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S1 Encoding the response logic in ASP
The response logic is formulated in the framework of Answer Set Programming.
We use the syntax of the input language gringo. A straightforward introduction
is provided in section 4 of (Videla et al., 2015). The following facts and clauses
constitute the logic program.

At the beginning, the program needs to state the facts, i.e. the number
of nodes in the network as constant n, the set of perturbations as functions
pert(I,OUT), where variable I names a specific perturbation and variable OUT
indicates the node(s) targeted by the perturbation (could be multiple), as well as
the rectified response pattern as functions response(I,N) and -response(I,N)
(classical negation), where variable I names a specific perturbation and variable
N indicates the node(s) responding or not responding to the perturbation, re-
spectively. If a perturbation is defined to target multiple nodes, it is assumed to
cause a response on all nodes that are path-connected to any of the perturbed
nodes. Strictly speaking, such a response no longer corresponds to a transitive
closure, as it describes a node’s reachability from any of multiple nodes. But
for the sake of simplicity, we will nevertheless keep the terminology.

The program then follows the generate-define-test pattern, as below. The
function tc(I,IN) represents the transitive closure of the answer set network.

%%%Generate%%%
node(0..n-1).
{edge(OUT,IN)} :- node(IN), node(OUT).

%%%Define%%%
tc(I,IN) :- edge(OUT,IN), pert(I,OUT).
tc(I,IN) :- edge(OUT,IN), tc(I,OUT).

%%%Test%%%
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:- not tc(I,N), response(I,N).
:- tc(I,N), -response(I,N).

The last two lines are the integrity constraints that discard any answer set whose
transitive closure is in disagreement with the rectified response pattern. ASPs
distinction between classical (”-”) and default (”not”) negation allows to only
test the integrity for the known entries of the response pattern and to ignore
the test for any entries that are not known.

For large networks the search space of the above program becomes very large
with negative effects on performance. This is especially problematic during
the rectification of the response pattern because in principle every entry of the
response pattern must be tested for consistency. We implemented two strategies
to speed up the process. First, at each step of the iteration, we check if the
previous transitive closure is in agreement with the new data point. If so,
we know that there is a conforming network and can accept the data point
without an explicit test. Second, if there is no additional constraint (see below)
stating the absence of a network edge, we can significantly simplify the logic
program. In that case, if the logic program is satisfiable at all, the network with
directly links from perturbed node to all its responding nodes, i.e. a network with
star topology, constitutes a conforming network. As the rectification process
only needs to determine satisfiability, a much more simple logic program avoids
generating all possible networks but only tests the star network (which we do
not need to state explicitly):

response(I,N) :- response(J,N), pert(J,M), J!=I,
response(I,M).

response(I,OUT) :- pert(I,IN), edge(IN,OUT).
response(I,N) :- response(J,N), pert(J,M), J!=I, pert(I,M).

The idea of this encoding is to define all additional responses that are implied
by the star network from the given response pattern (line 1): if node N re-
sponds to a perturbation of node M (it is reachable from M) then node N will
also respond to any other perturbation for which it is known that it causes a
response at node M. This defines the minimal set of responding nodes consis-
tent with the response logic. Any constraints on the absence of edges would
imply (longer) non-direct paths that could potentially imply more nodes to re-
spond to certain perturbations. This program does not even need to explicitly
state an integrity constraint because an observed non-response given as classical
negation -response(I,N), already rules out that response(I,N) is contained
in the (single) answer set. Furthermore, line 2 adds responses that are implied
by edges that are known to exist and the last line is needed in the case where
multiple perturbations hit the same node, but a perturbed node itself does not
respond.

As discussed at length, we might wish to incorporate additional, external
domain knowledge into the logic program. The most direct way of doing so is
to simply state the knowledge about presence or absence of e.g. the link from
node 2 to node 3 as a fact:

edge(2,3).

or
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-edge(2,3).

respectively.
To encode bounds on the number of links that enter or leave one or a group

of nodes is simple, due to ASPs built-in #count aggregates. If, for example,
we were to maximally allow for 3 incoming edges to node 1 we would add the
following integrity constraint to the logic program

:- #count {OUT : edge(OUT,1) } > 3.

Obviously, this statement could easily be adapted to formulate a lower bound,
or bounds for groups of nodes.

