
10 cloudSPAdes

Supplementary Materials

1 Density and recall of a transition-set
The Cloud Permutation Problem and the Clouded Eulerian Path Problem
assume that the clouds are correct. However, for the MOCK5 dataset,
58, 187 out of 64, 448 putative clouds in the contracted assembly graph
graph are incorrect (76, 654 out of 77, 841 putative clouds are incorrect
for the YEAST dataset). Many incorrect putative clouds are triggered by
false transitions that do not represent consecutive edges of the genomic
cycle in the contracted assembly graph. Below we introduce the concepts
of the density and recall of a transition-set and describe four transition
elimination procedures aimed at reducing the number of false transitions.

Let CDB be a contracted assembly graph and T be a transition-set
on its edges. We refer to transitions between consecutive edges in the
genomic cycleCycle(Genome,CDB) as genomic transitions and refer
to the set of such transitions asTGenome. All edges in the setT \TGenome

represent false transitions (the number of false transitions may vary from
0 to |E(CDB)|2− |E(CDB)|), whereE(CDB) is the edge-set of the
graph CDB. We define the transition density parameter as:

density(CDB, T) =
(|T \ TGenome|)

(|E(CDB)|2 − |E(CDB)|)

The lower is the density, the more information a transition-set contains,
ranging from no information (density 1) to the correctly inferred transition-
set with density 0 that coincides with the transition-set of the genomic
cycle.

Some genome transitions may be missing from the contracted assembly
graph, making it impossible to reconstruct the genomic cycle. To analyze
the extent of missing transitions, we define the transition recall parameter
as:

recall(CDB, T) =
|T ∩ TGenome|
|TGenome|

Appendices 2 and 3 describe the containment and split indices that we
use for eliminating false transitions. Appendices 4 and 6 describe various
transition elimination procedures that greatly reduce the transition density
with minimal decrease of the transition recall.

2 Containment index
We refer to the set of barcodes marking an edge e in a graph as the barcode-
set of an edge and denote this set as b(e). Given edges e1 and e2 , we refer
to the set of barcodes marking both e1 and e2 as b(e1, e2). We score the
similarity between barcode-sets of two edges using the containment index
CI (Koslicki and Zabeti, 2017):

CI(e1, e2) =
|b(e1, e2)|

min(|b(e1)|, |b(e2)|)

The normalization by min(|b(e1)|, |b(e2)|) is important for
metagenomics datasets with highly uneven coverage. Our analysis
suggests that using min(|b(e1)|, |b(e2)|) for normalization makes sense
for pairs of long edges (even in case one of the long edges e1 and e2
corresponds to a repeat) but needs to be modified as follows in the case
one of two edges is short:

CI(e1, e2) =
|b(e1, e2)|

max(|b(e1)|, |b(e2)|)

Note that the normalization term in the case one of the edges is short
differs from the normalization term in the case when both edges are

long. We usemax(|b(e1)|, |b(e2)|) instead ofmin(|b(e1)|, |b(e2)|) for
normalization since a short edge often corresponds to a repeat that may
accumulate many barcodes that do not belong to the same segment of the
genome as the long edge.

We say that long edges e1 and e2 have similar barcode-sets if
CI(e1, e2) exceeds a thresholdCIlong . We say that a short edge e1 and a
long edge e2 have similar barcode-sets if CI(e1, e2) exceeds a threshold
CIshort. Appendix 5 describes how cloudSPAdes automatically sets the
thresholds CIlong and CIshort depending on the specifics of a dataset.

Analyzing the containment index.

We say that edges in the contracted assembly graph are close if they belong
to the same genomic cycle and the genomic distance between them does
not exceed a threshold Distance. The default value for Distance is
the inferred mean length of an SSLR fragment (see Appendix 16). Note
that close edges are not necessarily consecutive in the genomic cycle. We
say that two edges are distant if they are not close. Appendix 5 describes
how to infer a sample of close (distant) edges. We used the MOCK5 and
YEAST datasets to analyze the distribution of the containment index CI
for pairs of close and distant long edges (Figure 2.1). Since distant edges
typically share no (or very few) barcodes, the containment index CI is
typically low for distant edges and high for close edges.

3 Split index
A set of four consecutive edges (e1, e2, e3, e4) in a genomic cycle is
called a quartet if edges e1 and e2 have approximately the same length and
edges e3 and e4 have approximately the same length. Consider a quartet
(e1, e2, e3, e4) and four barcode-sets b(e1, e3), b(e1, e4), b(e2, e3), and
b(e2, e4). Since e2 and e3 are the only consecutive edges among edge-
pairs (e1, e3), (e1, e4), (e2, e3), and (e2, e4), we expect that the size of
the barcode-set b(e2, e3) exceeds the size of three other barcode-sets, We
thus compare the size of the barcode set b(e2, e3) with the maximal size of
three other barcode-sets max(|b(e1, e3)|, |b(e1, e4)|, |b(e2, e4)|) using
the split index SI:

SI(e1, e2, e3, e4) =
|b(e2, e3)|

max(|b(e1, e3)|, |b(e1, e4)|, |b(e2, e4)|)

We expect that the split index of a quartet significantly exceeds 1.
Since we do not expect to find many quartets in a genomic cycle, we

split each edge e into two halves denoted head(e) and tail(e). After this
split, every two consecutive edges e and e′ in a genomic cycle form a
quartet (head(e), tail(e), head(e′), tail(e′)) and we define SI(e, e′)
as SI(head(e), tail(e), head(e′), tail(e′)).

Analyzing the split index.

We say that edges in a genomic cycle are t-close if they are separated by
t other edges in this cycle (e.g., consecutive edges in a genomic cycle are
0-close).

We used the MOCK5 and YEAST datasets to analyze the distribution of
the split index SI for pairs of consecutive long edges and non-consecutive
t-close long edges (for 1 ≤ t ≤ 4). Figure 3.1 shows that split index SI
is typically low for non-consecutive edges and high for consecutive edges.

cloudSPAdes 11

Fig. 2.1: The containment index between two long edges for MOCK5 (top left), YEAST (top right) datasets in the case of distant (red) and
close edges (green). The containment index between a long and a short edge for MOCK5 (bottom left) and YEAST (bottom right) datasets. The
green histogram shows the probability that the containment index CI of two close edges does not exceed the given value. The red histogram shows the
probability that the containment index CI of two distant edges exceeds the given value.

4 Transition elimination

Eliminating transitions based on the containment index of
long edges.

Given consecutive edges e1 and e2 in a genomic cycle, we expect that their
barcode-sets are similar (at least in the case when the genomic distance
between these edges is small). We say that two edges in the contracted
assembly graph are linked if their containment index exceeds the threshold
CIlong and eliminate all transitions between non-linked edges. Although
this procedure filters out many false transitions, some non-consecutive
but close edges in the genomic cycle may share many barcodes, resulting
in a high containment index between these edges. Below we describe an
additional transition elimination procedure to filter out such pairs of edges.

Eliminating transitions based on the containment index of
short-length paths.

Using the containment index, one can check if edges e1 and e2 in the
contracted assembly CDB have similar barcode-sets. Note that short
edges in the genomic path between e1 and e2 in the assembly graph DB

are expected to have barcode-sets similar to barcode-sets of e1 and e2. We
now describe how to check whether the barcode set of a short-edge path
between e1 and e2 in the assembly graph has a similar barcode-set to both
e1 and e2. If such a path does not exist, edges e1 and e2 likely form a
false transition that needs to be eliminated.

Ideally, barcode(F) marks all edges in the assembly graph that are
traversed by a fragment F . In practice, since the coverage of fragments
by reads is low, short edges traversed by F are often not marked by
barcode(F). However, for each short edge e on a path between long
edges e1 and e2, some barcodes in b(e) typically also occur in b(e1)

and/or b(e2). We say that a short edge and a long edge in the assembly
graph are linked if the containment index between these edges exceeds
CIshort . We say that long edges e1 and e2 are linked by a short-edge
path if there is a short-edge path in the assembly graph from the start of
e1 to the end of e2 that:

• consists only of edges that are linked to both e1 and e2,
• for every edge e of the path, there are at least PE(e) paired-end reads

with the right read mapping to e and the left read mapping to the prefix

12 cloudSPAdes

Fig. 3.1: The split index between two long edges for MOCK5 (left) and YEAST (right) datasets in the case of non-consecutive (red) and consecutive
edges (green). The green histogram shows the probability that the split index SI of two consecutive edges does not exceed the given value. The red
histogram shows the probability that the split index SI of two non-consecutive t-close (1 ≤ t ≤ 4) edges exceeds the given value.

of the path that precedes e. The thresholdPE(e) is set by the threshold
selection procedure from the exSPAnder algorithm (Prjibelski et al.,
2014).

Note that exSPAnder stops the path extension procedure if there exist
multiple paths between long edges e1 and e2 that satisfy the condition
above. Since we do not aim to reconstruct the correct path between e1 and
e2 at this point, we just check if a path that satisfies the conditions above
exists. We eliminate all transitions that are not linked by short-edge paths.

Eliminating transition based on the split index.

Ideally, a unique edge e in the genomic cycle has a single transition to the
next edge in this cycle. However, other edges in the contracted assembly
graph might also be close to e, often triggering multiple transitions from
this edge.

