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Supplementary Material

1 Algorithm to attach new taxa

Alg. 1 is called to enumerate the ways to connect every attachment at(x) = it(z) Urt(z) € H(x)
to current backbone network. To find the positions where = can be connected to, we generate a list,
S, of height-taxon pairs, or HT pairs, according to the overall EHM .#. Each HT pair (h/, 2)
indicates, there is a tree node at a certain height 4’ to be the common ancestor of both = and . A
HT pair (h', 2’) is resolved, when there is a tree node in W’ which is a common ancestor of both x
and 2/, such that the height of that node is 2’ within a tolerance.

We copy current backbone network to a draft network W’. We modify the draft network by
inserting nodes in rt(x) to V', and leaf labeled by x is connected to the draft network and thereby
resolves HT pairs. The height of inserted node is set to the height of HT pair. We resolve HT pairs
from lowest height. We enumerate the ways to resolve HT pairs by permuting nodes in rt(x), then
use depth first search algorithm to search where to connect a node in rt(x).

Enumerate (Alg. 1) computes .77 as well as calls the depth first search algorithm Enumerat-
eDFS (Alg. 2).



Input: Network W 5. Full EHM .#. Taxon z. Tolerance ¢..
Output: Set of networks (2.
O« 0
H <[]
foreach Taxon 2/ € 2°(Vp) do
foreach Height h € ./ (z,2') do
Append (h, ') to A,
end
end
Sort 77 according to heights of the entries in ascending order;
Draft network ¥/ < U g;
foreach at(z) = (it(z) Urt(x)) € H(x) do
foreach Permutation v = (ry,ra,---) where r1,ro,- -+ € rt(x) do
Remove the height of 71,79, - -;
Q + QU EnumerateDFS (V' at(z),r, 7, z,€);
end
end

return ();
Algorithm 1: Enumerate.



Input: Draft network ¥’. Attachment at. List 7 of rt nodes in at. List of HT pairs .7#. Taxon x.
Tolerance e.
Output: Set of networks 2.
Q<0
// Clone current draft network and check whether to store it.
U \I/’;
Remove nodes with in-degree 0 in ¥” until the only node with in-degree 0 is the root;
Remove binary nodes in ¥”;
if U has no cycle and W" has no negative branch length then Q < QU {¥”} // If no more
nodes to connect, no more search.
if r is empty then return Q .#y: <+ extended height matrix of ¥’;
// Remove all resolved HT pairs.
while 7 is not empty do
(W, ") « first HT pair in J¢;
if 1/ exists in My (x,t") within tolerance € then Remove (h/,t") from .72
end
// If all HT pairs are resolved, no more search.
if 77 is empty then return() // Otherwise resolve the unresolved HT pair
with lowest height.
(W', t") < first HT pair in 57
b + first node in r and remove first node from r;
// b must have one child according to definition of attachment.
b' < child of b;
h(b) < h/;
if ' is a tree node then by, by < children of b // Enumerate the ways to resolve
current HT pair.
for k € {1,2,3} if V/ is a tree node else k € {3} do
if &£ < 2 then Delete edge (V/, b)) foreach e = (u,v) € &(¥') and e ¢ at do
if h(u) > A’ > h(v) then
Break (u,v) into (u, b) and (b, v);
Q + QU EnumerateDFS (V' at, r, 7, x, €);
Restore (u,v);
end
end
if £ < 2 then Restore edge (V/, b))
end
Restore b in 7;

return );
Algorithm 2: EnumerateDFS.



