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Methods

CP-WOPT algorithm for data completion

We compare the performance of TT-WOPT algorithm with that of CANDECOMP/PARAFAC
weighted optimization (CP-WOPT) that analyzes a real-valued tensor, X € RI>2X-xIv

with missing entries [1]. The index of the missing entries can be recorded by a weight
tensor (W), the size of which is same as that of X. Each entry of W satisfies the follow-

ing conditions:

0 if x;,,.i, 1S a missing entry,
Wit iv = . 2 .
fi2-IN 1 if x;,,.;, is an observed entry.

CP decomposition decomposes a tensor into a sequence of matrices. The CP de-
composition of the tensor X € R*2%-*I¥ can be expressed as follows:

X = AD AP ANy,

where AV, AP AM is a sequence of matrices of size I; X R, I, X R, ..., Iy X R,
respectively. The R is referred to as CP-ranks, which can limit the size of each matrix.
Each element of tensor X can be written in the following index form:
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where aﬁnj is the the (i, r)-th element of the n-th matrix.

In the optimization algorithm, the objective variables are the elements of all matri-
ces. Here, the objective function can be written as follows:

1
FAD A AM) = §||(Z - 2)IP,

where Y = WxXandZ = W+ (( AV, A®, . AM}) (x is the Hadamard product; [2]).
Forn =1, ..., N, the partial derivatives of the objective function with respect to the
n-th matrixA™ can be expressed as follows:

of

Fam = o= Ya)AT",

where
A =AM ... A™D o A Do. ..o AL,

The symbol © denotes the Khatri-Rao product [3].

After the objective function and the derivation of gradient are obtained, we can
solve the optimization problem by any optimization algorithms based on gradient de-
scent method [4]. In this study, the maximum iteration number was set to 300 as the
stop criteria for optimization.



Multitask learning method for drug indication prediction

We address the problem of therapeutic indications prediction by focusing on drugs.
Note that there are a number of candidates for diseases, and different diseases may
have common characteristics in terms of molecular mechanisms. The same drugs are
sometimes used for multiple diseases. Thus, we propose formulating the problem in
the framework of supervised multiple label prediction.

Suppose that there are M diseases and we are given P drugs. We consider pre-
dicting which diseases would be treated by a drug, that is, the i-th drug. Each drug is
represented by a d-dimensional feature vector as x; in this study, where x; was obtained
by averaging the multiple signatures from different cell lines.

We constructed a learning set of drug—disease pairs that are pairs given in drug—
disease associations (see the Materials section for more details). There are M candi-
dates for diseases, and each drug in the learning set is assigned a binary class label
representing the m-th disease (m = 1,2, ..., M). Let y,,; € {0, 1} be the class label for
the m-th disease assigned to the i-th drug, where y,,; = 1 means that the i-th drug is
used for the m-th disease, and y,,; = 0 means that the i-th drug is not used for the m-th
disease.

We construct a predictive model to predict whether the i-th drug would be used for
the m-th disease (m = 1,2, ..., M). Linear models are a useful tool to analyze extremely
high-dimensional data for both prediction and feature extraction tasks. Thus, we adopt
a linear function defined as f;, = w x;, where w,, is a d-dimensional weight vector for
the m-th disease. We represent a set of M model weights by a d X M matrix defined
as W := [wy,wy, ..., wy] and estimate the weight matrix W by minimizing an objective
function based on the learning set.

To overcome the scarcity of existing knowledge concerning relationships between
drugs and diseases, we propose learning individual predictive models f, f5, ..., fy jointly,
sharing information across M diseases.

We attempt to estimate all of the weight vectors wy, wy, ..., Wy, jointly in the models
by minimizing the logistic loss as follows:

M P
R(W) = Z Z log(1 + exp(—ym,,-w,Tnxi)).
m=1 i=1

We introduce a regularization term (W) to the loss function in order to enhance the
generalization properties. Thus, the optimization problem is written as follows:

rr‘l)%]n R(W) + Q(W). (1)

Here we introduce two regularization terms. First, we use a standard ridge regular-
ization term to avoid the over-fitting problem, which is defined as

Q, = %Tr(WWT).