Many non-consecutive long edges in a genomic cycle in the assembly
graph turn into incident edges in the contracted assembly graph. Such pairs
of incident edges in the contracted assembly graph form false transitions
that sometimes are not removed by the previously described transition
elimination procedures. We found that transitions between t-close edges
(for small values of t) in the genomic cycle are common among false
transitions. Another common source of false transition is triggered by
complementary edges, i.e., edges with reverse complementary sequence.
Since the orientation of reads is unknown, complementary edges have
identical barcode-sets. As a result, if an edge e1 forms a genomic transition
with an edge e2, it often forms a false transition with the complementary
edge of e2.

cloudSPAdes uses the observation that the split index is high for
genomic transitions and low for false transitions (even if they correspond
to close edges). We thus classify a transition (e1, e2) as false if its split
index SI(e1, e2) is below a threshold SImin (the default value 0.95). It
turned out that the transition elimination procedure based on the split index
does not eliminate any genomic transitions in the MOCK5 and YEAST
datasets.

Eliminating transitive transitions.

The previously described transition elimination procedures remove most
false transitions but still retain a small number of false transitions between
t-close edges (typically for t < 5). We classify a transition between edges

e1 and e2 as transitive (and eliminate it) if there exists a path (consisting
of more than one but less than 5 edges) between the end vertex of e1 and
the start vertex of e2 in the contracted assembly graph such that pairs of
consecutive edges in this path form transitions from the transition-set.

Long and ultralong edges.

The results of procedures described above depend heavily on the value
of the edge length threshold LT . The previously described length
threshold selection procedure generates the relatively large threshold
LT+. Although the transition elimination procedure applied to edges
longer than LT+ eliminates almost all false transitions, it also removes
some genomic transitions that correspond to pairs of distant edges. To
preserve information about these missing transitions, we introduce another
tier of long edges (longer than the threshold LT). Transition elimination
procedures work under the assumption that long edges are unique. Our
analysis have shown that majority of edges longer than LT = 3, 000 are
unique, and transition elimination procedures for LT = 3, 000 result in
near perfect recall for MOCK5 and YEAST datasets. We now refer to
edges longer than a threshold LT+ as ultralong, to edges longer than a
threshold LT but shorter or equal than LT+ as long, and to all remaining
edges as short.

Results of the transition elimination procedure on the
MOCK5 dataset.

Tables 4.1 and 4.2 present stage-by-stage results of the transition
elimination for the MOCK5 and YEAST datasets. Since the transition
elimination procedures based on the split index and transitive transitions
result in a low recall for long edges, these steps are only used for
ultralong edges. We refer to the transition-set after the final stage of all
transition elimination procedures in the contracted assembly graphCDB
as T ∗(CDB).

5 Estimating thresholds for eliminating
transitions

The transition elimination procedures are aimed at distinguishing the
genomic transitions (consecutive pairs of long edges in the genomic
cycle) from false transitions. Thus, it would be useful to infer a subset

cloudSPAdes 13

stage
missing genomic

transitions
false

transitions
genomic

transitions
density recall

Ultralong edges
contracted assembly graph 0 90,896 416 0.52 1
elimination based on containment index of long edges 10 1,108 406 0.009 0.976
elimination based on containment index of short-edge paths 22 334 394 0.004 0.947
elimination based on containment index of short-edge paths
combined with the exSPAnder-based test

42 265 374 0.004 0.9

elimination based on the split index 43 54 373 0.002 0.896
elimination of transitive transitions 43 5 373 0.002 0.896

Long edges
contracted assembly graph 0 67,970 1,138 0.049 1
elimination based on containment index of long edges 0 11,458 1,138 0.001 1
elimination based on containment index of short-edge paths 2 396 1,136 0.0002 0.998
elimination based on containment index of short-edge paths
combined with the exSPAnder-based test

4 266 1,134 0.0002 0.996

elimination based on the split index 199 126 939 0.0001 0.825
elimination of transitive transitions 200 64 938 0.0001 0.824

Table 4.1. Results of all transition elimination procedures for ultralong edges (top) and long edges (bottom) for the MOCK5 dataset. Final results for the
transition elimination procedures for ultralong and long edges are highlighted in bold.

stage
missing genomic

transitions
false

transitions
genomic

transitions
density recall

Ultralong edges
contracted assembly graph 0 134,680 414 0.489 1
elimination based on containment index of long edges 20 500 394 0.001 0.95
elimination based on containment index of short-edge paths 42 28 372 0.0001 0.90
elimination based on containment index of short-edge paths
combined with the exSPAnder-based test

58 18 356 0.0001 0.86

elimination based on the split index 58 4 356 0.00001 0.86
elimination of transitive transitions 60 4 354 0.00001 0.86

Long edges
contracted assembly graph 0 208,816 794 0.25 1
elimination based on containment index of long edges 14 774 782 0.001 0.98
elimination based on containment index of short-edge paths 18 110 778 0.0001 0.97
elimination based on containment index of short-edge paths
combined with the exSPAnder-based test

23 72 773 0.00008 0.96

elimination based on the split index 268 26 526 0.00003 0.66
elimination of transitive transitions 268 15 526 0.00002 0.66

Table 4.2. Results of all transition elimination procedures for ultralong edges (top) and long edges (bottom) for the YEAST dataset. Final results for the
transition elimination procedures for ultralong and long edges are highlighted in bold.

of genomic transitions to estimate the parameters for the transition
elimination procedures. Since the genomic transitions are not known, we
infer these parameters by sub-partitioning ultralong edges of the assembly
graph.

Given an ultralong edge e, and parameters Length1, Length2, and
MaxDistance, we split the prefix of e of length b|e| / Length1c ·
Length1 into the set of segments Segments(e, Length1) of length
Length1. Let Distances(M,MaxDistance) be the sequence of
possible distances starting from 0, incrementing bybMaxDistance / Mc
and ending at MaxDistance (M = 10 by default). We define
simulated transitions as all pairs of substrings (Segment1, Segment2)

of the sequence of the edge e separated by a distance Distance ∈
Distances(M,MaxDistance) and satisfying the conditionsSegment1 ∈
Segments(e, Length1) and |Segment2| = Length2 (Figure 5.1).

We refer to the union of all simulated transitions over all ultralong
edges as

Transitions(Length1, Length2,MaxDistance).

All simulated transitions correspond to genomic transitions which
we aim to identify using the barcode information. Thus, the parameter
MaxDistance should not be too large to ensure that there are SSLR
fragments overlapping with both Segment1 and Segment2. It also
should not be too small, since some consecutive long edges in the genomic
cycle might be located far from each other in the genome. We thus select
the Qth percentile (Q = 90% by default) of the SSLR fragment length
distribution as MaxDistance. Appendix 16 shows how to estimate the
fragment length distribution.

We use the simulated transitions to set the thresholds CIlong and
CIshort. LetSimulatedScores(Length1, Length2,MaxDistance)

be the set of scores obtained by applying CI to all pairs from
Transitions(Length1, Length2,MaxDistance). We define the
threshold forCI with confidence T (0.01 by default) as the T th percentile
of SimulatedScores and use it in the transition elimination procedures.

We set Length1 = Length2 = LT (Length1 = LT and
Length2 = 1) for analyzing the containment index between two long
edges (between a short and a long edge).

14 cloudSPAdes

6 Repairing the cloud breaks
While the transition elimination procedures remove many false transitions,
they may also remove some genomic transitions. Our analysis revealed that
the contracted assembly graphs often have a small number of edges that
do not participate in any transitions that start from this edge or end in this
edge (cloud breaks). Such cloud breaks often occur when there are no
fragments covering the entire distance between substrings of the genome
that correspond to consecutive edges in Cycle(Genome,CDB). We
analyze short-edge paths in the assembly graph to repair cloud breaks in
the contracted assembly graph.

An edge in the contracted assembly graph is called a sink (source) edge
if it does not participate in any transition as its first (second) edge. Our goal
is to “repair” the cloud breaks by adding transitions between some sinks
and sources. To achieve this goal, we use a variation of the exSPAnder
algorithm (Prjibelski et al., 2014). Given a subpath of a genomic cycle in
the assembly graph, exSPAnder selects the next edge in the genomic cycle
based on additional information such as read-pairs or barcodes.

For a long source edge e in the contracted assembly graph, we
iteratively extend path(e) in the assembly graph (the path in the assembly
graph that was contracted into the edge e) by adding short edges to it with
the goal to reach the first vertex of a path(e′), where e′ represents a long
sink edge. If such a vertex is reached, we add the transition (e, e′) to the
transition-set in the contracted assembly graph.

Given the length threshold LTmin (200 nucleotides by default), we
say that an edge next is reachable from an edge previous if there is a
path in the assembly graph from the end of previous to the beginning
of next that does not contain edges longer than LTmin. We ignore short
edges shorter than LTmin (ultrashort edges) since many ultrashort edges
represent repeats or are marked by a very few barcodes. We consider all
short edges (longer thanLTmin) that are reachable from the end vertex of
path(e) and refer to them as candidate edges. We then select an extension
edge from the set of candidate edges and add it to path(e). Below we
describe how cloudSPAdes selects the extension edge.

Barcode-set of a path in the assembly graph.

Given a subpath path of a genomic cycle in the assembly graph, our goal is
to find out what barcodes contribute to this subpath and exclude barcodes
from other regions of the graph (these barcode may contribute to the repeat
edges of path). To achieve this goal, we infer barcodes only from unique
edges of path and exclude barcodes from its repeat edges.