2 Reducing the number of subproblems

In the main text, we formulated the problem of reducing the number of trinets to build and posed
it as an instance of the Hitting Set Problem. We implemented the following greedy heuristic for
solving the problem given an input set ¢ of gene trees:

o A+ (I
e foreach e € &(9)

— if e is not covered by an element in A
x Let {x1, 29, 23} C 2 be an arbitrary element that covers ¢;
* A+ AU {{I1,$2,$3}};

e return A;

After A is generated by the greedy heuristic, we compute A’ by the mapping S from alleles in
gene trees to leaves in the full network using another greedy heuristic:

o N «— ()
e foreach {z,, 25, 23} € A
- o, ah, xf  S(x1), S(x2), S(x3)
it {2, 2, 23} = 3
x A AU {{a],xh, 25} };

else if |{z], 2}, 24} = 2

* Replace one of repeated species with the outgroup;
« A AU {{a],xh, 25} };

else if |{z], z}, 24} =1

* Discard;
e return A\’;

To check whether the set of inferred subnetworks is sufficient to be used by the merger algo-
rithm, we use the following algorithm Enrich to find additional subnetworks needed. Enrich is a
naive version of merger algorithm: instead of building a network, it builds a binary tree according

Wy, -+, War. If it cannot build a binary tree, it provides a set of additional subnetworks needed.
o N @;
e Reconcile heights of nodes in Wy, - -+, W|ar;

e Combine EHMs .Zy,, . .. "///‘I’\M into ./ ;

Let M be the height matrix with same dimension as .#, and let M (z, y) to be the first item
of A (x,y) if A (x,y) exists; otherwise M (z,y) = oo;
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Select a starting network W, from Wy, - -+, War;

Let x1, x9, x3 be the taxon of W, such that M (xq, x2) < min(M (z1, z3), M (xq, x3));

Build a tree T" of x1, x5, x3, whose internal node is the parent of z; and x5 with height
M (x4, x5), and the height of its root is the same as V,;

Let Order be the order of leaf addition computed from Wy, - -, W)as;

foreach z in Order

x' < arg min,, {M (x,2’)} such that 2’ is in T’
if M(z,2") = o0

x foreach node pin T

- 1, z < two arbitrary taxa separated by p;
C A= AU {2t
* return A’

else if Jp such that p is an ancestor of 2’ and |M (z, z") — h(p)| < €

x foreach pair of taxa y and z separated by p
A~ AN U{{z,y,2}}
x return A’

else

x Add a leaf labeled by = to T by creating a common ancestor p of z and z’ such
that h(p) = M (x,2');

e return ();

Finally we can change our first step into ReducedSubnetworkInference. (Alg. 3). In this
version, the first batch of subnetworks are inferred from A’. Then we call Enrich to enrich the
set of subnetworks iteratively. After running this version of first step, the selected starting network
and order of leaf addition from the last call of Enrich is kept, and the merger algorithm needs to
use the same starting network and order of leaf addition.



Input: Multilocus sequence alignments Sy, - - -, .S,,.
Output: List of subnetworks.

g1, ,gm < gene tree inference given Sy, - -+ , Sy, ;
Get A’ using greedy heuristic from g1, - , Gn;
Infer the subnetwork W, - - -, W)/, with subproblems in A';

A" < Enrich(Vy, - -, ¥|a);
while A” # () do
Infer subnetworks W\arj41, -+, ¥|arj4|av| corresponding to additional triplets;
A+~ AN UA”,
end
return ‘Ifl, IR \II|A/‘,
Algorithm 3: ReducedSubnetworkInference.

3 True networks in the simulation study

Table 1 shows the 24 true networks used in our simulation study. The numbers of reticulations, the
subjective difficulty rankings are given under networks.



Table 1: 24 true networks. The 24 networks selected as the true networks in simulation study, followed

by their subjective difficulties.

E

0 reticulation. Difficulty: Easy.

0 reticulation. Difficulty: Easy.

&

0 reticulation. Difficulty: Easy.

0 reticulation. Difficulty: Easy.

e | O [

I reticulation. Difficulty: Middle. The reticula-
tion is hard to be identified since it only depends
on D.

1 reticulation. Difficulty: Easy.

1 reticulation. Difficulty: Easy.

1 reticulation. Difficulty: Middle. The reticula-
tion is too deep to be correctly identified.




Table 1 Continued

2 reticulations. Difficulty: Easy.