Second, we design another regularization term reflecting the similarities among
diseases. In this study we evaluate the similarity among diseases using the Jaccard



coefficient and construct an M X M similarity matrix S for diseases in which each
element S; ; is a similarity score between the i-th and j-th diseases (see section 2.2 for
more details). Then, we introduce the following regularization term:

1 M M W, |
Q,(W) ':ZIZZ n \/E R = TV,

where || - || is the Euclidean norm, K is a diagonal matrix defined as K;; := Znﬁle Sims
and L; is a symmetric normalized Laplacian defined as K-'/2(K — S)K~!/2. The regu-
larization term Q,(W) has the effect of bringing the weight vectors w; and w; close to
each other if Sy, is high.
Finally, we introduce the following regularization term in the optimization problem
(1):
QW) = 4,Q,(W) + 1,Q.(W),

where A; > 0 and A, > 0 are hyper-parameters to control the strength of the regulariza-
tion terms Q; and QQ,, respectively.

Results

A large-scale prediction of new therapeutic indications

We performed a comprehensive prediction of unknown therapeutic indications of 1,483
drugs. For these drugs, the gene expression data are available in the LINCS database.
We used all known drug—disease associations as a learning dataset and predicted new
drug therapeutic indications by the multitask learning method with tensor decomposi-
tion. Here, the possible therapeutic indications were related to 79 diseases.
Supplementary Figure 3 shows the distribution of drugs repositioned from the origi-
nal disease class to other disease classes based on the predicted therapeutic indications
of drugs. Diseases are classified according to the 10th revision of the International
Classification of Diseases (ICD-10; [5]) disease chapters. The prediction resulted in
the largest number of drugs that were possibly repositioned from chapter I of the ICD-
10 (certain infectious and parasitic diseases) to chapter II of the ICD-10 (neoplasms)
and vice versa, followed by possible drug repositioning from chapter II of the ICD-
10 (neoplasms) to chapter IV of the ICD-10 (endocrine, nutritional, and metabolic
diseases) and vice versa. These results suggest that the proposed approach for a large-
scale prediction can provide new therapeutic indications for a wide range of diseases.
Supplementary Figure 4 shows the network of drug—disease associations that are
predicted by only the multitask learning method with the tensor decomposition. Here,
the associations are shown by focusing on drugs repositioned from the original disease
class to other disease classes based on the new therapeutic indications of drugs. For
example, niclosamide (D00436), an anthelmintic drug, was predicted to have thera-
peutic efficacy in adult T-cell leukemia. Adult T-cell leukemia and lymphoma (ATL)
is a highly aggressive form of hematological malignancy and is caused by chronic in-
fection with the human T-cell leukemia virus type 1 (HTLV-1). Researchers reported
that niclosamide induced apoptosis of HTLV-1-transformed T cells [6]. This implies



that, via a large-scale analysis, finding the therapeutic indications of drugs approved
for various diseases is possible.
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Supplementary Table 1.

tested. Cell lines are listed in order of increasing original missing rates.

Performance evaluation of data completion by tensor decomposition algorithms for third-order transcriptome
data (drugs, genes, and cell lines) with different rates of artificial missing values. Missing values were generated by the “random missing”
strategy. Relative standard errors (RSEs) between the original and reconstructed data from tensor decomposition were calculated for (a)
all values and (b) missing values only. The proposed TT-WOPT method and the baseline CP-WOPT method are denoted as TT and CP,
respectively. The optimized tensor ranks are shown for each method. Artificially generated missing rates of 10%, 50%, and 90% were

artificial missing rate

10% 50% 90%
standard imputation  CP (baseline) CP-ranks T (proposed) TT-ranks standard imputation ~ CP (baseline) CP-ranks  TT (proposed) ~TT-ranks standard imputation  CP (baseline) CP-ranks  TT (proposed) TT-ranks