Below we assume that a subpath path starts from a unique long edge
e and use it to infer other unique edges in this path. We classify an edge e′

in path as unique if coverage(e′) < c · coverage(e), where coverage
is the coverage of an the edge e by reads, and c is a constant (1.5 by

default). We define the barcode-set b(path) as the set of all barcodes from
all unique edges in path.

Selecting an extension edge.

The containment index CI between a long and a short edge reflects our
confidence that these edges are close in the genomic cycle. Below we
compute the containment index between a path path(e) (rather than a
single long edge as before) and each candidate edge (playing the role of a
short edge) to find the extension edge.

We say that a (short) candidate edge e′ is valid, ifCI(path(e), e′) ≥
CIshort. If there is only one valid candidate edge, we select it as an
extension edge. If there are multiple valid candidate edges, we select the
candidate edge winner with the largest value of CI . If the CI value
of winner is at least r times (the default value r = 2) larger than the
CI value of all other candidates, we select winner as an extension edge.
Otherwise, we stop the path extension procedure.

7 Filtering clouds in the contracted assembly
graph.

A set consisting of one (two) elements is called a singleton (doubleton).
All other sets are called multitons. We classify a putative cloud as
correct if it represents a composition of a subpath of the genomic cycle
Cycle(Genome,CDB), and incorrect otherwise. The Clouded Eulerian
Path problem assumes that all input clouds are correct. However, 1, 030

out of 6, 632 putative clouds in the MOCK5 dataset and 270 out of 2, 265

putative clouds in the YEAST dataset constructed using the contracted
assembly graph CDB = DBLT and the transition-set T = T ∗(CDB)

are incorrect (note the difference between the numbers here and numbers in
Appendix 1, where clouds are constructed usingCDB only). We thus aim
to remove all (or nearly all) false clouds before solving the CEP problem.

We say that clouds c1 and c2 clash if c1 crosses c2 and there is no
T -compatible path in CDB that conforms with both c1 and c2. If the
cloud-setC = Clouds(CDB, T,Reads) contains clashing clouds, then
there is no T -compatible clouded Eulerian path in CDB that conforms
withC. Thus, our goal is to remove some clouds so that there is no clashing
clouds left. Specifically, we want to remove all clouds from C that clash
with correct clouds.

Given a subset of edges c in the contracted assembly graph, we define
b(c) as the set of all barcodes marking edges of c. Let ctrue be a correct
cloud that clashes with a false cloud cfalse. Since ctrue corresponds to a
subpath in the genomic cycle and cfalse does not, the set ctrue ∩ cfalse
usually shares more barcodes with ctrue\cfalse than with cfalse\ctrue.
We use the score function CI from Appendix 2 to decide which clashing
cloud in the pair (c1, c2) is correct

Fig. 5.1: Generating simulated transitions. Prefix of an ultralong edge e is split into segments of length Length1. Two blue segments represent a
simulated transition.

cloudSPAdes 15

clash(c1, c2) =
CI(c1 ∩ c2, c1 \ c2)

CI(c1 ∩ c2, c2 \ c1)

If clash(c1, c2) exceeds a threshold r (2 by default), we assume
that the cloud c1 is correct and remove the cloud c2 from the cloud-
set C. If clash(c1, c2) < 1

r
, we remove the cloud c1 from C. If

1
r
≤ clash(c1, c2) ≤ r, we remove both c1 and c2 from C. This

procedure is applied to all pairs of clashing clouds in the cloud-set C.
Our analysis of the MOCK5 and YEAST datasets revealed that the

most common example of clashing clouds are doubletons sharing an
edge. If we successfully resolve all clashing doubletons, finding the
clouded Eulerian path turns into a trivial problem (since we obtain all
transitions of the genomic cycle as the correct doubletons). This is
usually the case when the mean fragment length is small compared to
the long edge threshold LT . However, when the mean fragment length
is large, it becomes harder to resolve clashing doubletons than clashes
that involve multitons. For example, for a subpath e1, e2, e3, e4 of a
genomic cycle, clash({e1, e2, e3}, {e1, e2, e4}) is usually larger than
clash({e2, e3}, {e2, e4}), since there are fewer barcodes that mark only
e2 and e3 compared to the barcodes that mark e2 and e4, but do not mark
e3. In this case, we use the CloudedPath algorithm (Appendix 13) to
find the clouded Eulerian path using larger clouds.

8 Fragmentation of the contracted assembly
graph

Although the transition elimination procedures greatly reduce the number
of false transitions, they also remove some correct transitions (Table 4.1)
and thus break genomic cycles in the contracted assembly graph into
multiple paths. Since the Clouded Eulerian Path Problem can not be applied
to the entire contracted assembly graph in such cases, we partition it into
smaller subgraphs and solve a separate assembly problem in each subgraph,
localizing the effect of false and missing transitions in the graph. Below we
describe the graph fragmentation approach and apply it for reconstructing
the genomic cycle.

Contracted assembly graph on ultralong edges.

We observed that inferring the sequence of long edges in a putative cloud
is usually an easier task than restoring the paths of short edges between
long edges. cloudSPAdes thus constructs the contracted assembly graph
based on ultralong edges (longer than a length threshold LT+) so that
most clouds contain only 2-4 ultralong edges. After reconstructing the
order of these ultralong edges in the genomic cycle, we fragment the
contracted assembly graph DBLT into subgraphs between consecutive
ultralong edges and split the genomic cycle reconstruction into smaller
subproblems. Below we describe an algorithm for reconstructing the order
of ultralong edges inDBLT+ and the algorithm for reconstructing a path
between consecutive ultralong edges in DBLT .

Filtering false clouds.

Let Component be a weakly connected component of the contracted
assembly graph CDB = DBLT+ . Our goal is to extract the subpath
of the genomic cycle Cycle(Genome,CDB) from Component by
solving the CEP problem. Let T = T ∗(Component) be a transition-
set, and Clouds(Component, T,Reads) be a set of putative clouds
obtained from Component. Even though the fraction of false putative
clouds in the contracted assembly graphCDB is low (4% for the MOCK5
dataset), we cannot apply the CloudedPath algorithm toComponent
since most components in CDB still contain false clouds. We thus apply
the cloud filtering procedure described in Appendix 7 to eliminate false

clouds from Clouds(Component, T,Reads) and refer to the resulting
cloud-set as Clouds∗(Component, T,Reads).

We estimate the effectiveness of the false transition elimination
and putative cloud filtering procedures using the MOCK5 and
YEAST datasets with known genomes. We classify Component as
correct if it contains a subpath of Cycle(Genome,CDB) as an
Eulerian path and if this subpath conforms with all clouds from
Clouds∗(Component, T,Reads). For the MOCK5 dataset, 22 out of
26 nontrivial components (components with more than two vertices) in
the contracted assembly graph DBLT+ are correct, and for the YEAST
dataset, 92 out of 98 nontrivial components are correct. We thus can apply
an algorithm for solving the Clouded Eulerian Path problem to a majority
of weakly connected components in the contracted assembly graph.

By applying the CloudedPath algorithm from Appendix 13 to
weakly connected components and filtering putative clouds, we obtain
the set of subpathsSubpaths(DBLT+) ofCycle(Genome,DBLT+).
We refer to the set of pairs of consecutive ultralong edges from
Subpaths(DBLT+) as Pairs(DBLT+).

Filling the gap between consecutive ultralong edges.

Let (e1, e2) be a pair of consecutive ultralong edges from
Pairs(DBLT+). To fill the gap between these edges in the contracted
assembly graph CDB = DBLT , we analyze all edges that have a large
containment index with both e1 and e2, i.e., all edges ewithCI(e1, e) >
CIlong and CI(e, e2) > CIlong . The subgraph CDB[e1, e2] is
constructed as the induced subgraph on these edges.
LetPath[e1, e2] be a subpath of the genomic cycleCycle(Genome,CDB)

that starts from e1 and ends in e2. We reconstruct Path[e1, e2]

by applying the CloudedPath algorithm from Appendix 13 to
CDB[e1, e2] and the set of clouds Clouds∗(CDB[e1, e2], Reads).
This algorithm results in a subpath ofCycle(Genome,CDB) for every
pair of consecutive ultralong edges. We refer to the set of all such
reconstructed subpaths as Paths(DB,LT).

9 Combining information about clouds with
information about read-pairs

Although the contracted assembly graph contributes to constructing
scaffolds using clouds, it does not utilize information about the read-pairs
generated by the SSLR technology. To combine both types of information
(clouds and read-pairs), we use long edge sequences Paths(DB,LT)

to scaffold metaSPAdes contigs Contigs(Reads, k) obtained from
the assembly graph DB(Reads, k) and read-pairs Reads using the
exSPAnder algorithm (Prjibelski et al., 2014). Every contig contig from
Contigs(Reads, k) represents a path path(contig) in the assembly
graph DB(Reads, k). Let first(contig, LT) and last(contig, LT)

be the first and last long edges of path(contig), respectively.
Let Pairs(DB,LT) be the set of pairs of consecutive edges in

Paths(DB,LT). We merge a pair of contigs (contig1, contig2) from
Contigs if the pair of long edges (last(contig1, LT), first(contig2, LT))

belongs to Pairs(DB,LT), resulting in the set of (possibly gapped)
scaffolds Scaffolds(Contigs, Paths, LT). Afterwards, cloudSPAdes
constructs the scaffold graph DBScaffolds by merging every path
from Scaffolds = Scaffolds(Contigs, Paths, LT) into a single
scaffold edge (which might contain unknown nucleotides if some gaps
were not closed by the gap closing procedure). Most scaffold edges in
DBScaffolds are formed by multiple long edges in DB: the scaffold
edges in the MOCK5 dataset (mean length 154 kb) are much longer than
long edges (mean length 29 kb). Also, the gaps between scaffold edges in
DBScaffolds are smaller than the gaps between long edges inDB (mean
gap is 885 bp for scaffold edges vs 7 kb for long edges in the MOCK5

16 cloudSPAdes

dataset), making it easier to connect the scaffold edges using the read-pairs
or clouds.