2 reticulations. Difficulty: Middle. The depen-
dency of 2 reticulations makes inference not easy.

T

%

2 reticulations. Difficulty: Middle. The depen-
dency of 2 reticulations makes inference not easy.

2 reticulations. Difficulty: Hard. The reticula-
tions are deep and dependent.

isneunaull

3 reticulations. Difficulty: Easy.

3 reticulations. Difficulty: Middle. The depen-
dency of up 2 reticulations makes inference not

easy.

3 reticulations. Difficulty: Middle. The depen-
dency of 2 reticulations above K and P makes in-

3 reticulations. Difficulty: Hard. The reticula-
tions are deep and dependent.

ference not easy.




Table 1 Continued
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i

4 reticulations. Difficulty: Middle. The number
of reticulations makes inference not easy.

4 reticulations. Difficulty: Hard. The number
of reticulations and dependencies make inference
hard.

r

4 reticulations. Difficulty: Hard. The number
of reticulations and dependencies make inference
hard.

4 reticulations. Difficulty: Hard. The number
of reticulations and dependencies make inference
hard.

-

!

B B S N e O A A

[
. ' —

N

I

5 reticulations. Difficulty: Middle. The number
of reticulations makes inference not easy.

5 reticulations. Difficulty: Hard. The number
of reticulations and dependencies make inference
hard.

I

|
i

5 reticulations. Difficulty: Hard. The number
of reticulations and dependencies make inference
hard.

5 reticulations. Difficulty: Hard. The number
of reticulations and dependencies make inference
hard.




4 An example of the merger algorithm

Here we give a simple example to illustrate the merger algorithm. Fig. S1 shows the true network
with 5 taxa as well as its all (g) = 10 subnetworks with 3 taxa. The subnetworks in Fig. S1(B) are
obtained by restricting W to each combination of 3 taxa. Suppose the input sequence alignments are
restricted to 10 combinations of 3 taxa, and inference algorithm is called. The inferred subnetworks
are shown in Fig. S1. The inferred subnetworks are not necessarily identical to true subnetworks
due to inference errors. Note that reticulation edges are missing in inferred W, U5 and Ws.
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Figure S1: The true network and its subnetworks. (A) The true network W, whose height of each
node is indicated by the ticks. (B) The true subnetworks, whose height of each node is indicated
by the ticks.
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Wi 778 W 7.92 W3
652 6.17
5.33 4.66, 485
422 o
0.97
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9.18 921
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5.99
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Figure S2: The input to the merger algorithm. Values near nodes of subnetworks are the height
of each node. Colored dots indicate the corresponding nodes belong to the same disjoint set.

4.1 Reconciling and summarizing the subnetworks

The first step is to reconcile the heights of nodes in each subnetworks. The disjoint sets of nodes
are generated by mapping nodes in common binets in the subnetworks. Then the height of each
node is assigned according to the average height of nodes in the same set. Fig. S3 shows the
heights of nodes after reconciliation. Some disjoint sets are shown for illustration.

964 964 964

5.99 5.86 5.86

3.97 3.97

1.05

Figure S3: The subnetworks after reconciling their heights. Values near nodes of subnetworks
are the height of each node.

Then, EHM is computed for every subnetwork.



A B C

— [5.03] [5.03,8.17]\ A
My, = ([5.03] — [1.94, 8.17]) B

[5.03,8.17] [1.94,8.17] — C
A B D
- [4.60,8.16] [8.16] A
My, =<[4.60,8.16] - [5.86,8.16]> B
[8.16] [5.86,8.16] — D
A B E
- [4.60,8.16] [9.64]\ A
My, =<[4.60,8.16] — [9.64]) B
[9.64] [9.64] E
A C D
— [5.31,8.16] [8.16] A
My, =<[5.31,8.16] — [2.93,5.86,8.16]) C
[8.16] [2.93,5.86,8.16] — D
A C E
- [5.03,8.17] [9.64]\ A
My, =<[5.03,8.17] — [9.64]> C
[9.64] [9.64] — E
A D E
— [8.16] [9.64]\ A
My, =<[8.16] — [9.64]) D
[9.64] [9.64] — E
B C D
- 2.02,5.86,8.16] [5.86,8.16] B
My, —([2.02, 5.86,8.16] — [2.93,5.86,8.16]) C
[5.86,8.16] [2.93,5.86,8.16] — D
B C E
- [5.99,8.15] [9.64]\ B
My, =<[5.99,8.15] — [9.64]) C
[9.64] [9.64] E
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B D