(a) RSEs for all values

total cell lines - 00739 30 0.0674 1.30.30,1) - 00778 20 0.0683 (1.30.30,1) - 0.0790 30 0.0720
MCF7 - 00614 30 0.0553 (1,30,30,1) - 0.0657 20 0.0562 (1.30,30,1) - 0.0680 30 0.0599
PC3 - 00644 30 0.0576 (1,30,30, 1) - 0.0673 20 0.0598 (1.30,30,1) - 0.0698 30 0.0648
A375 - 0.0850 30 0.0730 (1,30,30,1} - 0.0904 20 0.0757 (1,30,30,1) - 0.0927 30 0.0866
HAIE - 00759 30 0.0667 (130,301} - 00798 20 0.0688 (130,30, 1) - 0.0820 30 00753
HT29 - 00770 30 0.0677 (130,301} - 00814 20 0.0702 (1.30.30,1) - 0.0832 30 0.0785
AS549 - 00749 30 0.0681 (1.30,30, 1) 0.0786 20 0.0689 (1.30.30,1) - 0.0794 30 0.0724
VCAP - 00701 30 0.0633 (1.30,30, 1) 00731 20 0.0647 (1.30,30, 1) 0.0740 30 0.0685
YAPC - 00787 30 0.0716 {1.30,30, 1) 0.0826 20 0.0735 (130,30, 1) - 0.0842 30 0.0792
HELA - 00760 30 0.0704 (1.30.30,1) - 00799 20 0.0717 18 1) - 00812 30 0.0754
HCCS15 - 00885 30 0.0786 (1,30,30, 1) - 0.0929 20 0.0807 (1.30,30,1) - 0.0939 30 0.0870
HEPG2 - 00835 30 0.0788 (1,30,30,1) - 0.0866 20 0.0789 (1,30,30,1) - 0.0870 30 0.0809
HSS78T - 0.0677 30 0.0640 (1,30,30,1} - 00714 20 0.0635 (1,30,30,1) - 00716 30 0.0625
MCFI0A - 0.0693 30 0.0653 (130,301} - 00735 20 0.0647 (1.30.30,1) - 00737 30 0.0638
MDAMB231 - 0.0683 30 0.0647 (130,301} - 00722 20 0.0641 (1.30.30,1) - 00725 30 0.0633
SKBR3 - 00678 30 0.0639 (1.30,30, 1) 00718 20 0.0633 (1.30.30,1) - 00721 30 0.0626
BT20 - 00679 30 0.0639 (1.30,30, 1) 00719 20 0.0633 (1.30,30, 1) 00721 30 0.0624

(b) RSEs for missing values

total cell lines 0.0750 00765 30 0.0694 {1,30,30, 1} 0.0837 00798 20 0.0716 .30,1) NA 0.0820 30 0.0776 (1,30,30, 1)
MCF7 0.0634 00616 30 0.0568 (1,30,30, 1} 00735 0.0658 20 0.0574 30,1} NA 0.0681 30 0.0604 (1,30,30, 1)
PC3 0.0648 00650 30 0.0592 (1,30,30, 1} 00742 0.0673 20 0.0614 30,1} NA 0.0699 30 0.0655 {1,30,30, 1)
A375 0.0832 0.0862 30 0.0764 (1,30,30, 1) 0.0929 0.0906 20 0.0788 30,1} NA 0.0930 30 0.0881 (1,20,20,1)
HAIE 0.0744 00759 30 0.0681 (1,30,30, 1) 0.0842 00796 20 0.0707 1301} NA 0.0819 30 0.0764 (1,30,30, 1)
HT29 0.0773 00777 30 0.0703 (1.30,30. 1) 0.0853 0.0810 20 0.0726 1301} NA 00831 30 0.0797 (1.20,20,1)
A549 0.0755 00785 30 0.0708 (1.30,30, 1) 0.0833 00812 20 00718 1301} NA 0.0822 30 0.0770 (1.30,30, 1)
VCAP 0.0643 00710 20 0.0632 (1.30,30, 1) 0.0703 00723 20 0.0662 1301} NA 0.0740 30 0.0717 (1.30,30, 1)
YAPC 00728 00738 30 0.0679 {1,30,30, 1} 0.0840 00786 20 00718 .30, 1) NA 00810 30 0.0782 (1,10, 10,1}
HELA 00701 00715 30 0.0666 {1,30,30, 1} 0.0800 00749 20 0.0693 30,30,1) NA 00772 30 0.0739 (1,20,20,1)
HCCS15 0.0986 00994 30 0.0893 {1,30,30, 1} 0.1068 0.1039 20 0.0926 30,1} NA 0.1049 30 0.1000 {1,20,20,1)
HEPG2 0.0948 00954 20 0.0907 {1,30,30, 1} 0.1012 0.0978 20 0.0914 .30, 1) NA 0.0990 30 0.0958 {1,30,30, 1)
HSS78T 0.0407 0.0420 30 0.0403 (1,30,30, 1} 00431 00432 20 0.0412 NA 00445 10 0.0431 (1,10, 10,1}
MCFI0A 0.0480 0.0476 10 0.0455 (120,20, 1) 0.0496 0.0482 20 0.0455 20,1} NA 0.0496 10 0.0476 (1,20,20,1)
MDAMB231 0.0432 00440 10 0.0429 (1.30,30. 1)  0.0475 0.0467 20 0.0434 1301} NA 0.0490 10 0.0456 (1.30,30, 1)
SKBR3 0.0415 00440 10 0.0416 (1.30,30, 1) 0.0426 00432 10 0.0417 1101} NA 0.0450 10 0.0426 (1,10, 10,1}
BT20 0.0433 00441 30 0.0419 (1.30,30, 1) 0.0443 00443 20 0.0426 1101} NA 0.0468 10 0.0439 (1,20,20,1)