To utilize the advantages of the scaffold edges over the long edges
of the assembly graph, cloudSPAdes constructs the contracted assembly
graph CDB = CDB(DBScaffolds, LT) and a transition-set T =

T ∗(CDB). Let outdegreeT (e) and indegreeT (e) be the number of
transitions starting from e and ending at e, respectively. cloudSPAdes
extracts reliable transitions from T , i.e., pairs of scaffold edges (e1, e2)

such that indegreeT (e2) = outdegreeT (e1) = 1, and merges
scaffolds corresponding to e1 and e2 into a single scaffold. We refer to
the algorithm that generates the resulting scaffolds (and generates the final
cloudSPAdes output) as MergeScaffolds(Scaffolds, LT).

10 Closing gaps between long edges
When cloudSPAdes merges contigs using the long-edge paths in the
contracted assembly graph, it typically inserts a gap between merged
contigs that separates consecutive edges in these contigs. It further
attempts to close this gap by reconstructing a segment of the genomic
cycle in the assembly graph between these edges. Below we describe
how cloudSPAdes combines read-pairs and clouds to reconstruct segment
Segment of the genomic path between consecutive long edges e1 and
e2 in the scaffold. Similarly to the algorithm described in Appendix 6, we
use exSPAnder to reconstruct Segment starting from e1 and iteratively
extending it (by adding short edges) with the goal to reach e2.

We say that a short edge e is supported by e1 and e2, if e is
reachable from e1, e2 is reachable from e, CI(e1, e) > CIshort, and
CI(e2, e)) > CIshort. Supported edges are likely to be located between
e1 and e2 in the genomic cycle.

cloudSPAdes constructs the set of supported edges and uses them to
improve the results of exSPAnder. At each iteration, we filter a set of
candidates (edges starting at the last vertex of Segment) by discarding
all edges that are neither supported by e1 or e2 nor are a part of a path that
leads to a supported edge. The described filtering resolves many situations
where it was difficult to reliably select the next edge due to a long repeats
or a complex graph structure (Figure 10.1).

In the case when the described algorithm fails to reconstruct a path
from e1 to e2, cloudSPAdes attempts to reconstruct the reverse path from
e2 to e1. Since the path extension procedure is asymmetric, in some cases
the reverse search closes the gap when the direct search fails to close
it. We refer to the algorithm that closes gaps in a given Scaffolds as
CloseGaps(Scaffolds,Reads).

11 Solving the Cloud Permutation Problem
Below we define a condition on a cloud-set that guarantees that the Cloud
Permutation Problem has a unique solution and show how to effectively
find the solution if the condition holds.

A set consisting of one (two) elements is called a singleton (doubleton).
All other sets are called multitons. A cloud is proper if it is a proper subset
of char(C). A proper subset of a set (cloud) is non-trivial subset (non-
trivial cloud) if it is not a singleton. We say that two sets overlap if they
share at least one element. We say that sets c1 and c2 cross (c1 _ c2)
iff c1 and c2 overlap, c1 6⊆ c2, and c2 6⊆ c1. A cloud-set C crosses a
subset s of char(C) if it contains a cloud that crosses s. A set of clouds
C is complete if it crosses each non-trivial subset of char(C). For the
sake of convenience, we consider cloud-sets that contain all singletons of
char(C), and a cloud that consists of the entire set char(C). Also we
will assume that char(C) consists of at least two elements.

We denote the reverse string of a permutationG as Ḡ. Given a substring
s of a permutation G, its reversal is a rearrangement of symbols of this

susbstring (all other symbols of G do not change their positions) that
substitutes the i-th symbol of s by its (|s| + 1 − i)-th symbol (for all
symbol in the substring). For example, the reversal of a substring bcd in
abcdef results in adcbef .

We say that a cloud crosses a subset of a permutation if it crosses a set
formed by the elements of this subset.

Lemma 1. LetG be a permutation that conforms with a cloud-setC. IfC
does not cross a nontrivial subset s of char(C) then there is a permutation
G′ different from G and Ḡ that also conforms with C.

Proof. If the subset s does not contain the first element of the permutation
G, consider a proper substring s′ that starts at the first element of s in G
and ends at the last element of s in G. For example, if G = abcdef

and s = {b, d} then s′ = bcd. Below we show that the s′-reversal of
G conforms with C. Indeed, since C does not cross the subset s, each
cloud in C either (i) does not overlap with s′, or (ii) contains s′, or (iii) is
contained in s′.

In the case (i), a cloud c ∈ C corresponds to a substring in G that
does not include symbols from s′, This substring is also present in the s′-
reversal of G since this reversal only affect symbols from s′. Therefore,
the cloud c conforms with the s′-reversal of G.

In the case (ii), a cloud corresponds to a substring in G that includes
all symbols of s′, Thus, this cloud also corresponds to a substring of the
s′-reversal of G.

In the case (iii), a cloud corresponds to a substring in G formed by
symbols in s′. Thus, the same symbols form a substring of the s′-reversal
of G.

If the subset s contains the first element of the permutation G, let sL
be the maximal prefix inG that is contained in s. Since s is a proper subset,
sL 6= G, and there is a substring sR in G such that G = sLsR. Since C
does not cross s, every proper cloud in C is contained in either sL or sR.
Thus, the string sRsL conforms with C.

Note that if a permutation G conforms with the overlapping clouds
c1 and c2, then it also conforms with the sets c1 ∪ c2 and c1 ∩ c2.
Moreover, if c1 crosses c2, thenG also conforms c1 \ c2 and c2 \ c1. Let
Expansion(C) be an expanded set of clouds constructed as a closure of
C under these four operations. Clearly, a permutation conforms with C
iff it conforms with Expansion(C). Also a set s crosses a cloud-set C
iff s crossesExpansion(C) since for any clouds c1, c2 that do not cross
s there union, intersection and differences (in case c1 crosses c2) also do
not cross s.

We use the notation v ≺ w to indicate that a set v is a proper subset
of w. Given a cloud-set C, we construct a directed acyclic cloud-graph
Graph(C) where each vertex corresponds to a cloud inExpansion(C)

and vertices v andw are connected by an edge iff v ≺ w. We label an edge
(v, w) of the cloud-graph by the set of symbols of w that do not occur in
v. Given a cloud-set C and a pair of clouds v ≺ w, we define div(v, w)

as the number of vertices in a longest path inGraph(C) starting at v and
ending at w.

Lemma 2. If a is a singleton in a complete cloud-setC then div(a, c) =

|c| for each cloud c ∈ C that contains a.

Proof. If a longest path P from a to c in the cloud-graph Graph(C)

is shorter than |c|, then at least one of its edges (v, w) is labeled by a set
with multiple symbols, i.e., by a non-trivial set s. Since the cloud-set C is
complete, there is a cloud b ∈ C crossing s.

If b overlaps with the cloud v then the set u = v ∪ (w ∩ b)
belongs to Expansion(C). If b does not overlap with v then the set
u = w \ b belongs to Expansion(C). In either case, v ≺ u ≺ w.

cloudSPAdes 17

Fig. 10.1: Gap closing using clouds. (Top) Subgraph between two long unique edges e1 and e2. The path extension procedure attempts to extend the
path by finding an edge that follows the edge current. Two candidates are highlighted in blue. Edges that are supported by clouds are highlighted in
green. (Bottom) Since only one blue edge can be extended using green edges supported by clouds, we add it to the path since the supported edge is
reachable from it. The other candidate (highlighted in red) is discarded.

Therefore, inserting u between v andw in the path P increases its length,
a contradiction to the fact that P is a longest path from a to c.

A permutationG conforming with a cloud-setC is unique ifG and Ḡ
are the only permutations that conform C.

Theorem. Let G be a permutation that conforms with a cloud-set C.
Then G is unique iff C is complete.

Proof. If G is a unique permutation that conforms with an incomplete
cloud-set C then there exists a non-trivial set s that does not cross C.
However, Lemma 1 implies that there is a permutation different from G

and Ḡ that also conforms with C, a contradiction to the fact that G is
unique.

If a complete cloud-setC conforms with a permutationG = g1 . . . gN
thenG also conforms with a cloud-setExpansion(C). Lemma 2 implies
that there exists an N -vertex path in the cloud-graph Graph(C) starting
at g1 and passing through vertices:

{g1} → {g1, g2} → . . .→ {g1, . . . gN}

i.e., each prefix of G forms in a cloud in Expansion(C). Applying the
same argument to the reverse permutation of G, each suffix of G forms
a cloud in Expansion(C). Each substring of G can be represented as
an intersection of a prefix and a suffix of G. Therefore, each substring
of G forms a cloud in Expansion(C). In particular, Expansion(C)

contains all 2-element substrings ofG as doubletons, implying thatG and
Ḡ are the only strings that conform with the cloud-set C.

