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Supplementary Notes 

Supplementary Note. S1. The limitations of HiCPlus and comparison to hicGAN. 

In our paper, the primary purpose of our work is to enhancing resolution of the low resolution 

Hi-C data to high resolution Hi-C data, which is essentially an image-enhancing problem. 

HiCPlus [1] is the only previous work so far that applies a convolutional neural network (CNN) 

for enhancing the resolution of Hi-C data by minimizing the mean squared error (MSE) 

between generated Hi-C data and real high resolution Hi-C data. However, it still has three 

major limitations. 

  First, HiCPlus takes MSE, one of the widely used pixel-wise measurements, as the objective 

function. Previous studies about generative models, especially in vision, have already 

demonstrated that using 𝐿2 loss function, such as MSE, tends to yield blurry images [2-5]. 

The Hi-C samples generated by HiCPlus were indeed blurry compared to the high resolution 

Hi-C data in the original paper, which may result in losing some importance structure 

information. The MSE is not recommended as an ideal objective function in the task of image 

synthesis and image super-resolution [2-5]. To avoid this, our hicGAN model does not optimize 

any pixel-wise measurement such as MSE. Instead, we introduced another discriminator 

network to help discern the generated Hi-C data from real high resolution Hi-C data. Hi-C 

images generated by hicGAN are be more realistic compared to Hi-C images generated by 

HiCPlus. 

  Second, the network architecture of HiCPlus is a convolutional neural network that contains 

three convolutional layers and a fully-connected layer. The input of HiCPlus will go through 

three convolutional layers and then be flattened as a fixed dimensional vector. Due to the 

existence of the fully-connected layer, the input size is fixed in both training and test processes. 

If one needs to enhance the resolution of Hi-C data within a relatively large genomic region, 

HiCPlus has to divide the large genomic region into small patches and enhance each patch 

respectively. Then the enhanced patches need to be reconstructed again. It is not user-friendly 

at all. The generator network of our hicGAN model is a fully convolutional network without 

any fully-connected layer. Our model has the ability to enhance any size of the insufficient 

sequenced Hi-C sample, which is much convenient for an enhancing task. 

  Third, also the most important is that HiCPlus applied no normalization to the raw Hi-C raw 

contacts count. So it is quite sensitive to the sequencing depth of the Hi-C data. For example, 

when low resolution Hi-C data in the training process and the low resolution Hi-C data in the 

test process have different sequencing depth, HiCPlus typically performs badly. This severely 

restricts the generalization and wide use of HiCPlus. In our model hicGAN, we eliminated the 

effect of sequencing depth by designing a normalization procedure in details. The sequencing 

depths of different cell type vary a lot, our hicGAN still achieves superior performance in the 

cross-cell-type experiments. 

  Although HiCPlus is the pioneer work for enhancing the resolution of Hi-C data with a 

computational framework, it still contains some major limitations. Our hicGAN model 

overcomes the above limitations, thus can be considered as a new tool for processing Hi-C data. 
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Supplementary Figures 

 

 

 

Supplementary Fig. S1. The performance of hicGAN and HiCPlus under different genomic 

distance considering the MSE measurement. At the genomic distance of 0 (diagonal Hi-C 

samples), hicGAN achieves an average MSE of 0.0078, compared to 0.0144 of HiCPlus (*One-

sided Mann-Whitney U test, p-values=1.1110-11). Our hicGAN model outperforms HiCPlus 

by a significantly larger margin at a further genomic distance.  
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Supplementary Fig. S2. The performance of hicGAN and HiCPlus under different genomic 

distance considering the PSNR measurement. At the genomic distance of 0 (diagonal Hi-C 

samples), hicGAN achieves an average PSNR of 23.89 dB, compared to 22.92 dB of HiCPlus 