Supplementary Table 2. Performance evaluation of data completion by tensor decomposition algorithms for fourth-order transcriptome
data (drugs, genes, cell lines, and time points) with artificial missing values. Missing values were generated by the “random missing”
strategy. Relative standard errors (RSEs) between the original and reconstructed data from tensor decomposition were calculated for (a)
all values and (b) missing values only. The proposed TT-WOPT method and the baseline CP-WOPT method are denoted as TT and CP,
respectively. The optimized tensor ranks are shown for each method. Artificially generated missing rates of 10%, 50%, and 90% were
tested. Cell lines are listed in order of increasing original missing rates.

artificial missing rate

10% 50% 90%
standard imputation  CP (baseline) CP-ranks T (proposed)  TT-ranks standard imputation  CP (baseline) CP-ranks  TT (proposed) TT-ranks standard imputation  CP (baseline) CP-ranks  TT (proposed) TT-ranks

(a) RSEs for all values

total cell lines - 0.00245 20 0.00210 {1, - 000234 10 0.00214 (1,20,20,20,1} - 000282 10 0.00214 (1,20, 2
MCF7 - 0.0023 30 0.00181 18 - 000221 10 0.00186 (1,20,20,20,1} - 000288 10 0.00189 (1,20,20,20,
PC3 - 0.00208 20 0.00170 {, - 000194 10 0.00169 (1,10,10,10,1} - 0.00265 10 0.00172 (1,10,10, 10, 1}
A375 - 000252 20 0.00213 (. - 000236 10 0.00216 (1,20,20,20,1} - 0.00298 10 0.00217 (1,20,20,20, 1)
HAIE - 0.00274 30 0.00245 (. - 000271 10 0.00248 (1,20,20,20,1} - 000311 10 0.00248 (1,20,20,20, 1)
HT29 - 0.00234 30 0.00201 (. - 000229 10 0.00206 (1,20,20,20,1} - 000279 10 000205 (1.20,20,20, 1)
A549 - 0.00285 20 0.00255 (. - 000284 10 0.00259 (1,20,20,20,1} - 000314 10 000258 (1.20,20,20, 1)
VCAP - 0.00255 30 0.00224 (. - 000259 10 0.00228 {1,20,20,20, 1} 000293 10 0.00228 {1.20,20,20, 1)
YAPC - 0.00249 30 0.00217 18 - 000235 10 0.00222 (1,20,20,20,1} - 000283 10 0.00221 11,20,20,20, 1)
HELA - 0.00232 20 0.00203 {1, - 000228 10 0.00208 (1,20,20,20,1} - 000265 20 000207 11,20,20,20, 1)
HCCS15 - 0.00283 20 0.00249 (1,20,20,20,1) - 000264 10 0.00253 (1,20,20,20,1} - 000323 10 000252 11,20,20,20, 1)
HEPG2 - 0.00249 30 0.00218 {1,20,20,20,1) - 0.00234 10 0.00222 (1,20,20,20,1} - 000292 10 0.00221 (1,20,20,20, 1}
HSS78T - 0.00212 20 0.00181 (1,20,20,20,1) - 000198 10 0.00186 (1,20,20,20,1} - 0.00243 10 0.00185 (1,20,20,20, 1)
MCFI0A - 0.00214 20 0.00181 (1,20,20,20,1) - 000204 10 0.00186 (1,20,20,20,1} - 0.00247 10 0.00185 (1,20,20,20, 1)
MDAMB231 - 0.0023 20 0.00201 (1.20.20,20,1) - 000220 10 0.00206 (1,20,20,20,1} - 0.00261 10 0.00204 (1.20,20,20, 1)
SKBR3 - 0.00246 20 0.00216 (1.20,20,20,1) - 000241 10 0.00221 (. 20,1} - 000278 10 000220 (1.20,20,20,1)
BT20 - 0.00215 20 0.00181 (1.20,20,20,1) - 000203 10 0.00186 {1,20,20,20, 1} 000243 10 0.00185 (1.20,20,20,1)