E
- [5.86,8.16] [9.64]\ B
My, :<[5.86,8.16] — [9. 64]) D
[9.64] [9.64] - E
C D E
- 2.93,5.86,8.16] [9.64]
My,0 =<[2.93, 5.86,8.16] — [9 4])
[9.64] [9.64] E

Finally, an overall EHM .7 is computed. Take the entry (B, C') for an example. The candi-

dates for (B, C) are [5.03,8.17], [5.99, 8.15] and [2.02, 5.86, 8.16]. [2.02,5.86, 8.16] has the most
elements, so it is selected as the entry in the overall EHM.

A B C D E
[4.60, 8.16] [5.03,8.17] [8.16] 9.64]\ A
[4 60,8.16] — [2.02,5.86,8.16] [5.86,8.16] [9.64] | B
M =|1[5.03,8.17] [2.02,5.86,8.16] — [2.93,5.86,8.16] [9.64] | C
8.16] [5.86, 8.16] [2.93,5.86,8.16] — 9.64] | D
[9.64] [9.64] 19.64] [9.64] — E

4.2 Generating a starting network and an order for leaf addition

The “outgroup” is set to E. The score of a subnetwork W; is computed by s(W;)+> 2, ;o d(¥y, V).

Table 2: The computation of score of each subnetwork for starting network selection. The
score of each network is the sum of two terms in the corresponding column.

1 1 [213]4[|5/6[7|8 [9]10
s(0;) I (1|11 j1jof1j1 |11
Z1§j§k d(W;, ;)| 1212|2660/ 6[10][0]|6

Table 2 shows how the score of each subnetwork is computed. The subnetwork W with taxa A,
D, and E, shown in Fig. S4(A) is selected as the starting network because it has the lowest backbone
score. Then we need to generate an order of attaching new leaves. The guide graph whose nodes
are the taxa set, and edges are computed according to reticulations in the subnetworks. Fig. S4(B)
shows the guide graph. Topological sorting yields [B, C] after removing A, D and E.
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Figure S4: A starting network and a guide graph for leaf addition. (A) The starting network,
and its heights of nodes are represented by the nearby values. (B) The guide graph whose nodes
are represented by circles.

4.3 Adding B

Attachments of B is extracted from subnetworks, as shown in Fig. S5. Attachments are clustered
by the number of blue nodes in them. Therefore there are two clusters: {aty,(B), aty.(B)} and
{aty,(B), aty,(B), aty,(B), aty,(B)}. For the first cluster, aty, (B) is chosen (the two items are
equivalent, so either one can be chosen). For the second cluster, aty,(B) is chosen, because the
parent of B has the lowest height in it. Therefore, H(B) = {aty, (B), aty,(B)}.

L 2T)

Figure S5: Attachments of B. Colored nodes and edges belong to an attachment of B in a subnet-
work. Blue nodes are in set 7t(B) of corresponding subnetwork, and red nodes are in set it(B) of
corresponding subnetwork. Attachments surrounded by dotted rectangles are selected in H (B).
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Alg. 1 is called and sorted HT pairs in ¢ are

o (4.60, A)
e (5.86,D)
e (8.16, A)
e (8.16,D)
e (9.64,E)

Enumerate tries to connect attachments in Z with the draft network.

1. aty,(B) is tried. (4.60, A) is resolved, and this yields the network in Fig. S6(A).