Two cloud-sets C1 and C2 are equivalent if Expansion(C1) =

Expansion(C2). Given a cloud-setC, below we show how to derive the
set of doubletons inExpansion(C) by constructing a series of equivalent
but “simpler” cloud-sets to eventually arrive to a cloud-set consisting of
doubletons only. Specifically, given a multiton c in a complete cloud-set
C, we will construct an equivalent cloud-set by removing c from C and
substituting it by at two smaller clouds. Iterating this process, we will
arrive at a cloud-set where each non-trivial cloud is a doubleton.

We say that a cloud-set is pseudo-complete if every nontrivial cloud c
from Expansion(C) crosses C.

Lemma 3. For each proper multiton cloud c in a pseudo-complete cloud-
set C, there exist crossing clouds c1 and c2 in Expansion(C) such that
c = c1 ∪ c2. The cloud-set C′ where c is replaced by c1 and c2 is
equivalent to C.

Proof. Since the cloud-set C is pseudo-complete, there exists a cloud
c′ ∈ C crossing the multiton cloud c. Therefore, both c ∩ c′ and c \ c′

belong to Expansion(C). Since c has more than two elements, one of
these sets (denoted c1) has at least two elements. Let c2 = c \ c1. Since
C is pseudo-complete, it contains a cloud c3 crossing c1. The union of c1
and c2 equals c however these two sets do not overlap. We will now use
c3 to find two crossing sets whose union is also c.

Since c3 crosses c1, it can not be a subset of c2. Thus, it either crosses
c2 (i), or contains c2 (ii), or does not overlap with c2 (iii).

In the case (i), clouds c1, c3 ∪ c2 cross and their union is c.
In the case (ii), clouds c1, c3 ∩ c cross and their union forms c.
In the case (iii), clouds c1 and c \ c3 cross and their union forms c.
Finally, replacing a cloud c with two crossing clouds from

Expansion(C) whose union is c results in an equivalent cloud-set since
c still belongs to the expansion of the modified cloud-set.

Lemma above leads to an efficient algorithm for constructing all
doubletons in the expansion of a pseudo-complete cloud-set (Figure 11.1).
However this algorithm does not directly generalize to incomplete cloud-
sets that arise in practice. Appendix 12 describes how to address this
complication.

We will conclude this section by stating the relation between complete
and pseudo-complete cloud-sets. A cloud-set is non-trivial if it contains a
non-trivial cloud and trivial otherwise (a trivial cloud-set consists only
from singletons and char(C)). A cloud-set is viable if there exists a
permutation conforming with this cloud-set.

Lemma 4. A viable non-trivial cloud-set is complete iff it is pseudo-
complete.

18 cloudSPAdes

Proof. Let C be a viable non-trivial cloud-set and G be a permutation
that conforms with C. It is easy to see that if C is complete then it is
pseudo-complete. We will now prove that if it pseudo-complete then it is
complete.

Given a cloud c in C, we define G(c) as a substring of G

with composition equal to c. We say that a cloud c is complete if
Expansion(C) contains compositions of all 2-element substrings of
G(c). We will prove that if C is pseudo-complete then char(C) is a
complete cloud and thus C is a complete cloud-set.

Let c be a smallest cloud in Expansion(C) that is not complete.
Since all singletons and doubletons inExpansion(C) are complete then
c is a multiton. If c is a proper multiton then, according to lemma 3, it can
be represented as as a union of two crossing subclouds c1 and c2. Since
both c1 and c2 are smaller than c, they are both complete, which implies
that c is complete since each 2-element substring from c belongs to at least
one of the clouds c1 and c2.

If c is not a proper multiton (i.e., c = char(C)), we consider a cloud
c1 that is a maximal proper cloud in Expansion(C). Since C is not
trivial, c1 is not a singleton and thus there is a cloud c2 ∈ C that crosses
c1. Since c1 ∪ c2 belongs to Expansion(C) and contains c1 , then
c1 ∪ c2 = char(C). Thus, cloud c is a union of two smaller (and thus
complete) crossing clouds. It implies that c = char(C) is complete and
C is complete.

Figure 11.1 Pseudocode of the FindCloudSuperstring algorithm
that solves the Cloud Permutation Problem for cloud-set C.
SplitCloud(c) represents a cloud c as a union of two smaller
clouds (as described in lemma 3) and returns these two clouds.
IsSimplePath(Graph) checks if Graph is a simple path and
SimplePath(Graph) returns a string representing this path.

1: procedure FindCloudSuperstring(C)

2: while C contains multitons do
3: c← a largest cloud in C
4: c1, c2 ← SplitCloud(c)

5: remove c from C

6: add c1, c2 to C

7: Graph← empty graph on the vertex-set Char(C)

8: for all doubletons (v1, v2) ∈ C do
9: add edge (v1, v2) to Graph

10: if IsSimplePath(Graph) then
11: return SimplePath(Graph)

12: else
13: return ∅

12 Analyzing incomplete cloud-sets
Although the Cloud Permutation Problem has a unique solution when
the cloud-set is complete, the SSLRs often define incomplete cloud-sets,
making it difficult to reconstruct the genomic cycle in the contracted
assembly graph using barcodes marking long edges. Below we introduce
the concept of block trees that effectively describeExpansion(C) for an
incomplete cloud-set C.

Partinioning a cloud-set into blocks.

We define a cell of a cloud-set C as a proper cloud in Expansion(C)

that does not cross C. Note that cells also do not cross any clouds
from Expansion(C) since crossing C is the same as crossing
Expansion(C). Maximal cells of a cloud-set C are called blocks.

Lemma 5. Blocks of a cloud-set C form a partition of char(C), i.e.,
they contain all elements of char(C) and do not overlap.

Proof. Since each singleton is a cell, each element of char(C) lies
within a block. Therefore, blocks contain all elements of char(C).

To conclude the proof we will to show that if a block b1 overlaps a
block b2 then b1 = b2. Since blocks are cells and cells do not cross any
other clouds, b1 and b2 do not cross each other Thus either b1 ⊂ b2 or
b2 ⊂ b1. However, since b1 and b2 are maximal cells, b1 = b2.

We refer to the set of all blocks in a cloud-set C as the block partition
of C.

Given a cell s and a cloud c, we define the s-glued cloud cs as a cloud
where all elements of s are glued together, i.e., substituted by a single
character that we denote as s∗ (if s does not overlap c, cs = c). Given a
cell s in a cloud-set C, we define its s-glued cloud-set Cs as a cloud-set
where all elements of s are glued together. Cs is a cloud-set in a reduced
alphabet where all characters from s (in each cloud that contains characters
from s) are substituted by a single character s∗. The following two lemmas
describe the relation between expansions and cells of C and Cs.

Lemma 6. Let s be a cell in a cloud-set. If clouds c1 and c2 overlap
then (c1 ∪ c2)s = cs1 ∪ cs2 and (c1 ∩ c2)s = cs1 ∩ cs2. If additionally
c1 _ c2 then (c1 \ c2)s = cs1 \ cs2

Proof. We will prove this lemma for only for set intersection since for
both other operations the proof is very similar.

Since s is a cell, c1 and c2 do not cross s. If c1 or c2 is a subset of
s then c1 ∩ c2 ⊂ s and thus (c1 ∩ c2)s = {s∗} = cs1 ∩ cs2. Thus both
c1 and c2 either contain or do not intersect s. If both c1 and c2 contain
s then (c1 ∩ c2)s = (((c1 \ s) ∩ (c2 \ s)) ∪ s)s = ((c1 \ s) ∩ (c2 \
s)) ∪ {s∗} = (cs1 \ {s∗}) ∩ (cs2\)) ∪ {s∗} = cs1 ∩ cs2. If at least one
of c1 and c2 does not intersect s then (c1 ∩ c2) does not intersect s and
(c1 ∩ c2)s = c1 ∩ c2 = cs1 ∩ cs2.

Lemma 7. Let s be a cell of cloud-set C and let c ∈ Expansion(C)

be a cloud that is not a proper subset of s. Then c is a cell in C iff cs is a
cell in Cs.

Proof. Let c be a cell inC and c1 ∈ C be any cloud fromC. If c overlaps
c2 then by lemma 6 we have (c∪c1)s = cs∪cs1 and (c∩c1)s = cs∩cs1.
Since c is a cell, either c ⊂ c1 or c1 ⊂ c. Thus either cs ⊂ cs1 or cs1 ⊂ cs

for any cloud cs1 ∈ Cs and cs is a cell in Cs.
If c does not overlap c1 then cs can overlap cs1 only if both c and cs

overlap s. In this case since s is a cell, s is a subset of both c and c1 which
is a contradiction with the assumption that c does not overlap c1. Thus for
any cloud cs1 ∈ Cs, c1 does not overlap cs and thus c is a cell.

Conversely, if c is not a cell then there is a cloud c1 ∈ C that crosses c.
By lemma 6 we have cs \ cs1 = (c \ c1)s 6= ∅, cs1 \ cs = (c1 \ c)s 6= ∅
and cs ∩ cs1 = (c ∩ c1)s 6= ∅. Consequently, cs crosses cs1 and thus cs

is not a cell.

Lemma 8. Let s be a cell in cloud-set C and b be a block in C. Then
bs is a block in Cs.

Proof. Since b is a block, it is not a proper subset of the cell s, and
thus, according to lemma 7, bs is a cell in Cs. If bs is not a block
then there is a block b1 in Cs that contains bs. Lemma 6 implies
that Expansion(C)s = Expansion(Cs) and thus there is a cloud
b2 ∈ Expansion(C) such that b1 = bs2. Since b2 contains b, b2 can not
be a proper subset of s. Thus, by lemma 7 b2 is a cell that contains b as a
proper subset, that is a contradiction since b is a block.

