29



Dim
SPHARM-RPDM AE SRAE
sep joint sep united joint sep joint

cell nuc cell nuc cell nuc cell nuc cell nuc cell nuc cell nuc

14 8.38 3.17 8.03 3.40 16.2 3.20 107 4.49 13.5 3.42 16.9 3.20 26.1 NaN
200 4.89 2.00 4.64 2.20 7.93 2.32 7.85 3.26 8.88 3.16 16.9 2.32 20.4 NaN

Table S3: Reconstruction errors of cell and nuclear errors in joint modeling. The table shows two
latent dimensions 14 and 200 for the four 2D datasets for four representative methods. ‘sep’, ‘joint’
and ‘united’ means separate models, joint models and united models for corresponding methods as
described in Methods.

30


