
Supplement

7 Illustration of Succinct Colored de Bruijn Graph
Below we illustrate the succinct colored de Bruijn graph data structure that was presented by Muggli et al. (2017) and is used in this paper.

G

A

ACG GAC
T

T
A

C $

$$T

$TA CGA

ACT

$$$

TAC

C

CGG GGA

G C

A

$$$

CGA

$TA

GAC

TAC

0

1

1

2

1

T

C

C

T

G

ACG

CGG

A
G

A

1

1

$$T

ACT

1

1

A

$

GGA1 C Edge-BWT(G) = TCCCTGAGAA$

BF = 11110111111

BL = 11111101111

CT = 11011110011

10111101111

Fig. 2: Left: A colored de Bruijn graph consisting of two individual graphs, whose edges are shown in yellow and green. The nodes are present in
either the yellow graph, the green graph, or both graphs and thus, are shown in lime. Center: The co-lexicographically sorted nodes, with the number of
incoming edges shown on their left and the labels of the outgoing edges shown on their right. The edge labels are shown in yellow or green if the edges
occur only in the respective graph, or lime if they occur in both. Right: The Vari representation of the colored de Bruijn graph: the edge-BWT is the list
of edge labels. BF and BL are bit vectors to track the incoming and outgoing node degree, respectively. Finally, the binary array C (shown transposed)
indicates which edges are present in which individual graphs.

8 k-mer Recovery
If we know the range BL[i..j] of k-mers whose starting nodes end with a pattern P of length less than (k−1), then we can compute the range BF [i′..j′]

of k-mers whose ending nodes end with Pc, for any character c, as follows:

i′ = |{d : d ∈ E, label(d) ≺ c}|

+|{h : Edge-BWT[h] = c, h < i}|

j′ = |{d : d ∈ E, label(d) ≺ c}|

+|{h : Edge-BWT[h] = c, h ≤ j}| − 1 .

Thus, we can find the interval in BL containing v’s outgoing edges in O(k log log σ)-time, provided there is a directed path to v of length at least
k − 1. Thus, we add extra nodes and edges to the graph to ensure there is a directed path of length at least k − 1 to each original node. More formally,
we augment the graph so that each new node has a (k − 1)-mer that is prefixed by one or more copies of a special symbol $ not in the alphabet and
lexicographically strictly less than all others. When new nodes are added, we are assured that the node with k-mer $k−1 is always first in colex order and
has no incoming edges. Lastly, we augment the graph in a similar manner by adding an extra outgoing edge, labeled $, to each node with no outgoing
edge.

9 Pseudocode for the Naive Merge Algorithm
Below is a detailed sketch of the naive merge algorithm.

Algorithm 3 Naive Merge Algorithm. Because L1 and L2 are explicitly constructed, a large amount of memory is needed.

L1 ← ∅
L2 ← ∅
Populate L1 and L2 (See “k-mer Recovery” of Subsection 3)
Merge L1 and L2 into LM .
Create Edge-BWT(G)M , BLM , BFM from LM

Create CM from C1 and C2

10 Illustration of merge plans
We provide an example of merge plans in two conceptual edge lists L1 and L2 from graphsG1 andG2 in Figure 3, where k = 4. As mentioned before the
merge plan is defined as P1 = {[0, p11], . . . , [p1i , |L1| − 1]} where each p11, . . . , p

1
i is an index in L1, and P2 = {[0, p21], . . . , [p2i , |L2| − 1]}, where

each p21, . . . , p
2
i is an index in L2. Next, all revisions of P1 and P2 are computed iteratively. In this example, we start with the red merge plans P1 and

P2 covering the whole L1 and L2 respectively. In the next iteration, based on the next letter (the order is right to left), we revise every interval into at most
five subintervals (five being the number of alphabets: {$, A, C, G, T}). In this example see how P1 and P2 in red are revised to P ′1 and P ′2 in green each
with five intervals. Similarly, every interval in P ′1 and P ′2 are revised to at most five subintervals making P ′′1 and P ′′2 .