(b) RSES for missing values

total cell lines 000271 0.00308 30 0.00266 {1,10,10,10, 1} 0.00276 000299 10 0.00269 {1,20,20,20,1} NA 00036 10 000276 (1,10, 10,10, 1)
MCF7 000195 0.00314 30 0.00189 {1,10,10,10, 1) 0.00242 000275 10 0.00236 {1,10,10,10,1} NA 0.00366 10 0.00263 (1,10,10,10, 1}
PC3 000243 0.00266 30 0.00222 (1,30,30,30, 1) 0.00264 000286 10 0.00237 (1,30,30,30, 1} NA 000362 10 000257 (1,30,30,30, 1}
A375 000288 0.00316 20 0.00286 (1,20,20,20,1)  0.00284 000302 10 0.00261 (1,30,30,30,1} NA 0.00354 10 0.00254 (1,20,20,20, 1)
HAIE 000331 0.00319 30 0.00293 (1,30,30,30, 1) 0.00293 000317 10 0.00276 (1,20,20,20,1} NA 0.00368 10 0.00285 (1,30,30,30, 1)
HT29 000217 0.00215 30 0.00178 (1,30,30,30, 1) 0.00195 000225 10 0.00192 (1,10,10,10,1} NA 000297 10 0.00203 (1.20,20,20, 1)
A549 000273 0.00272 30 0.00241 (1.30,30,30, 1) 0.00327 000351 10 0.00322 (1,10,10,10,1} NA 0.00390 10 0.00333 (1,10, 10, 10,1}
VCAP 000277 0.0036 30 0.00273 (1,10,10,10,1}  0.00310 000334 10 0.00297 {1,20,20,20,1} NA 000371 10 0.00301 (1.30,30,30, 1)
YAPC 000357 0.00371 30 0.00344 {1,30,30,30, 1) 0.00367 000367 10 0.00319 {1,20,20,20,1} NA 0.00406 10 000355 {1,20,20,20, 1)
HELA 000429 0.00348 20 0.00325 {1,20,20,20, 1} 0.00396 000398 10 0.00372 {1,30,30,30,1} NA 000424 10 0.00378 11,20,20,20, 1)
HCCS15 000230 000225 20 0.00155 (1,20,20,20,1}  0.00210 000225 10 0.00199 {1,20,20,20,1} NA 000310 10 000209 (1,30,30,30, 1)
HEPG2 0.00105 0.00173 20 0.00100 {1,10,10,10, 1) 0.00142 0.00169 10 0.00138 (1,10,10,10,1) NA 000303 10 0.00163 (1,30,30,30, 1}
HSS78T 000188 0.00177 30 0.00074 (1,30,30,30, 1) 0.00108 000196 10 0.00102 (1,10,10,10,1) NA 000312 10 0.00136 (1,10,10, 10, 1)
MCF10A 000160 0.00159 30 0.00044 (1,20,20,20,1)  0.00088 000169 10 0.00081 (1,30,30,30,1) NA 000316 10 0.00106 (1,10,10,10, 1)
MDAMB231 0.00061 0.00172 30 0.00049 (1,30,30,30, 1) 0.00076 000205 10 0.00066 (1,20,20,20,1} NA 000281 10 0.00078 (1,10, 10,10, 1)
SKBR3 0.00035 0.00173 30 000036 (1.30,30,30, 1) 0.00116 000219 10 0.00112 {1,20,20,20,1} NA 0.00289 20 0.00108 (1.20,20,20, 1)
BT20 0.00069 0.00176 30 000083 (1,20,20,20,1)  0.00094 000198 10 0.00071 {1,20,20,20,1) NA 000299 20 0.00115 {1,20,20,20, 1)




