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Methods

CP-WOPT algorithm for data completion
We compare the performance of TT-WOPT algorithm with that of CANDECOMP/PARAFAC
weighted optimization (CP-WOPT) that analyzes a real-valued tensor, X ∈ RI1×I2×...×IN ,
with missing entries [1]. The index of the missing entries can be recorded by a weight
tensor (W), the size of which is same as that of X. Each entry of W satisfies the follow-
ing conditions:

wi1i2...iN =

{
0 if xi1i2...iN is a missing entry,
1 if xi1i2...iN is an observed entry.

CP decomposition decomposes a tensor into a sequence of matrices. The CP de-
composition of the tensor X ∈ RI1×I2×...×IN can be expressed as follows:

X = ⟨⟨ A(1),A(2), ...,A(N)⟩⟩,

where A(1),A(2), ...,A(N) is a sequence of matrices of size I1 × R, I2 × R, ..., IN × R,
respectively. The R is referred to as CP-ranks, which can limit the size of each matrix.
Each element of tensor X can be written in the following index form:

xi1i2...iN =

R∑
r=1

N∏
n=1

a(n)
inr ,

where a(n)
inr is the the (in, r)-th element of the n-th matrix.

In the optimization algorithm, the objective variables are the elements of all matri-
ces. Here, the objective function can be written as follows:

f (A(1),A(2), ...,A(N)) =
1
2
∥(Y − Z)∥2,

where Y = W ∗ X and Z = W ∗ ⟨⟨ A(1),A(2), ...,A(N)⟩⟩ (∗ is the Hadamard product; [2]).
For n = 1, ...,N, the partial derivatives of the objective function with respect to the

n-th matrixA(n) can be expressed as follows:

∂ f
∂A(n) = (Z(n) − Y(n))A(−n),

where
A(−n) = A(N) ⊙ · · · ⊙ A(n+1) ⊙ A(n−1) ⊙ · · · ⊙ A(1).

The symbol ⊙ denotes the Khatri-Rao product [3].
After the objective function and the derivation of gradient are obtained, we can

solve the optimization problem by any optimization algorithms based on gradient de-
scent method [4]. In this study, the maximum iteration number was set to 300 as the
stop criteria for optimization.



Multitask learning method for drug indication prediction
We address the problem of therapeutic indications prediction by focusing on drugs.
Note that there are a number of candidates for diseases, and different diseases may
have common characteristics in terms of molecular mechanisms. The same drugs are
sometimes used for multiple diseases. Thus, we propose formulating the problem in
the framework of supervised multiple label prediction.

Suppose that there are M diseases and we are given P drugs. We consider pre-
dicting which diseases would be treated by a drug, that is, the i-th drug. Each drug is
represented by a d-dimensional feature vector as xi in this study, where xi was obtained
by averaging the multiple signatures from different cell lines.

We constructed a learning set of drug–disease pairs that are pairs given in drug–
disease associations (see the Materials section for more details). There are M candi-
dates for diseases, and each drug in the learning set is assigned a binary class label
representing the m-th disease (m = 1, 2, ...,M). Let ym,i ∈ {0, 1} be the class label for
the m-th disease assigned to the i-th drug, where ym,i = 1 means that the i-th drug is
used for the m-th disease, and ym,i = 0 means that the i-th drug is not used for the m-th
disease.

We construct a predictive model to predict whether the i-th drug would be used for
the m-th disease (m = 1, 2, ...,M). Linear models are a useful tool to analyze extremely
high-dimensional data for both prediction and feature extraction tasks. Thus, we adopt
a linear function defined as fm = wT

mxi, where wm is a d-dimensional weight vector for
the m-th disease. We represent a set of M model weights by a d × M matrix defined
as W B [w1,w2, ...,wM] and estimate the weight matrix W by minimizing an objective
function based on the learning set.

To overcome the scarcity of existing knowledge concerning relationships between
drugs and diseases, we propose learning individual predictive models f1, f2, ..., fM jointly,
sharing information across M diseases.

We attempt to estimate all of the weight vectors w1,w2, ...,wM jointly in the models
by minimizing the logistic loss as follows:

R(W) =
M∑

m=1

P∑
i=1

log(1 + exp(−ym,iwT
mxi)).

We introduce a regularization term Ω(W) to the loss function in order to enhance the
generalization properties. Thus, the optimization problem is written as follows:

min
W

R(W) + Ω(W). (1)

Here we introduce two regularization terms. First, we use a standard ridge regular-
ization term to avoid the over-fitting problem, which is defined as

Ωr B
1
2

Tr(WW⊺).