$ $ $ T
C G A C
$ T A C
G A C G
G A C T
T A C G
C G C G
G T C G
A C G A
A C G C
A C G T
G C G A
T C G A
$ $ T A
A C T $
C G T C

$ $ $ T
C G A C
G G A C
$ T A C
G A C T
T A C G
A C G A
A C G G
C G G A
$ $ T A
A C T $

$$
A
A
A

A
A
C
C
C
C
C

C
C

G
G
G
G
G

G
G
G

T
T
T

T
T

$ $
G

T

G
GT

A
A
A
G
T

A
A
C
C
G
$
C

C
C
C
C
C
$
C
G

P1
ʹʹ P1

ʹ P1 P2
ʹʹ P2

ʹ P2

 L1 L2

0

1

2

3

4

5

6

7

8

9

10

11

12

13

14

15

0

1

2

3

4

5

6

7

8

9

10

ii

Fig. 3: Three merge plans. The initial merge plans are shown in red, where P1 is initialized {[0, 15]} and P2 is initialized to {[0, 10]}. Green is the first
refinement of P1 and P2. Thus, P ′1 and P ′2 consist of the continuous range of elements that have $, A, C, G, and T in the next character position, e.g.
P ′1 = {[0, 0], [1, 2], [3, 7], [8, 12], [13, 15]} andP ′1 = {[0, 0], [1, 3], [4, 5], [6, 8], [9, 10]}. Blue is the third merge plan which is based on the refinement
of P ′1 and P ′2. P ′′1 breaks each continuous range in P ′1 into five (possibly empty) continuous ranges based on the next character position. For example,
the first continuous range of P ′1 is {[0, 0]} broken into five ranges in P ′′1 , e.g., one for $, A, C, G, and T. Yet, four of these five ranges are empty since
there exists only a single element with $ in the next character position.

11 Illustration of computing the next character of L
We provide an example of how we can navigate the set of edge k-mers without explicitly storing them. We compute the next character at each iteration
with only three columns present in memory (shown with colors blue, red and orange).

 C A A C G T

 T A A C G T

 A A C G T A

 A A C G T C

 A A C G T T

 …

…

…

…
C ol(i−1) C oli EBWT(G)

 L AACGT

AACGTA

AACGTT

AACGTC

CAACGT

TAACGT

(i-1)th iteration ith iteration

Fig. 4: Method for populating Coli based on Coli−1 and graph navigation. Colored (blue, red and orange) nucleotides represent data that is in memory
and valid. Grey represents data that is stored in external memory in Vari but is computed as needed and only exists ephemerally in VariMerge. Thus, only
three columns are ever present in memory, which is a significant memory savings relative to the full set of edge k-mers. The three resident vectors are 1.)
Edge-BWT(G) (which is always present and used for navigation), 2.) Coli−1 which is already completely populated when a new column to the left, 3.)
(Coli) is being generated. As one can see in the associated graph representation on right, the successor edges have almost the same k-mer but shifted by
one position. e.g. the red colored C in i− 1-th iteration in position 4 is shifted to position 3 and turned into orange in i-th iteration.

Algorithm 4 GetCol(i, PrevCol, G)

if i = k then
return EBWT (G)

else
if i = 1 then
PrevCol← EBWT (G)

end if
ResultCol← []

for all e ∈ {1..|E|} do
a← select(rank(|{d : d ∈ E, label(d) ≺ label(e)}|+ 1,BL1

) + r − 1,BL1
)

b← select(rank(|{d : d ∈ E, label(d) ≺ label(e)}|+ 1,BL1
) + r,BL1

)]

for all j ∈ {a..b} do
ResultCol[j]← PrevCol[e]

end for
end for
return ResultCol

end if

12 Merging the secondary components
Delimiting common origin with BLM . We prepare to produce BLM in the planning step by preserving a copy of the merge plan after k − 1 refinement
iterations as Sk−1. After k − 1 refinement steps, our plan will demarcate a pair of edge sets where their k-mers have identical k − 1 prefixes. Thus,
whichever merged elements in Edge-BWT(G)M result from those demarcated edges will also share the same k − 1 prefix. Therefore, while executing
the primary merge plan, we also consider the elements covered by Sk−1 concurrently, advancing a pointer into Edge-BWT(G)1 or Edge-BWT(G)2
every time we merge elements from them. We form BLM by appending a delimiting 1 to BLM (again, indicating the final edge originating at a node)
whenever both pointers reach the end of an equal rank pair of intervals in Sk−1’s lists.

