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1. Supplementary Method Illustration 

Si 1. Naïve Bayes (NB)  

The Naïve Bayes algorithm is a method of classification by using the Naïve Bayes principle in 

probability theory (He et al., 2017; Lin and Chen, 2013). As an expression model combining prior 

knowledge with new information extraction, it is often used in classification and prediction problems. 

The protein sequence information sample is denoted by an n-dimensional feature vector

1 2{ ,   }nX x x x= ， ，  , C means class, Y  means interface residue, N  means non-interfacial residues. 

According to the Naïve Bayes theorem, the formula of the classifier is as follows. 

( / ) ( / ) ( ) / ( )YP C X P C X P C P X
Y Y

=                           (1) 

Where ( )YP C  means the proportion of the interface residue in the training dataset, ( / )YP X C means 

the portion of non-interfacial interface residue with an attribute value 1 2{ ,   }nx x x， ，  . 

( )P X indicates the probability of 1 2{ ,   }nX x x x= ， ，  in the whole dataset. According to the 

independence of each attribute, the (2) is obtained for classification prediction. 

1

( / ) ( ) ( / ) ( ) / ( )
n

Y Y i Y Y i

i

P C X P C P X C P C P X
=

=                       (2) 

However, Naïve Bayes algorithm requires each attribute to be independent or almost independent, 

which is often difficult to be realized in real practical experiments. Regarding the feature extraction of 

protein-protein interaction sites, each feature attribute is not independent. Therefore, Naïve Bayes is 

often used in the case of small correlation of characteristic attributes. The Naïve Bayes algorithm is 

complicated to achieve a good classification effect when the correlation is too apparent. Based on this, 

the application scope of Naïve Bayes is significantly restricted. 

Si 2. Support vector machine (SVM) 
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Support vector machine (SVM) is a machine learning method, which is based on a statistical theory 

proposed by Vapnik et al. (1997). In recent years, SVM has also been widely used in the field of 

bioinformatics (Chen et al., 2015; Guo et al., 2008; Khan et al., 2017; Kim et al., 2004; Qiu et al., 2018; 

Song et al., 2017; Wan et al., 2016; Yu et al., 2017; Yu et al., 2017b; Yu et al., 2017c; Zamanighomi 

et al., 2017; Zhang and Tang, 2016). The characteristic of this method is to improve the generalization 

ability to learn from the principle of risk minimization. The principle of two classifications using support 

vector machines is to map the input space sample into a high dimensional feature space through a 

nonlinear function and to find an optimal hyperplane in the feature space so that the two classes of 

samples are linearly separable. 

The kernel function ( )i jK x ,x  is used, instead of an inner product, in the optimal classification 

plane. Then the optimal function is obtained. 

* * * *

1

sgn(( ) ) sgn( ( ) )
n

T

i i i j

i

F x w x b y K x b
=

= + = +（ ） ,x                             (3) 

where, sgn means sign function, *b  implies hyperplane offset, i  implies lagrange multiplier, ( )i jK x ,x  

implies kernel function. 

In this study, we use the software package LIBSVM developed by Chang and Lin (2011), which 

can be freely downloaded from http://www.csie.ntu.edu.tw/~cjlin/libsvm/.    

Si 3. Random Forest (RF) 

Random forest (Mayer et al., 2018; You et al., 2015; Yu et al., 2015) is a machine learning 

algorithm ensembled by multiple independent decision trees. Each decision tree is trained by random 

bootstrap. When generating decision trees, nodes are randomly divided into a subset of feature space. 

Because each decision tree is trained based on independent random selection feature subset, there is no 
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need to prune the decision tree to avoid overfitting. Random forests are weighted or averaged by the 

results of all decision trees. Random forests are widely used because of their high accuracy, high noise 

immunity, and fast training speed. The specific algorithms are introduced as follows: (1) From the 

training set, the Bootstrap method is used to select m  samples by being put back and generate 

corresponding decision trees for each sample. (2) Assuming that there are n variables, 1n variables are 

randomly selected from each node of each tree, as the split attribute set of the current node and the best 

variable of classification ability is chosen from the 1n variables to split the current node. (3) Every tree 

grows as far as possible without any pruning. (4) The multiple trees generated above constitute a random 

forest, and the test data is input and classified. The final result of the classification is determined by the 

most output class of the tree species.  
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2. Supplementary Tables 

Table S1. The influence of different parameters on the evaluation index on Dset186. To choose the 

best parameter, the parameter ntree s selected from 100 to 1000 and the tolerance is 100. 