The block partition of a cloud set can be constructed by iterating
through all clouds in Expansion(C) in order from the largest to the

cloudSPAdes 19

smallest as described in the pseudocode in Fig. 12.1). At each step, a
cloud is selected as a block if it does not cross C and does not overlap a
previously constructed block.

Figure 12.1 Pseudocode of the BlockPartition algorithm.
AreCrossing(C, c) returns true iff a cloud c crosses a cloud-set
C. SortBySize(Expansion) sorts clouds in Expansion in the
decreasing order of their size. Expansion(C) computes the expansion
of a cloud-set C.
1: procedure BlockPartition(C)

2: UsedChars← ∅
3: Blocks← ∅
4: for all c ∈ SortBySize(Expansion(C)) do
5: if not AreCrossing(C, c) and c ∩ UsedChars = ∅ then
6: add c to Blocks
7: add characters from c to UsedChars
8: return Blocks

Block tree of a cloud-set.

Below we introduce the concept of a block tree of a cloud-set.

Let G be a permutation that conforms with a cloud-set C and S =

{s1, . . . , sk} be a set of non-intersecting cells in C. Let c be a cloud in
C such that every s ∈ S either lies within c or does not overlap c. We
define S-glued cloud cS as a cloud where for all s ∈ S such that s ⊂ c

all elements in s are glued into a single character s∗. We define S-glued
cloud-setCS as a cloud-set where every cloud c ∈ C is S-glued. CS can
be defined iteratively in the following way: letA0 = C, andAi = A

si
i−1

for 0 < i ≤ k. Then CS = Ak . Thus lemmas 6 and 7 can be applied to
the complex gluing defined above iteratively.

LetG[c] be a substring ofG conforming with a cloud c. Similarly, we
define the string GS as the string obtained from G by compressing G[s]

into a single character char(s) for every s ∈ S.
We will use the following property of the block partition to introduce

a tree which represents Expansion(C).

Lemma 9. If B is the block partition of a viable cloud-set C then CB

is pseudo-complete (and thus it is either complete or trivial).

Proof. Let s be a cell in cloud-set C. Let B1 be a block partition of
Cs. Lemma 8 implies that every cloud in Bs is a block in B1. Thus
|B1| ≥ |B|. Since every element in composition(cs) is contained by
a block in Bs, and blocks in B1 do not overlap, |B1| ≤ |B|. Thus the
number of blocks in the block partition remains the same after gluing cells.
Thus the block partition of CB consists of singletons that are the results
of gluing each block in the block partition of C. Thus all cells in CB

are singletons and every nontrivial cloud in CB crosses CB . Lemma 4
implies that CB is either complete or trivial.

Lemma 9 implies that, for every block partition B, the ordering
of blocks in a permutation that conforms CB is either completely
reconstructable (if CB is complete), or completely unknown (if CB is
trivial). We use this property to represent the cloud-set C as a tree.

Let C be a cloud-set and s be a subset of char(C). A reduced cloud-
setCs is defined as the set of all clouds inExpansion(C) that are subsets
of s.

We define the block tree of a cloud-setC (denotedBT (C)) as follows.
Every vertex ofBT (C) is a cell ofC, and the root ofBT (C) is char(C).
Let v be a vertex ofBT (C), andBlocks(v) = {v1, . . . , vk} be a block
partition of Cv . Then v has k children v1, . . . , vk . If |v| = 1, then v is

a leaf. Every internal vertex of BT (C) is either ordered or unordered.
Vertex v is ordered iff (Cv)Blocks(v) is complete. If b1 . . . bk is the
permutation that conforms with (Cv)Blocks(v), we say it is a children
ordering of v (denoted as Ordering(v)).

Figure 12.2 describes the algorithm BlockTree(C) that returns the
root of the constructed block tree BT (C).

Figure 12.2 Pseudocode of the BlockTree algorithm. SingleV ertex
denotes a block tree with a single vertex that has no children.
AddChild(a, b) adds a child vertex b to a vertex a. Ordered(V ertex)

is true iff a vertex V ertex is ordered.
1: procedure BlockTree(C)

2: if |char(C)| = 1 then
3: return SingleV ertex
4: Root← SingleV ertex

5: Blocks← BlockPartition(C)

6: for all Block ∈ Blocks do
7: AddChild(Root,BlockTree(CBlock))

8: if C is a trivial cloud-set then
9: Ordered(Root)← False

10: else
11: Ordered(Root)← True

12: Ordering(Root)← FindCloudSuperstring(CBlocks)

13: return Root

13 Clouded Eulerian Path Problem
Ideally, genomic cycle in the assembly graph DB corresponds to an
Eulerian cycle in the contracted assembly graphCDB. However, genomic
cycle in the assembly graph is usually broken into paths due to coverage
breaks. As a result, genomic cycle in the contracted assembly graph often
breaks into multiple paths. Below we apply the Clouded Eulerian Path
Problem to reconstructing subpaths of the Eulerian cycle in the subgraphs
of the contracted assembly graph.

Using the block tree to solve the Clouded Eulerian Path
Problem.

The Clouded Eulerian Path Problem is resolvable (for a graphG, its cloud-
set C, and its transition-set T) if it has a solution. Let v be a vertex of the
block tree that has children v1, . . . , vk , and Paths(v) be a set of clouded
Eulerian paths that conform withCv . Lemma 10 below implies that if v is
ordered, every element ofPaths(v) can be represented as a concatenation
of paths p1 . . . pk , where pi ∈ Paths(vi).

To solve the CEP problem, we will use the block tree to split a subset
s of edges of the graphG into smaller subsets using information provided
by the cloud-set C. We solve the CEP problem iteratively starting from
leaves of the block tree and going up to the root.

Let G be a directed graph, T be a transition-set, and C be a
cloud-set over the edge-set of G. Let Paths(G,T,C) be a set of T -
compatible Eulerian paths in G that conform with C. Let P be a path in
Paths(G,T,C), and v be a vertex in the block tree BT (C). We denote
the subgraph induced in P by v as P [v]. Note that every vertex v in
the block tree BT (C) corresponds to a cell in C. Thus, for every path
P ∈ Paths(G,T,C) and a vertex v in BT (C), the induced subgraph
P [v] is a subpath ofP . We use this property to apply a bottom-up approach
to solve the Clouded Eulerian Path problem. First, we find clouded Eulerian
subpaths for all children of a given vertex of the block tree, and then
concatenate them in a larger path. The following lemma describes how to

20 cloudSPAdes

concatenate subpaths in the correct order.

Lemma 10. Let G be a directed graph, C be a cloud-set over its edge-
set, T be a set of transitions, and P be a clouded Eulerian path for G, T
and C. Let v be an ordered vertex in BT (C), and P [v] be a subpath of
P corresponding to v. LetBlocks(v) = {v1, . . . , vk} be the children of
v. Then P [v] = P [v1] . . . P [vk].

Proof. Since (Cv)Blocks(v) is complete, Theorem 11 implies that the
children ordering of v Ordering(v) is the only string that conforms with
(Cv)Blocks(v). Let G(v) be a string of vertices corresponding to P [v].
Then G(v)Blocks(v) conforms with (Cv)Blocks(v), which concludes
the proof.

Let v be a vertex in the block tree that has children v1, . . . , vk ,
and Paths(v) be a set of T -compatible Eulerian paths in induced
subgraph G[v] that conform with Cv . Lemma 10 shows that if v is
ordered, every element of Paths(v) can be represented as concatenation
of paths p1 . . . pk , where pi ∈ Paths(vi). Not every sequence of
paths can be concatenated, since the edge-pair formed by the last edge
of pi and the first edge of pi+1 is not necessarily a transition. To
avoid checking concatenation of every possible sequence p1 . . . pk , we
represent Paths(v) as a set of starts and ends of all paths in Paths(v)

and concatenate these sets instead. Below we introduce the matrix
representation of Paths(v).

Let v be a vertex in the block tree. If an edge in v is a start/end of
a path from Path(v), we say that it is a starting/ending edge of v. Let
Starts(v) be the set of starting edges of v, and Ends(v) be the set of
ending edges of v. Let start-end matrix of v (denoted SE(v)) be a matrix
with index sets |Starts(v)|, |Ends(v)|, where SE(v)i,j is a number of
paths in Paths(v) starting with edge i and ending with edge j.

Let v be a vertex inBT (C) with children ordering v1, . . . , vk . LetAi

be the adjacency matrix of the bipartite graph with partitions Ends(vi),
Starts(vi+1) and edges induced from transitions. Then

SE(v) = SE(v1)A1SE(v2)A2 . . . Ak−1SE(vk).

Clouded Eulerian path algorithm.

We are now ready to describe the algorithm for solving the Clouded
Eulerian Path Problem. Let G be a directed graph, C be a cloud-set
over its edge-set, and T be a transition-set. We assume that at least one
clouded Eulerian path exists. If there exists exactly one clouded Eulerian
path P , the procedure StartEndMatrix(G,T,BlockTreeRoot)

(Figure 13.1) returns a matrix with exactly one non-zero cell (s, e),
where s is the starting edge of P and e is the ending edge of P . In that
case, the procedure CloudedPath(G,T,C) returns the path P using
backtracking. If there are multiple clouded Eulerian paths, the procedure
CloudedPath(G,T,C) returns nothing.