2. aty,(B) is tried. In the either permutation, after (4.60, A) is resolved, the draft network is in
Fig. S6(B). The node with in-degree 0 is removed and this yields the network in Fig. S6(A).
Then (5.86, D) and naturally all remaining HT pairs are resolved. This yields network in
Fig. S6(C). The score of the network in Fig. S6(A) is 11, and the score of the network in
Fig. S6(C) is 1, therefore the network in Fig. S6(C) is selected, and after reconciling its
heights of nodes, we get a new backbone network in Fig. S6(D).

©) _ (D) 54

A B D E

Figure S6: Enumeration for B. (A) The stored network when (4.60, A) is resolved. (B) The draft
network when examining aty, (B) with (4.60, A) resolved. The arrows indicate the direction of
branches in the attachment. The dotted branch is removed when storing this network. (C) The
stored network when all HT pairs are resolved. (D) The new backbone network after adding taxon
B and reconciling heights of nodes.
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4.4 Adding C

Attachments of C is extracted from subnetworks, as shown in Fig. S7. Attachments are clustered by
the number of blue nodes in them. There are three clusters: {aty,(C)}, {aty, (C), aty,(C), aty,(C)}
and {aty,(C), aty,o(C)}. For the first cluster, aty,(B) is chosen. For the second cluster, aty, (C)
is chosen (the three items are equivalent, so either one can be chosen). For the third cluster,
aty,,(C) is chosen (the two items are equivalent, so either one can be chosen). Therefore, H(C') =
{a’t‘l’s (C)a at‘lfs (C)7 at‘I’w (C)}

llI1 8.17
5.03
0.95
A B C
9.64
“‘6 8.16
A D E

Figure S7: Attachments of C. Colored nodes and edges belong to an attachment of C in a subnet-
work. Blue nodes are in set 7¢(C') of corresponding subnetwork, and red nodes are in set it(C') of
corresponding subnetwork. Attachments surrounded by dotted rectangles are selected in H(C').

Alg. 1 is called and sorted HT pairs in ¢ are
e (2.02,B)
e (2.93,D)
e (5.03,A)
e (5.86,B)
e (5.86,D)
e (8.16, B)
e (8.16,D)
e (8.17,A)
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e (9.64,E)
Enumerate tries to connect attachments in .7# with the draft network.
1. aty,(C) is tried. (2.02, B) is resolved, and this yields the network in Fig. S8(A).

2. aty,(C) is tried. In the either permutation, (2.02, B) is resolved, then (2.93, D). This yields
both networks in Fig. S8(A)(B).

3. aty,,(C) is tried. Take one permutation in Fig. S8(C) for an example. (2.02, B) is resolved,
and yields Fig. S8(A). Then (2.93, D) is resolved and draft network is in Fig. S8(D), note
that the node with height 3.97 is removed when storing the draft network, so it yields the
network in Fig. S8(F). When resolving (5.03, A), the draft network is in Fig. S8(E), and the
node with height 3.97 creates negative branch length thereby the draft network is discarded.

Note that the topology of the networks in Fig. S8(B)(F) are identical, the only difference is
the height of one reticulation node. The score of the network in Fig. S8(A) is 19, while the score
of the network in Fig. S8(B)(F) is 4, therefore the network in Fig. S6(B)(F) is selected, and after
reconciling the heights of nodes, we get a new backbone network in Fig. S6(G).

A) B)

A BCD E A B C D E

Figure S8: Enumeration for C. (A) The stored network when (4.60, A) is resolved. (B) The
stored network when (4.60, A) and (2.93, D) are resolved. (C) The attachment aty,,(C') and the
permutation of rty,,(C) with indices shown in parentheses. (D)(E) Draft networks when trying
aty,,(C). (F) stored network when trying aty,,(C). (G) The final output.

Since all taxon are in the network in Fig. S6(G), it is the final output of merger algorithm. Its
topology of is identical to the true network, and the heights of its nodes are close to the true ones.
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