Second, we design another regularization term reflecting the similarities among
diseases. In this study we evaluate the similarity among diseases using the Jaccard



coefficient and construct an M × M similarity matrix S for diseases in which each
element Si, j is a similarity score between the i-th and j-th diseases (see section 2.2 for
more details). Then, we introduce the following regularization term:

Ωs(W) B
1
4

M∑
l=1

M∑
m=1

Sl,m

∥∥∥∥∥∥∥ wl√
Kl,l
− wm√

Km,m

∥∥∥∥∥∥∥ = 1
2

Tr(WLsW⊺),

where ∥ · ∥ is the Euclidean norm, K is a diagonal matrix defined as Kl,l B
∑M

m=1 Sl,m,
and Ls is a symmetric normalized Laplacian defined as K−1/2(K − S)K−1/2. The regu-
larization term Ωs(W) has the effect of bringing the weight vectors wi and w j close to
each other if Sl,m is high.

Finally, we introduce the following regularization term in the optimization problem
(1):

Ω(W) B λsΩs(W) + λrΩr(W),

where λs ≥ 0 and λr ≥ 0 are hyper-parameters to control the strength of the regulariza-
tion terms Ωs and Ωr, respectively.

Results

A large-scale prediction of new therapeutic indications
We performed a comprehensive prediction of unknown therapeutic indications of 1,483
drugs. For these drugs, the gene expression data are available in the LINCS database.
We used all known drug–disease associations as a learning dataset and predicted new
drug therapeutic indications by the multitask learning method with tensor decomposi-
tion. Here, the possible therapeutic indications were related to 79 diseases.

Supplementary Figure 3 shows the distribution of drugs repositioned from the origi-
nal disease class to other disease classes based on the predicted therapeutic indications
of drugs. Diseases are classified according to the 10th revision of the International
Classification of Diseases (ICD-10; [5]) disease chapters. The prediction resulted in
the largest number of drugs that were possibly repositioned from chapter I of the ICD-
10 (certain infectious and parasitic diseases) to chapter II of the ICD-10 (neoplasms)
and vice versa, followed by possible drug repositioning from chapter II of the ICD-
10 (neoplasms) to chapter IV of the ICD-10 (endocrine, nutritional, and metabolic
diseases) and vice versa. These results suggest that the proposed approach for a large-
scale prediction can provide new therapeutic indications for a wide range of diseases.

Supplementary Figure 4 shows the network of drug–disease associations that are
predicted by only the multitask learning method with the tensor decomposition. Here,
the associations are shown by focusing on drugs repositioned from the original disease
class to other disease classes based on the new therapeutic indications of drugs. For
example, niclosamide (D00436), an anthelmintic drug, was predicted to have thera-
peutic efficacy in adult T-cell leukemia. Adult T-cell leukemia and lymphoma (ATL)
is a highly aggressive form of hematological malignancy and is caused by chronic in-
fection with the human T-cell leukemia virus type 1 (HTLV-1). Researchers reported
that niclosamide induced apoptosis of HTLV-1-transformed T cells [6]. This implies



that, via a large-scale analysis, finding the therapeutic indications of drugs approved
for various diseases is possible.
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Supplementary Table 1. Performance evaluation of data completion by tensor decomposition algorithms for third-order transcriptome
data (drugs, genes, and cell lines) with different rates of artificial missing values. Missing values were generated by the “random missing”
strategy. Relative standard errors (RSEs) between the original and reconstructed data from tensor decomposition were calculated for (a)
all values and (b) missing values only. The proposed TT-WOPT method and the baseline CP-WOPT method are denoted as TT and CP,
respectively. The optimized tensor ranks are shown for each method. Artificially generated missing rates of 10%, 50%, and 90% were
tested. Cell lines are listed in order of increasing original missing rates.

artificial missing rate

10% 50% 90%

standard imputation CP (baseline) CP-ranks TT (proposed) TT-ranks standard imputation CP (baseline) CP-ranks TT (proposed) TT-ranks standard imputation CP (baseline) CP-ranks TT (proposed) TT-ranks

(a) RSEs for all values

total cell lines - 0.0739 30 0.0674 {1, 30, 30, 1} - 0.0778 20 0.0683 {1, 30, 30, 1} - 0.0790 30 0.0720 {1, 30, 30, 1}