Delimiting common destination with flagsM . We produce flags in a similar fashion to BLM but create a temporary copy of Sk−2 in the planning stage
after k − 2 refinement iterations instead of k − 1. In this case, the demarcated edges are not strictly those that share the same destination; only those
edges that are demarcated and share the same final symbol. Thus, in addition to keeping pointers into Edge-BWT(G)1 or Edge-BWT(G)2, we also
maintain a vector of counters which contain the number of characters for each (final) symbol that have been emitted in the output. We reset all counters
to 0 when a pair of delimiters in Sk−2 is encountered. Then, when we append a symbol onto Edge-BWT(G)M , we consult the counters to determine if
it is the first edge in the demarcated range to end in that symbol. If so, we will not output a flag for the output symbol; otherwise, we will.

13 Proof of Theorem 1
Theorem 1. Given two colored de Bruijn graphsG1 = (V1, E1) andG2 = (V2, E2) constructed for k such that |E1| ≥ |E2|. It follows that our merge
algorithm constructs the merged colored de Bruijn graph GM in O(|E1| ·max(k, t))-time, where t is the number of colors in GM .

Proof. In our merge algorithm, we will perform k refinements of P1 and P2 after they are initialized. We know by definition and Observation 1 that
|P1| ≤ |L1|, P2 ≤ |L2|, Coli1 = |L1| = |E1| and Coli2 = |L2| ≤ |E1| at each iteration i of the algorithm. Further, it follows from Observation 1 that
a constant number of operations are performed to P1, P2, Coli1 and Coli2. Thus, the planning step will require O(|E1|k)-time since there will k refines
of P1 and P2, each of which has size at most |E1|.

Executing the merge plan requires constructions of Edge-BWT, BF , BL, and CM from the merge plan. Construction of Edge-BWT, BF and BL

requires O(|E1|)-time since a constant number of operations are needed for each item of the merge plan and there are at most |E1| items in P1 and P2.
Next, in order to construct CM , we perform a constant number of operations for each element of CM . Since CM is a binary matrix of size 2|E1| × t
this will require O(|E1|t)-time. Thus, the total merge algorithm requires O(|E1|k + |E1|t)-time which is equal to O(|E1| ·max(k, t)).

14 Details Concerning Strains of E. coli K-12
Table 4 describes the accession number, sub-strain and genome length of the E.coli genomes used for validation of our construction and bubble-calling.

Accession Number Sub-strain Genome Size

AP009048 W3110 4,646,332 bp
CP009789 ER3413 4,558,660 bp
CP010441 ER3445 4,607,634 bp
CP010442 ER3466 4,660,432 bp
CP010445 ER3435 4,682,086 bp

U00096 MG1655 4,641,652 bp

Table 4. Characteristics of the substrains of E. coli K-12 used to test the performance and accuracy of VariMerge

.

We validate VariMerge by generating two succinct colored de Bruijn graphs with three E. coli assemblies each, merge them, and verify the correctness
of the merged graph. First, we generated all k-mers for each reference genome, counted all unique k-mers with KMC2 Deorowicz et al. (2015), constructed
two de Bruijn graphs of three assemblies each using Vari, and merged them into a six-color graph using VariMerge. Independently, we constructed a
second colored de Bruijn graph using Vari on all six assemblies in one run and then compared these two graphs. We found VariMerge produced files on
disk that were bit-for-bit identical to those generated by Vari, demonstrating they construct equivalent graphs and data structures.