Supplementary Table 3. Performance evaluation of data completion by tensor de-
composition algorithms for third-order transcriptome data (drugs, genes, and cell lines)
with different rates of artificial missing values. Missing values were generated by the
“cell-based missing” strategy. Relative standard errors (RSEs) between the original and
reconstructed data from tensor decomposition were calculated for missing values only.
The proposed TT-WOPT method and the baseline CP-WOPT method are denoted as
TT and CP, respectively. The optimized tensor ranks are shown for each method. Cell
lines are listed in order of increasing original missing rates.

artificial (a) RSE:s for all values (b) RSEs for missing values

missing cell CP (baseline) CP-ranks TT (proposed) TT-ranks CP (baseline) CP-ranks TT (proposed) TT-ranks
MCF7 0.1811 30 0.1523 {1,30,30,1} 0.6673 30 0.5498 {1, 30,30, 1}
PC3 0.2170 20 0.1525 {1,30,30,1} 0.8199 20 0.5514 {1, 30, 30, 1}
A375 0.2216 10 0.1511 {1,30,30,1} 0.8122 10 0.5459 {1, 30, 30, 1}
HAIE 0.2495 20 0.1539 {1,30,30,1} 0.9562 20 0.5583 {1, 30, 30, 1}
HT29 0.2577 30 0.1551 {1,30,30,1} 0.9910 30 0.5638 {1, 30,30, 1}
A549 0.2401 10 0.1529 {1,30,30,1} 0.9157 10 0.5537 {1, 30,30, 1}
VCAP 0.2196 20 0.1531 {1,30,30,1} 0.8329 20 0.5549 {1. 30,30, 1}
YAPC 0.2604 20 0.1530 {1,30,30,1} 1.0015 20 0.5547 {1. 30,30, 1}
HELA 0.2695 20 0.1540 {1,30,30,1} 1.0390 20 0.5590 {1. 30,30, 1}
HCC515 0.2109 30 0.1528 {1,30,30,1} 0.7910 30 0.5541 {1, 30,30, 1}
HEPG2 0.1657 20 0.1564 {1,30,30,1} 0.5855 20 0.5696 {1, 30,30, 1}
HS578T 0.2281 30 0.1517 {1,30,30,1} 0.8655 30 0.5476 {1, 30,30, 1}
MCF10A 0.2157 20 0.1508 {1,30,30,1} 0.8139 20 0.5439 {1, 30,30, 1}
MDAMB231  0.2134 20 0.1537 {1,30,30,1} 0.8029 20 0.5571 {1, 30, 30, 1}
SKBR3 0.2208 20 0.1546 {1,30,30,1} 0.8307 20 0.5609 {1, 30,30, 1}

BT20 0.2238 30 0.1538 {1,30,30,1} 0.8500 30 0.5574 {1, 30,30, 1}




Supplementary Table 4. Performance evaluation of data completion by tensor de-
composition algorithms for fourth-order transcriptome data (drugs, genes, cell lines,
and time points) with artificial missing values. Missing values were generated by the
“cell-based missing” strategy. Relative standard errors (RSEs) between the original
and reconstructed data from tensor decomposition were calculated for (a) all values
and (b) missing values only. The proposed TT-WOPT method and the baseline CP-
WOPT method are denoted as TT and CP, respectively. The optimized tensor ranks
are shown for each method. Cell lines are listed in order of increasing original missing
rates.

artificial (a) RSE:s for all values (b) RSEs for missing values

missing cell CP (baseline) CP-ranks TT (proposed) TT-ranks CP (baseline) CP-ranks TT (proposed) TT-ranks