It is more complex to state the parsimony constraint that filters out any
network for which the removal of any link does not change the transitive closure.
Essentially, for a given network, we define a set of links, x edge(OUT,IN) that
are subject to removal. Those are all the edges that are part of the network but
which are not enforced by external knowledge. Then, the idea is to define all
networks with a link removed, determine their transitive closure and compare
it to that of the original network. The final integrity constraint removes the
answer set if any of the reduced networks does not have a reduced (that is, it
has the same) transitive closure as the original one.

r_edge(OUT,IN,NOUT,NIN) :- (OUT,IN)!=(NOUT,NIN),
edge(OUT,IN), x_edge(NOUT,NIN).

r_tc(I,IN,NOUT,NIN) :- r_edge(OUT,IN,NOUT,NIN), pert(I,OUT).
r_tc(I,IN,NOUT,NIN) :- r_edge(OUT,IN,NOUT,NIN),

r_tc(I,OUT,NOUT,NIN).
has_reduced_tc(NOUT,NIN) :- not r_tc(I,IN,NOUT,NIN),

tc(I,IN), x_edge(NOUT,NIN).
:- not has_reduced_tc(NOUT,NIN), candidate_edge(NOUT,NIN).

As this logic creates a significant amount of additional variables, we observed
that the parsimony constraint will suffer performance issues when applied to
more than a few tens of nodes.

Finally, a crucial feature of the response logic approach is the ability to
generate the union of all conforming networks, which points out the links that
can or cannot be uniquely determined. Typically, the number of conforming
networks is intractable which precludes to simply enumerate all solutions and
then compute their union directly. Rather, we let a logic program find it di-
rectly. The union of all answer sets of an ASP program is also termed brave
consequences, hence the naming conventions below. In a first step, we need to
annotate the presence or absence of an edge explicitly.

edge_brave(OUT,IN,1):-edge(OUT,IN).
edge_brave(OUT,IN,0):-not edge(OUT,IN),node(OUT),node(IN).

Then, the idea is to repeatedly solve the logic program, while iteratively building
up the union of conforming networks. That is, we record for each edge whether
the solutions generated so far, found it to be always absent, always present or
neither (sometimes present, sometimes absent). To obtain the union over all
answer sets, the program is further constrained with every new solve call to
only permit networks that are not a subset of the union that was recorded so
far. This is encoded by the following integrity constraint.
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Figure S1: DREAM3 challenge 4: Precision Recall (blue) and ROC (red) curves
for the response logic predictions of the five networks.

:- not edge_brave(OUT,IN,B) : node(OUT), node(IN), B=0..1,
@is_in_union(OUT,IN,B) == 0.

The @is in union(OUT,IN,B) construct is a function called by the solver that
will return 1 if the presence or absence (B is 1 or 0, respectively) of edge OUT to
IN is already recorded in the union and 0 otherwise. Thus, every solve call adds
new elements to the union until there are no more conforming networks that
show the presence or absence of a link, beyond what is already represented in
the union. This is when the program is no longer satisfiable and the repeated
solve calls stop.

S2 Additional information about the inference
of DREAM in-silico networks

The rectification of the response pattern requires confidence scores, C. Those
are defined as a normalized distance of each entry of the global response matrix
R to 1, which was chosen as the response threshold. The normalization is chosen
such that confidence levels range from zero, for Rij = 1, to one, for Rij taking
either the maximal Rmax or minimal Rmin value of all entries. Formally,

Cij =
{
|Rij − 1|/|Rmax − 1| for Rij − 1 > 0
|Rij − 1|/|Rmin − 1| for Rij − 1 < 0.
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Figure S2: DREAM4 challenge 2: Precision Recall (blue) and ROC (red) curves
for the response logic predictions of the five networks.

Both DREAM3 and DREAM4 provided five network challenges per network
size. The precision-recall curve and the ROC curve for each network prediction
are shown in Figure S1 and Figure S2.