Ntree Acc (%) Se (%) Sp (%) Pr (%) F-Measure MCC 

100 71.0 95.7 46.3 64.1 0.767 0.483 

200 70.3 96.1 44.5 63.4 0.764 0.474 

300 71.8 96.4 47.3 64.7 0.774 0.501 

400 71.7 96.1 47.2 64.5 0.772 0.498 

500 70.4 96.4 44.4 63.4 0.765 0.477 

600 71.5 96.0 46.9 64.4 0.770 0.492 

700 70.9 96.3 45.5 63.9 0.768 0.486 

800 71.6 96.3 47.1 64.5 0.772 0.497 

900 70.9 96.4 45.5 63.9 0.768 0.486 

1000 70.8 96.7 44.8 63.7 0.768 0.487 

From Table 1, we can see that different values of ntree  are chosen, and the prediction results are 

different. For the training dataset Dset186, the maximum prediction accuracy is reached at =300ntree  , 

with a value of 71.8%, 1.5% higher than the Accuracy at =200ntree  , and 0.1% higher than that of 

=400ntree  . When =300ntree  , the values of MCC, Specificity, Precision, and F-Measure achieve 

maximum, 0.501, 47.3%, 64.7% and 0.774 respectively. The maximum operating efficiency is reached 

at =300ntree  . 
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Table S2. The influence of features selection methods. Feature selection has a significant 

improvement on the classification performance. MDS had the most significant effect on the three data 

sets, which is a global algorithm that utilizes the similarity between pairs of samples. The purpose is to 

use this information to construct a suitable low-dimensional space so that the distance between the 

samples in this space and the similarity between the samples in the high-dimensional space are as 

consistent as possible. This result showcased that the importance of feature selection in reducing the 

computational complexity and feature redundancy and improving the prediction performance.   

Dataset Method Acc (%) Se (%) Sp (%) Pr (%) F-Measure MCC 

 

 

Dset186 

Origin 73.1 96.0 54.5 66.8 0.773 0.498 

MDS 79.1 81.7 76.6 77.7 0.784 0.584 

LPP 79.4. 82.2 76.6 77.6 0.799 0.589 

LLE 78.4 81.5 75.2 76.7 0.790 0.567 

FA 78.2 82.7 73.8 75.9 0.792 0.567 

 LDA 76.8 79.1 74.5 75.6 0.773 0.537 

 NPE 76.3 76.1 76.4 76.4 0.763 0.526 

 Autoencoder 58.5 66.1 51.0 57.4 0.614 0.172 

 

 

Dtestset72 

Origin 73.1 90.7 55.5 67.1 0.768 0.493 

MDS 77.1 78.8 75.3 76.2 0.775 0.542 

LPP 76.5 78.2 74.8 75.6 0.769 0.531 

LLE 75.6 75.5 75.7 75.6 0.755 0.512 

FA 75.7 78.5 72.7 74.2 0.764 0.514 

 LDA 74.3 72.9 75.6 74.9 0.739 0.485 

 NPE 73.5 69.2 77.8 75.7 0.723 0.471 

 Autoencoder 55.7 60.0 51.6 55.3 57.4 0.114 
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PDBtestset164 

Origin 72.0 96.4 46.2 64.2 0.770 0.492 

MDS 77.7 80.0 75.3 76.4 0.782 0.554 

LPP 77.6 80.0 75.1 76.3 0.781 0.552 

LLE 77.0 80.0 74.0 75.5 0.777 0.541 

FA 76.2 77.7 74.7 75.4 0.765 0.524 

 LDA 74.6 76.4 72.8 73.7 0.751 0.492 

 NPE 76.1 73.5 78.7 77.5 0.754 0.522 

 Autoencoder 63.0 65.4 60.6 0.624 0.639 0.260 
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Table S3. The prediction of Dset186 after the balancing process with MDS. The protein-protein 

interaction sites were predicted by different classifiers on the training set Dset186 after SMOTE. It is 

found that the EL-SMURF method proposed in this study reaches the maximum in Accuracy index. At 

the same time, the Precision and F-measure indexes of the EL-SMURF method reached the highest 

respectively. This shows that EL-SMURF has good performance to extract implicit information from 

training sets. The method has good classification effect in training dataset Dset186. 

Methods Acc (%) Se (%) Sp (%) Pr (%) F-Measure MCC 

NB 57.6 64.2 51.6 56.8 0.603 0.154 

RF 78.9 79.7 73.8 76.1 0.780 0.572 

SVM 69.2 73.1 65.3 67.8 0.704 0.385 

EL-SMURF 79.1 81.7 76.6 77.7 0.784 0.584 
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Table S4. The prediction of Dtestset72 after the balancing process with MDS. The protein-protein 

interaction sites were predicted by different classifiers, NB, RF, SVM, and EL-SMURF, on the 

independent validation set Dtestset72 after SMOTE. It is found that the Accuracy index of the EL-

SMURF method proposed in this study is the largest. At the same time, the Precision, F-measure, and 

MCC reached the maximum value respectively. This shows that EL-SMURF has a good classification 

effect in the independent validation set Dtestset72. 

Methods Acc (%) Se (%) Sp (%) Pr (%) F-Measure MCC 

NB 59.1 66.4 51.8 58.0 0.619 0.184 

RF 76.9 78.2 75.0 76.0 0.775 0.542 

SVM 69.2 73.5 64.8 67.6 0.774 0.385 

EL-SMURF 77.1 78.8 75.3 76.2 0.775 0.542 
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Table S5. The prediction of PDBtestset164 after the balancing process with MDS. Compared with 

the different classifiers after SMOTE processing, it is found that the EL-SMURF method proposed in 

this study has a significant increase in the Accuracy index of the individual classifier. At the same time, 

the F-measure and MCC also reached the maximum. This shows that EL-SMURF has a good 

classification effect in the independent validation PDBtestset164. 