MCF7 0.2693 30 0.0071 {1,30,30,30,1} 1.0749 20 0.0266 {1, 30, 30,30, 1}
PC3 0.2215 20 0.0064 {1,30,30,30,1} 0.8859 20 0.0236 {1, 30, 30,30, 1}
A375 0.1811 20 0.0122 {1,30,30,30,1} 0.7245 20 0.0481 {1, 30, 30, 30, 1}
HAIE 0.2568 10 0.0052 {1,30,30,30,1} 1.0273 10 0.0173 {1, 30, 30,30, 1}
HT29 0.295 10 0.0056 {1,30,30,30,1} 1.1522 20 0.0198 {1, 30, 30,30, 1}
A549 0.2222 20 0.0111 {1,30,30,30,1} 0.8887 20 0.0436 {1, 30, 30,30, 1}
VCAP 0.1543 10 0.0115 {1,30,30,30,1} 0.6172 10 0.0452 {1, 30, 30,30, 1}
YAPC 0.1838 30 0.0055 {1,30,30,30,1} 0.7352 30 0.0198 {1.30, 30,30, 1}
HELA 0.2073 20 0.0098 {1,30,30,30,1} 0.8291 20 0.0380 {1.30, 30,30, 1}
HCC515 0.3141 30 0.0048 {1,30,30,30,1} 1.0315 10 0.0171 {1.30, 30,30, 1}
HEPG2 0.2077 30 0.0051 {1,30,30,30,1} 0.8308 30 0.0175 {1, 30, 30,30, 1}
HS578T 0.1887 30 0.0101 {1,30,30,30,1} 0.7548 30 0.0395 {1, 30, 30, 30, 1}
MCF10A 0.1678 20 0.0108 {1,30,30,30,1} 0.6713 20 0.0421 {1, 30, 30, 30, 1}
MDAMB231  0.2241 30 0.0053 {1,30,30,30,1} 0.8964 30 0.0191 {1, 30, 30, 30, 1}
SKBR3 0.2164 20 0.0108 {1,30,30,30,1} 0.8654 20 0.0423 {1, 30, 30, 30, 1}

BT20 0.2711 30 0.0052 {1,30,30,30,1} 1.0127 20 0.0178 {1, 30, 30,30, 1}
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Supplementary Figure 1. Flow diagram of the tensor-train weighted optimization
(TT-WOPT) algorithm.
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Performance comparison on drug indication prediction

among the inverse signature, XSum, and multitask learning methods with and without
tensor decomposition. The top panel shows the distribution of AUC scores calculated

using all prediction scores for individual diseases. The bottom panel shows the missing

rate in each cell line. Cell lines are listed in increasing order of missing rates.

Supplementary Figure 2.
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Supplementary Figure 3. Distribution of drugs repositioned from the original dis-
ease class to other disease classes. Nodes (indicated by gray diamonds) represent ICD-
10 disease chapters (shown with the chapter number and short chapter name). Edges
(indicated by blue lines) indicate potential correlations between diseases according to
the new therapeutic indications of drugs. Node size indicates the sum of the edges
of each node. Edge width indicates the number of drugs repositioned between two
disease chapters. The chapters are as follows: Chapter I: certain infectious and par-
asitic diseases (A0O0-B99). Chapter II: neoplasms (C00-D48). Chapter III: diseases
of the blood, blood-forming organs, and certain disorders involving immune mecha-
nisms (D50-D89). Chapter IV: endocrine, nutritional, and metabolic diseases (E00—
E90). Chapter V: mental and behavioral disorders (FO0-F99). Chapter VI: diseases of
the nervous system (G00-G99). Chapter VII: diseases of the eye and adnexa (HOO-
H59). Chapter VIII: diseases of the ear and mastoid process (H60—H95). Chapter IX:
diseases of the circulatory system (I00-199). Chapter X: diseases of the respiratory
system (JO0-J99). Chapter XI: diseases of the digestive system (K00-K93). Chapter
XII: diseases of the skin and subcutaneous tissue (LO0-L99). Chapter XIII: diseases
of the musculoskeletal system and connective tissue (M00-M99). Chapter XIV: dis-
eases of the genitourinary system (NOO-N99). Chapter XV: pregnancy, childbirth, and
the puerperium (O00-099). Chapter XVI: certain conditions originating in the peri-
natal period (PO0-P96). Chapter XVII: congenital malformations, deformations; and
chromosomal abnormalities (Q00-Q99). Chapter X VIII: symptoms, signs, and abnor-
mal clinical and laboratory findings not elsewhere classified (RO0-R99). Chapter XIX:
injury, poisoning, and certain other consequences of external causes (S00-T98). Chap-
ter XX: external causes of morbidity and mortality (VO1-Y98). Chapter XXI: factors
influencing health status and contact with health services (Z00-Z99). Chapter XXII:
codes for special purposes (U00-U99).
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Supplementary Figure 4. Drug—disease association network predicted using the mul-
titask learning method with tensor decomposition. Blue circles and green diamonds de-
note drugs and diseases, respectively. Gray and red lines denote known and predicted
associations, respectively.