(*One-sided Mann-Whitney U test, p-values=0.0012). Our hicGAN model outperforms 

HiCPlus by a larger margin at a further genomic distance.  
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Supplementary Fig. S3. The performance of hicGAN and HiCPlus under different genomic 

distance considering the SSIM measurement. At the genomic distance of 0 (diagonal Hi-C 

samples), hicGAN achieves an average SSIM of 0.731, compared to 0.694 of HiCPlus (*One-

sided Mann-Whitney U test, p-values=1.5210-4). Our hicGAN model outperforms HiCPlus 

by a larger margin at a further genomic distance.  
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Supplementary Fig. S4. We showed two examples of the Hi-C data predicted by hicGAN. We 

extracted two genomic regions (chr19:12-14M and chr20:30.5-32M) from down-sampled low 

resolution Hi-C data (left), Hi-C data predicted by hicGAN model (middle), high resolution 

Hi-C data (right), respectively. The Hi-C matrices predicted by hicGAN are similar to high 

resolution Hi-C matrices.  
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Supplementary Fig. S5. The Venn plot of the significant chromatin loops from high resolution 

Hi-C data and Hi-C data predicted by hicGAN model in K562 cell type using Fit-Hi-C software 

with a strict threshold (q-value<1e-06). Note that low resolution Hi-C data can only recover 

3.73% of chromatin loops from high resolution Hi-C data. 
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Supplementary Tables 

Supplementary Table. S1. The detailed hyperparameters of generator network of hicGAN 

model. The input and the output have exactly the same size. Each inner element-wise sum in 

a residual block (RB) will take a summation of the RB’s input and the output of the RB’s 

second convolutional layer in an element-wise manner. The outer element-wise sum will take 

a summation of the output of the first convolutional layer and the output of the previous layer 

in an element-wise manner. W and h are both set to 40 in the training process. No 

limitations on W and h in the test process. The filter size 3 is fixed by hyperparameter 

tuning. 

 

Layer Output shape Configuration 

Input w × h × 1  

Convolution w × h × 64 3 × 3 conv, stride=1,num=64 

Residual  

Block 1 

Convolution w × h × 64 
3 × 3 conv, stride=1,num=64 

Batch normalization 

Convolution w × h × 64 
3 × 3 conv, stride=1,num=64 

Batch normalization 

Element-wise Sum w × h × 64  

Residual Block 2 w × h × 64 The same as above 

… … … 

Residual Block 5 w × h × 64 The same as above 

Convolution w × h × 64 
3 × 3 conv, stride=1,num=64 

Batch normalization 

Element-wise Sum w × h × 64  

Convolution w × h × 128 3 × 3 conv, stride=1,num=128 

Convolution w × h × 256 3 × 3 conv, stride=1,num=256 

Convolution w × h × 1 3 × 3 conv, stride=1,num=1 
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Supplementary Table. S2. The detailed hyperparameters of discriminator network of 

hicGAN model. It contains three convolutional blocks (CBs). The size will reduce by half 

after entering each CB. Then it is flattened before going through two fully-connected layers. 

The output is a single value which denotes the probability that the input sample is from real 

high resolution Hi-C data. The filter size 3 is fixed by hyperparameter tuning. 

 

Layer Output shape Configuration 

Input w × h × 1  

Convolution w × h × 64 
3 × 3 conv, stride=1,num=64 

Leaky ReLu 

Convolutional 

Block 1 

Convolution w/2 × h/2 × 64 

3 × 3 conv, stride=2,num=64 

Leaky ReLu 

Batch normalization 

Convolution w/2 × h/2 × 64 

3 × 3 conv, stride=1,num=64 

Leaky ReLu 

Batch normalization 

Convolutional 

Block 2 
w/4 × h/4 × 64 The same as above 

Convolutional 

Block 3 
w/8 × h/8 × 64 The same as above 

Flatten (w/8 × h/8 × 64) × 1 Flattened as a vector 

Dense 512 Fully-connected, num=512 

Dense 1 
Fully-connected, num=1 

Sigmoid function 
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Supplementary Table. S3. Information of Hi-C datasets across four cell types used in our 

experiments. Each cell type contains multiple experiments, we pooled the aligned sequencing 

reads from each experiment together before data preprocessing. 