The official DREAMTools package (Cokelaer et al., 2016) was used to com-
pute the final prediction scores that are shown in main text Figure 4A. The
scoring is based on p-values for the ROC and precision-recall area under the
curves (AUC) that are computed from probability distributions of random net-
work predictions. In the case of the DREAM3, N=100, Yeast3 network the
precision-recall AUC of the response logic prediction is larger than that of any
of the provided random network predictions. Therefore the determined p-value
becomes zero and the overall network score becomes infinity. To obtain a more
reasonable score we decided to modify the p-value computation in that case.
We identified the largest AUC for which the random probability distribution
shows a nonzero probability and simply defined an extended distribution whose
probability decreases linearly from this point to zero probability at AUC=1 and
computed the p-value based on this approximated distribution. This only con-
cerned one of the five scored networks in the DREAM3, N=100 prediction and
the resulting overall score, 139.7, is shown in main text Figure 4A, third panel.
Another strategy to cope with the problem is to remove the network altogether
and compute the overall score (mean of geometric mean of p-values) only from
the remaining four networks. This provides a lower bound for the overall score
of 122.9, which is still clearly better than the score of any of the competitors

5



and the naive approach.

S3 Additional information about the analysis of
the SW-48 cell line

A reverse phase protein array (RPPA) perturbation experiment was carried out
on the SW-48 parental, the SW-48 E545K and SW-48 H1047R PI3K mutant
cell lines under full serum conditions. Antibodies were chosen to cover the
activity (phosphorylation) of a range of kinases. Cells were perturbed by single
small molecule inhibitors, by single growth factors or by a combination of one
growth factor and one inhibitor. Measurements were carried out in 8 technical
replicates.

In a first step readouts were filtered as follows. First, we removed all read-
outs whose signal remained within the technical noise level throughout the treat-
ments, as this indicates a malfunctioning antibody. The readout had to be a
component or a target of the MAPK or the PI3K pathway. To decrease re-
dundancy, we removed very closely related readouts. This included readouts of
functionally related phosphosites on the same kinase, or kinases that showed
near-identical qualitative behaviour due to their proximity within the signalling
pathway. This left us with 10 different readouts. Concerning the perturbations,
we filtered out ineffective, or redundant inhibitors and ligands. This resulted in
the data set depicted in Figure S3.

To use this data in the response logic framework we need to convert it to a
response pattern with according confidence scores. First, we need to localize the
targets of the perturbations. As not all the direct targets of each perturbation
were part of the readouts, we replaced those by the ones that were the closest
downstream the signalling chain. Concerning HGF stimulation, we observed a
strong response by the PDGF receptor. C-Met not being amongst the readouts,
we chose the target accordingly. Lacking additional data, it is subject to specu-
lation whether this behaviour could be explained e.g. by receptor co-activation
(Xu and Huang, 2010) or impurities of the used ligand. This resulted in the
following allocations.

perturbation EGFRi MEKi AKTi EGF HGF IGF
target EGFR ERK AKT EGFR PDGFRB AKT

This makes apparent that the perturbations only have four different targets
(PDGFRB, EGFR, ERK, AKT).

Next, we need to determine the response behaviour with respect to pertur-
bations of those four targets. Inhibiting an unstimulated signalling pathway
can lead to saturation effects, when additional reduction of kinase activity is
not possible. Thus, to faithfully track the inhibition response we decided to
investigate inhibition while cells are stimulated, that is to compare ligand +
inhibitor to only ligand. To ensure that such a stimulation actually affects the
inhibited pathways, we chose EGF stimulation for the EGFR and MEK in-
hibitors and IGF stimulation for the AKTi inhibitor. The stimulation effects do
not suffer from such saturation effects and were thus compared to basal levels
(DMSO+PBS) directly. We compiled an overview of the resulting perturbation
comparisons in Figure S4.
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Figure S3: RPPA measurements on SW48 cell lines
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To decide whether a perturbation caused a response, we computed p values
for each pair of perturbed-unperturbed samples using an unpaired, two-sample
t-test. As the data replicates are technical in nature we chose a conservative
significance threshold of 0.01. To compute confidence scores we used the same
procedure as for the DREAM data, section S2, that is, the confidence scores
represent a normalized distance between the p-value and the p-value threshold.
Recall, that the six perturbations only have four different targets. To remove
redundancy in the response logic sense, we decided to remove the two redundant
data points with lower confidence (per cell line and readout). This resulted in
the response patterns shown in main text Figure 5A and 6A.

The computation of the area under ROC and precision recall-curves in main
text Figure 5A requires to rank the predicted links. However, depending on how
the response logic approach is applied, some links can end up with the same
score. We therefore, computed the PR AUC and ROC AUC as a mean over 100
AUC values that were generated by randomly reshuffling groups of links with
equal score. Repeated computation of these PR AUC and ROC AUC values
only varied in the third decimal place.
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