Methods Acc (%) Se (%) Sp (%) Pr (%) F-Measure MCC 

NB 58.2 64.7 51.6 57.3 0.608 0.165 

RF 77.1 79.5 74.7 75.9 0.776 0.543 

SVM 66.3 74.0 58.6 64.1 0.687 0.330 

EL-SMURF 77.7 80.0 75.3 76.4 0.782 0.554 
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Table S6. Comparison of different methods on Dset186 over leave-one-out cross-validation. 

Methods Acc (%) Se (%) Sp (%) Pr (%) F-measure MCC 

DC-RF-RUS-PF 65.1 64.3 61.7 28.6 0.373 0.202 

SSWRF 67.9 58.1 69.7 32.2 0.386 0.234 

CRF 72.7 61.2 67.4 31.8 0.390 0.204 

LORIS 60.4 69.8 58.6 28.7 0.384 0.221 

PSIVER 67.3 41.6 74.3 30.6 0.353 0.151 

EL-SMURF 79.1 81.7 76.6 77.7 0.784 0.584 

 

  



13 

 

Table S7. Comparison of different methods on the independent validation dataset Dtestset72. 

Methods Acc (%) Se (%) Sp (%) Pr (%) F-measure MCC 

DC-RF-RUS-PF 64.0 62.7 64.6 32.4 0.336 0.204 

SSWRF 64.8 65.4 64.3 26.7 0.224 0.351 

CRF 70.6 64.0 64.0 25.6 0.340 0.209 

LORIS 61.4 63.1 61.0 23.8 0.324 0.177 

SPRINGS 62.4 59.0 63.0 24.1 0.318 0.170 

PSIVER 66.1 46.5 69.3 25.0 0.278 0.135 

SPPIDER 61.7 45.4 63.7 20.4 0.241 0.081 

EL-SMURF 77.1 78.8 75.3 76.2 0.775 0.542 
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Table S8. Comparison of different methods on the independent validation dataset PDBtestset164. 

Methods Acc (%) Sp (%) Se (%) Pr (%) F-measure MCC 

DC-RF-RUS-PF 61.1 65.3 52.6 32.4 0.360 0.148 

SSWRF 62.1 65.6 52.7 32.3 0.365 0.152 

CRF 61.3 64.5 54.3 32.3 0.370 0.113 

LORIS 58.8 60.9 53.8 26.3 0.323 0.111 

SPRINGS 60.6 64.8 40.7 26.8 0.311 0.108 

PSIVER 59.6 63.4 46.4 25.3 0.295 0.078 

SPPIDER 71.6 85.1 16.2 23.1 0.129 0.015 

EL-SMURF 77.7 80.0 75.3 76.4 0.782 0.554 
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3. Supplementary Figures 

 

Fig. S1. The procedure of feature extraction. 
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Fig. S2. The influence of different parameters on the evaluation index. When =300ntree , the maximum 

values of the optional ranges on Accuracy, Specificity and Precision are achieved. Considering the 

efficiency of the program and the prediction accuracy of the prediction model, =300ntree  , which is the 

best parameter value of the random forest classifier under Dset186. Since Dset186 is the training dataset 

of this study, the ntree  value of random forests in Dtestset72 and Dtestset164 is set at 300.  
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Fig. S3. Roc curves of different classifiers on Dset186. The area under the ROC curve of the EL-

SMURF method proposed in this study achieved to 0.899 which is the largest. It is an effective 

classification prediction method. It can be seen that NB classifier have poor performance in the Dset186 

dataset and cannot accurately identify protein-protein interaction sites. The EL-SMURF proposed in 

this study has a good performance, indicating that it has achieved good classification results in the test 

data Dset186. 
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Fig. S4. Roc curves of different classifiers on Dtestset72. The area under the ROC curve of the EL-

SMURF method proposed in this study is the largest. It can be seen that SVM classifier and NB classifier 

have poor performance in Dtestset72 and cannot accurately identify protein-protein interaction sites. 

The EL-SMURF method proposed in this study has a good classification effect, which shows that it has 

good generalization performance in the independent test set Dtestset72. The experimental result shows 

that EL-SMURF is an effective classification and prediction method. 
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Fig. 5. Roc curves of different classifiers on PDBtestset164. For the independent validation set 

PDBtestset164, the ROC curve of the EL-SMURF method proposed in this study is 0.880, which has 

the most extensive coverage area. It is 27.8% higher than NB classifier. So, NB classifier has poor 

performance in the PDBtestset164 dataset and cannot accurately identify protein interaction sites. The 

EL-SMURF proposed in this study has a good classification effect, which shows that it has good 

generalization performance in the independent validation set PDBtestset164. The result indicates that 

EL-SMURF is a useful classification and prediction method. 
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