 

Cell type GEO accession Raw contacts 

GM12878 

(total contacts: 

2,634,479,637) 

Experiment 1 GSM1551550 148,358,011 

Experiment 2 GSM1551551 232,985,572 

Experiment 3 GSM1551552 393,983,023 

Experiment 4 GSM1551553 130,829,245 

Experiment 5 GSM1551554 247,790,014 

Experiment 6 GSM1551555 126,776,812 

Experiment 7 GSM1551556 148,770,483 

Experiment 8 GSM1551557 162,374,252 

Experiment 9 GSM1551558 94,570,176 

Experiment 10 GSM1551559 46,510,588 

Experiment 11  GSM1551560 45,743,329 

Experiment 12 GSM1551561 144,362,539 

Experiment 13 GSM1551562 60,768,266 

Experiment 14 GSM1551563 221,733,196 

Experiment 15 GSM1551564 99,684,024 

Experiment 16 GSM1551565 98,965,718 

Experiment 17 GSM1551566 126,146,087 

Experiment 18 GSM1551567 104,128,302 

K562 

(total contacts: 

932,208,867) 

Experiment 1 GSM1551618 310,243,422 

Experiment 2 GSM1551619 389,060,442 

Experiment 3 GSM1551620 64,453,847 

Experiment 4 GSM1551621 52,564,216 

Experiment 5 GSM1551622 50,840,830 

Experiment 6 GSM1551623 65,046,110 

IMR90 

(total contacts: 

1,136,673,301) 

Experiment 1 GSM1551599 179,593,204 

Experiment 2 GSM1551600 199,657,173 

Experiment 3 GSM1551601 21,641,031 

Experiment 4 GSM1551602 94,002,885 

Experiment 5 GSM1551603 190,666,866 

Experiment 6 GSM1551604 213,069,892 

Experiment 7 GSM1551605 238,042,250 

NHEK 

(total contacts: 

664,899,299) 

Experiment 1 GSM1551614 171,515,191 

Experiment 2 GSM1551615 196,697,990 

Experiment 3 GSM1551616 296,686,118 
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Supplementary Table. S4. p-values of two statistic tests between different methods. All the 

hypothesis tests are one-sided and performed based on the Pearson correlation coefficient 

(PCC) under different genomic distance (from 0 to 1Mb, 100 points in total). In the first test, 

we count the number of cell lines that our method hicGAN outperforms a HiCPlus and then 

perform a binomial exact test with the alternative hypothesis that the probability that our 

method outperforms the baseline is greater than 0.5. In the second test, we apply a Mann-

Whitney U test with the alternative hypothesis that the PCCs achieved by our method have a 

positive shift when compared with those of HiCPlus. 

 

Statistical test hicGAN vs HiCPlus 

Exact binomial test 2.210-16 

Mann-Whitney U test 7.910-07 

 

 

Supplementary Table. S5. p-values of two statistic tests between hicGAN models trained in 

different cell types and 2D Gaussian. All the hypothesis tests are one-sided and performed 

based on the Pearson correlation coefficient (PCC) under different genomic distance (from 0 

to 1Mb, 100 points in total). In the first test, we count the number of cell lines that hicGAN 

outperforms 2D Gaussian and then perform a binomial exact test with the alternative 

hypothesis that the probability that hicGAN outperforms 2D Gaussian is greater than 0.5. In 

the second test, we apply a Mann-Whitney U test with the alternative hypothesis that the 

PCCs achieved by hicGAN have a positive shift when compared with those of 2D Gaussian. 

Note that the hicGAN models were all trained in GM12878. The cross-cell-type prediction 

performances only decreased slightly. 

 

Statistical test GM12878 K562 IMR90 NHEK 

Exact binomial test 2.210-16 2.210-16 2.210-16 2.210-16 

Mann-Whitney U test 8.610-20 1.210-18 7.510-16 8.210-19 

 

 

Supplementary Table. S6. p-values of two statistic tests between hicGAN models trained in 

assembled cell types and single cell type (K562). All the hypothesis tests are one-sided and 

performed based on the mean squared error (MSE) under different genomic distance (from 0 

to 1Mb, 100 points in total). 

 

 Statistical test assembled cell types vs single cell type 

Exact binomial test 3.710-08 

Mann-Whitney U test 1.510-05 