14 cloudSPAdes outline
cloudSPAdes takes a set of barcoded reads Reads and integers k, LT ,
LT+ as an input. The pseudocode in Figure 14.1 outlines the steps of the
cloudSPAdes algorithms.

15 Information about the datasets
The YEAST dataset contains 22,223,405 paired-end Illumina reads (read
length 71, average insert length 309), all of which are barcoded. (the
barcode length is 18 nt). The SLR library for the YEAST dataset includes
1,044,855 containers.

The STAPH dataset contains 16,043,114 paired-end Illumina reads
(read length 116, average insert length 168), all of which are barcoded.
(the barcode length is 18 nt). The SLR library for the STAPH dataset
includes 651,927 containers.

The ECOLI dataset contains 4,641,046 paired-end Illumina reads
(read length 71, average insert length 299), all of which are barcoded.
(the barcode length is 18 nt). The SLR library for the ECOLI dataset
includes 406,270 containers.

The MOCK5 dataset contains 107,022,096 paired-end Illumina reads
(read length 150, average insert length 380), 101,416,640 out of them
are barcoded. (the barcode length is 16 nt). The SSLR library for the
MOCK5 dataset includes 1,659,903 containers. Table 15.1 presents
species abundances for the MOCK5 dataset (Danko et al., 2019).

The MOCK20 dataset contains 166,268,091 paired-end Illumina
reads (read length 135, average insert length 409), 163,213,517 out of
them are barcoded. (the barcode length is 16 nt). The SSLR library for
the MOCK5 dataset includes 2,169,937 containers. Since some of the
19 similar genomes have low abundances (and/or significantly differ from
similar genomes), we selected 10 out of 19 genomes with at least 96%
genome fraction (as reported by metaQUAST) as the reference genomes
for the MOCK20 dataset. Table 15.2 presents species abundances for the
MOCK20 dataset (Bishara et al., 2018).

The GUT dataset contains 152,445,141 paired-end Illumina reads
(read length 150, average insert length 411), 131,165,841 out of them
are barcoded. (the barcode length is 16 nt). The SSLR library for the GUT
dataset includes 2,334,485 containers.

Since the individual genomes forming the GUT dataset are unknown,
we attempted to infer them using the assembled genomes from the RefSeq
database (O’Leary et al., 2016). Specifically, we extracted 27 genomes
from this database that share at least 80% of their k-mers with contigs
assembled by metaSPAdes launched on the GUT dataset (with k=55). We
used the Mash tool (Ondov et al., 2016) to estimate the fraction of shared
k-mers. We then used metaQUAST to estimate the genome fraction of
the selected 27 assemblies covered by metaSPAdes contigs. Afterwards,
we selected 13 out of 27 genomes with at least 90% genome fraction and
at most 20 metaSPAdes misassemblies (as reported by metaQUAST) as
the reference assemblies for the GUT dataset. The rationale for retaining
only references with 20 or less metaSPAdes misassemblies is that large
numbers of assembly errors are likely caused by differences with the
reference genomes making such diverged references inappropriate for our
benchmarking (previous benchmarking studies revealed that metaSPAdes
is rather accurate). Finally, we broke contigs in the reference assemblies
along the regions that were poorly covered by paired-end reads (less than
20% of the mean coverage).

Data availability

All sequencing reads from this study are available at https://s3.
us-east-2.amazonaws.com/readclouds/cloudspades_data.

tar.gz.

Organism reported DNA fraction
Escherichia coli 0.2939
Enterobacter cloacae 0.3117
Micrococcus luteus 0.1219
Pseudomonas antarctica 0.1148
Staphylococcus epidermidis 0.1557

Table 15.1. Species abundances for the MOCK5 dataset.

https://s3.us-east-2.amazonaws.com/readclouds/cloudspades_data.tar.gz
https://s3.us-east-2.amazonaws.com/readclouds/cloudspades_data.tar.gz
https://s3.us-east-2.amazonaws.com/readclouds/cloudspades_data.tar.gz

cloudSPAdes 21

Figure 13.1 Pseudocode of the CloudedPath algorithm. Procedure StartEndMatrix(G,T, V ertex) computes the start-end matrix for a vertex
V ertex, graphG and transition set T . MergeMartices(G,T,Matrices,Ordering) construct the start-end matrix of the vertex from the start-end
matrices Matrices of its children with ordering Ordering as described above. UniquePath(G,T, s, e, BlockTreeRoot) returns the Clouded
Eulerian Path with the starting edge s and the ending edge e by performing a backtracking procedure using block tree with root BlockTreeRoot.

1: procedure CloudedPath(G,T,C)

2: BlockTreeRoot← BlockTree(C)

3: StartEndMatrix← StartEndMatrix(G,T,BlockTreeRoot)

4: if there are s, e such that StartEndMatrixs,e = 1 and StartEndMatrixi,j = 0 for all i 6= s, j 6= e then
5: return UniquePath(G,T, s, e, BlockTreeRoot)

6: else
7: return ∅
8:
9: procedure StartEndMatrix(G,T, V ertex)

10: if V ertex = {e} then
11: return matrix A with a single element Ae,e = 1

12: Children← children of V ertex
13: Matrices← EmptyList

14: for all Child ∈ Children do
15: add StartEndMatrix(G,T,Child) to Matrices

16: if Ordered(V ertex) then
17: return MergeMatrices(G,T,Matrices,Ordering(V ertex))

18: else
19: StartEndMatrix← EmptyMatrix

20: UniquePaths← empty set
21: for all Ordering in permutations of Children do
22: NewMatrix←MergeMartices(G,T,Matrices,Ordering)

23: StartEndMatrix = StartEndMatrix+NewMatrix

24: return StartEndMatrix

Organism reported DNA fraction
Streptococcus mutans 0.18
Porphyromonas gingivalis 0.18
Staphylococcus epidermidis 0.18
Escherichia coli 0.18
Rhodobacter sphaeroides 0.18
Bacillus cereus 0.018
Pseudomonas aeruginosa* 0.018
Streptococcus agalactiae 0.018
Clostridium beijerinckii 0.018
Staphylococcus aureus 0.018
Acinetobacter baumannii** 0.0018
Neisseria meningitidis 0.0018
Propionibacterium acnes 0.0018
Helicobacter pylori 0.0018
Lactobacillus gasseri 0.0018
Bacteroides vulgatus 0.0002
Deinococcus radiodurans 0.0002
Actinomyces odontolyticus 0.0002
Bifidobacterium adolescentis 0.0002
Enterococcus faecalis 0.0002

Table 15.2. Species abundances for the MOCK20 dataset.

16 Analysis of SSLRs
Although all SLR technologies follow the pipeline illustrated in Figure
1, they differ in the mean fragment length (fragmentLength), mean
coverage of each fragment by short reads (coverage), mean number of
fragments in a single container (fragmentNumber), and the number of
containers (containerNumber). For example, the TSLR technology is
characterized by the following typical parameters: fragmentLength =

10 kb, fragmentNumber = 300, containerNumber = 384,
coverage = 10x (Bankevich and Pevzner, 2016; McCoy et al., 2014;
Kuleshov et al., 2014). In contrast, the SSLR technology is characterized
by the following typical parameters: fragmentLength = 80 Kb,
fragmentNumber = 10, containerNumber = 1, 500, 000,
coverage = 0.05x (Kuleshov et al., 2016; Mostovoy et al., 2016).

The SSLR parameters listed above represent typical values that may
significantly deviate from parameter that characterize a specific SSLR
dataset. For example, SSLR libraries for eukaryotic genomes have
very different parameters (fragmentLength, fragmentNumber,
coverage) than metagenomic SSLR libraries, moreover, different
metagenomic SSLRs may have very different parameters. These
differences suggest that, to generate a good assembly, one should take
into account the parameters of a specific dataset. Below we analyse SSLR
parameters of various metagenomic samples.

Estimating parameters of SSLR datasets.

Given a set of reference genomes forming a metagenome, we map all short
reads from a single container to these references. We use the Lariat SSLR
aligner (Bishara et al., 2015) to filter out multiple alignments of barcoded
reads.

We use the short read alignments to estimate the unknown
fragmentLength, fragmentNumber and coverage parameters of

22 cloudSPAdes

Figure 14.1 The pseudocode of the cloudSPAdes algorithm. AssemblyGraph(Reads, k) constructs the assembly graph using metaSPAdes.
ContractedGraph(DB,LT) contracts all edges shorter than LT in the assembly graph DB. T∗(DB) infers transitions from DB and
eliminates false transitions as described in Appendix 4. Clouds∗(Graph, Transitions,Reads) extracts putative clouds from the contracted
assembly graph Graph and filters them using Transitions as described in Appendix 7. CloudedPath(Graph, Transitions, Clouds)

reconstructs clouded Eulerian path in Graph as described in Appendix 13. Construction of the gap subgraph between consecutive edges
e1 and e2 is described in Appendix 8. Contigs(DB,Reads) applies exSPAnder algorithm to generate contigs from the assembly graph
and paired-end reads. Scaffolds(Contigs, PathsLT , LT) merges given Contigs using consecutive pairs from PathsLT as described in
Appendix 9. CloseGaps(Scaffolds,Reads) closes gaps in Scaffolds using paired-end barcoded reads Reads as described in Appendix 10.
MergeScaffolds(Scaffolds, LT) merges Scaffolds by constructing the contracted assembly graph on scaffold edges longer thanLT as described
in Appendix 9.

1: procedure cloudSPAdes(Reads, k, LT, LT+)

2: DB ← AssemblyGraph(Reads, k) . constructing assembly graph using metaSPAdes
3: DBLT+ ← ContractedGraph(DB,LT+) . constructing contracted assembly graph on ultralong edges
4: TransitionsLT+ ← T∗(DBLT+ , Reads) . constructing transitions on ultralong edges
5: Components← weakly connected components of DBLT+

6: PathsLT+ ← empty set of paths
7: for all Component in Components do
8: Clouds← Clouds∗(Component, TransitionsLT+ , Reads) . generating clouds
9: Path← CloudedPath(Component, TransitionsLT+ , Clouds) . constructing clouded Eulerian path
10: add Path to PathsLT+

11: PathsLT ← empty set of paths
12: DBLT ← ContractedGraph(DB,LT) . constructing contracted assembly graph on long edges
13: TransitionsLT ← T∗(DBLT , Reads) . constructing transitions on long edges
14: for all pair of consecutive edges (e1, e2) in PathsLT do
15: Subgraph← GapSubgraph(DBLT , e1, e2) . getting gap subgraph between e1 and e2
16: Clouds← Clouds∗(Subgraph, TransitionsLT , Reads) . generating putative clouds
17: Path← CloudedPath(Subgraph, TransitionsLT , Clouds) . constructing clouded Eulerian path
18: add Path to PathsLT

19: Contigs← Contigs(DB,Reads) . constructing metaSPAdes contigs
20: Scaffolds← Scaffolds(Contigs, PathsLT , LT) . scaffolding contigs using paths in DBLT

21: Scaffolds← CloseGaps(Scaffolds,Reads) . closing gaps within scaffolds
22: Scaffolds←MergeScaffolds(Scaffolds, LT) . merging scaffolds
23: Scaffolds← CloseGaps(Scaffolds,Reads) . closing gaps in merged scaffolds
24: return Scaffolds

a SSLR library. We use single linkage clustering to partition the mapped
reads into clusters corresponding to alignments of (unknown) fragments
to reference genome. Two reads are combined into the same cluster if
they are mapped to the same genome and the distance between them does
not exceed a threshold Distance (see the description of the threshold
selection procedure below).

We further compute the span of each of the resulting clusters (as the
distance between its endpoints) and limit attention to clusters of length at
leastminSpan (the default value is 2000). Span of the cluster corresponds
to the fragmentLength parameter. We estimate the coverage of a
cluster as the ratio of total read length falling into this cluster and its span.
We estimate fragmentNumber as the number of resulting clusters.

Setting the default value for the Distance parameter.

There is a trade-off between selecting small and large values of the
Distance parameter. Small values of Distance lead to fragmented
clusters, while large values lead to combining multiple clusters into a
single one, thus creating false clusters.

We estimate an optimal value of Distance using the median span of
the clusters. Typically, the median span of the clusters increases with the
increase ofDistance because the set of clusters corresponding to a single
read cloud becomes less fragmented. Since there are few collisions, we
presume that two distinct read clouds rarely merge even at high values
of Distance. Therefore the increase of the mean span of the clusters

with the growth should decline when Distance is equal to maximum
fragmentLength.

Figure 16.1 illustrates this point and reveals a slight drop in the rate of
the cluster span growth aroundDistance = 40 kb for the MOCK5 dataset
and Distance = 5 kb for the GUT dataset, making them reasonable
parameter choices for cluster construction. Figure 16.2 shows the cluster
span distribution for different values of Distance.

SLR statistics of metagenomic datasets.

Figures 16.3, 16.4 and 16.5 show the distribution of spans of the resulting
clusters (fragmentLength), the distribution of the number of clusters
(fragmentNumber) per container, and the distribution of the coverage
of clusters (coverage) for the MOCK5 and GUT datasets. For GUT
dataset, we use contigs longer than 50kb from 16 inferred reference
assemblies to obtain cluster statistics. These Figures illustrate that the
SSLR statistics of different metagenomic datasets are quite different. Thus,
each SSLR metagenome assembler has to adapt to parameters of a specific
SSLR dataset.

SLR statistics per reference.

Figures 16.7 and 16.6 show the distribution of spans of the clusters
(fragmentLength), the distribution of the coverage of clusters
(fragmentCoverage), and the distribution of the number of clusters
(fragmentNumber) per container for four reference genomes in

cloudSPAdes 23

Fig. 16.1: Distribution of the median cluster length for the MOCK5 (left) and GUT (right) datasets.

Fig. 16.2: Distribution of the cluster spans for different values of Distance for the MOCK5 (left) and GUT (right) datasets.

MOCK5 dataset. As these Figures illustrate there are significant variations
in the SSLR parameters across various genomes within the same
metagenomic dataset.

Fig. 16.3: Distributions of cluster spans (in the
decimal logarithmic scale) for the GUT, MOCK20
and MOCK5 datasets. Mean cluster length is 1, 218

for GUT dataset, 5, 707 for MOCK20 dataset and
39, 139 for MOCK5 dataset.

24 cloudSPAdes

Fig. 16.4: Distribution of the number
of clusters per container for the GUT,
MOCK20 and MOCK5 datasets.

Fig. 16.5: Distribution of cluster coverage
(in the decimal logarithmic scale) for the
GUT, MOCK20 and MOCK5 dataset. The
mean cluster coverage is 0.83 for GUT dataset,
0.38 for MOCK20 dataset and 0.05 for
MOCK5 dataset

Fig. 16.6: Distribution of the number of
clusters per container for four reference
genomes in the MOCK5 dataset. Reference
genomes are represented by their RefSeq IDs.

17 Benchmarking on simulated datasets
We have simulated 13 datasets with various fragmentLength,
coverage, fragmentNumber, and containerNumber parameters
based on the MOCK5 dataset to demonstrate how SSLR library parameters
affect tool performance. Given these four parameters, parameters
readLength and insertSize, and reference genomes, simulating
process performs the following steps:

1. The total number of fragments TotalFragments is defined as
fragmentNumber · containerNumber.

2. From every reference genome fraction · TotalFragments
fragments are generated, where fraction is the DNA fraction of the
genome in the dataset (in the case of MOCK5 dataset, fractions from
Table 15.1 were used). Every fragment f corresponds to a substring
of the reference genome, and is assigned length length(f), number
of corresponding read-pairs reads(f), container container(f) and
a start position in the reference start(f).

3. Length length(f) is drawn from an exponential distribution with the
rate λ = 1

fragmentLength
.

4. Number of read-pairs reads(f) is drawn from the Poisson
distribution with the rate λ =

coverage·length(f)
2readLength

5. Container container(f) is drawn from a uniform distribution
unif{0, containerNumber}.

6. Start position start(f) is drawn from a uniform distribution
unif{0, length(Genome)}.

7. For every fragment f , reads(f) read-pairs are generated. Every
read-pair read corresponds to a substring of the genome string,
starting from position start(read) which is drawn uniformly from
the segment [start(f), start(f)+length(f)−insertSize]. Every
read-pair is assinged a barcode marking container(f).

We used parameters fragmentLength = 10000, coverage =

0.1, fragmentNumber = 10, containerNumber = 50000,
readLength = 150, and insertSize = 400 for a baseline
simulated dataset. We created 3 additional datasets for every SSLR
parameter (fragmentLength, coverage, fragmentNumber, and
containerNumber) by changing the value of that parameter and leaving
other parameters from the baseline dataset unchanged. We refer to
the simulated dataset by the name and value of its changed parameter
(e.g. dataset (Fragment length, 20000) denotes simulated dataset
with parameters fragmentLength = 20000, coverage = 0.1,
fragmentNumber = 10, containerNumber = 50000). Figure
17.1 shows mean NGA50 metric per reference and mean number of
misassemblies per reference for metaSPAdes, Athena, cloudSPAdes,
Architect, ARCS and Supernova for every simulated dataset. All tools
except Architect demonstrate stable performance against changes of
fragmentNumber and containerNumber parameters. All tools
except Architect show lower NGA50 on the (Fragment length, 20000)

dataset than on the (Fragment length, 10000) dataset.

cloudSPAdes 25

Fig. 16.7: Distribution of cluster spans (left) and the coverage of clusters (right) for four reference genomes in the MOCK5 dataset. Reference
genomes are represented by their RefSeq IDs.

26 cloudSPAdes

Fig. 17.1: Assembly statistics for the simulated datasets. (First layer) Mean NGA50 (left) and mean number of misassemblies (right) for given
fragment length. (Second layer) Mean NGA50 (left) and mean number of misassemblies (right) for given fragment coverage. (Third layer) Mean
NGA50 (left) and mean number of misassemblies (right) for given number of fragments. (Fourth layer) Mean NGA50 (left) and mean number of
misassemblies (right) for given number of containers.

	Density and recall of a transition-set
	Containment index
	Split index
	Transition elimination
	Estimating thresholds for eliminating transitions
	Repairing the cloud breaks
	Filtering clouds in the contracted assembly graph.
	Fragmentation of the contracted assembly graph
	Combining information about clouds with information about read-pairs
	Closing gaps between long edges
	Solving the Cloud Permutation Problem
	Analyzing incomplete cloud-sets
	Clouded Eulerian Path Problem
	cloudSPAdes outline
	Information about the datasets
	Analysis of SSLRs
	Benchmarking on simulated datasets