MCF7 - 0.0614 30 0.0553 {1, 30, 30, 1} - 0.0657 20 0.0562 {1, 30, 30, 1} - 0.0680 30 0.0599 {1, 30, 30, 1}

PC3 - 0.0644 30 0.0576 {1, 30, 30, 1} - 0.0673 20 0.0598 {1, 30, 30, 1} - 0.0698 30 0.0648 {1, 30, 30, 1}

A375 - 0.0850 30 0.0730 {1, 30, 30, 1} - 0.0904 20 0.0757 {1, 30, 30, 1} - 0.0927 30 0.0866 {1, 30, 30, 1}

HA1E - 0.0759 30 0.0667 {1, 30, 30, 1} - 0.0798 20 0.0688 {1, 30, 30, 1} - 0.0820 30 0.0753 {1, 30, 30, 1}

HT29 - 0.0770 30 0.0677 {1, 30, 30, 1} - 0.0814 20 0.0702 {1, 30, 30, 1} - 0.0832 30 0.0785 {1, 30, 30, 1}

A549 - 0.0749 30 0.0681 {1, 30, 30, 1} - 0.0786 20 0.0689 {1, 30, 30, 1} - 0.0794 30 0.0724 {1, 30, 30, 1}

VCAP - 0.0701 30 0.0633 {1, 30, 30, 1} - 0.0731 20 0.0647 {1, 30, 30, 1} - 0.0740 30 0.0685 {1, 30, 30, 1}

YAPC - 0.0787 30 0.0716 {1, 30, 30, 1} - 0.0826 20 0.0735 {1, 30, 30, 1} - 0.0842 30 0.0792 {1, 30, 30, 1}

HELA - 0.0760 30 0.0704 {1, 30, 30, 1} - 0.0799 20 0.0717 {1, 30, 30, 1} - 0.0812 30 0.0754 {1, 30, 30, 1}

HCC515 - 0.0885 30 0.0786 {1, 30, 30, 1} - 0.0929 20 0.0807 {1, 30, 30, 1} - 0.0939 30 0.0870 {1, 30, 30, 1}

HEPG2 - 0.0835 30 0.0788 {1, 30, 30, 1} - 0.0866 20 0.0789 {1, 30, 30, 1} - 0.0870 30 0.0809 {1, 30, 30, 1}

HS578T - 0.0677 30 0.0640 {1, 30, 30, 1} - 0.0714 20 0.0635 {1, 30, 30, 1} - 0.0716 30 0.0625 {1, 30, 30, 1}

MCF10A - 0.0693 30 0.0653 {1, 30, 30, 1} - 0.0735 20 0.0647 {1, 30, 30, 1} - 0.0737 30 0.0638 {1, 30, 30, 1}

MDAMB231 - 0.0683 30 0.0647 {1, 30, 30, 1} - 0.0722 20 0.0641 {1, 30, 30, 1} - 0.0725 30 0.0633 {1, 30, 30, 1}

SKBR3 - 0.0678 30 0.0639 {1, 30, 30, 1} - 0.0718 20 0.0633 {1, 30, 30, 1} - 0.0721 30 0.0626 {1, 30, 30, 1}

BT20 - 0.0679 30 0.0639 {1, 30, 30, 1} - 0.0719 20 0.0633 {1, 30, 30, 1} - 0.0721 30 0.0624 {1, 30, 30, 1}

(b) RSEs for missing values

total cell lines 0.0750 0.0765 30 0.0694 {1, 30, 30, 1} 0.0837 0.0798 20 0.0716 {1, 30, 30, 1} NA 0.0820 30 0.0776 {1, 30, 30, 1}

MCF7 0.0634 0.0616 30 0.0568 {1, 30, 30, 1} 0.0735 0.0658 20 0.0574 {1, 30, 30, 1} NA 0.0681 30 0.0604 {1, 30, 30, 1}

PC3 0.0648 0.0650 30 0.0592 {1, 30, 30, 1} 0.0742 0.0673 20 0.0614 {1, 30, 30, 1} NA 0.0699 30 0.0655 {1, 30, 30, 1}

A375 0.0832 0.0862 30 0.0764 {1, 30, 30, 1} 0.0929 0.0906 20 0.0788 {1, 30, 30, 1} NA 0.0930 30 0.0881 {1, 20, 20, 1}

HA1E 0.0744 0.0759 30 0.0681 {1, 30, 30, 1} 0.0842 0.0796 20 0.0707 {1, 30, 30, 1} NA 0.0819 30 0.0764 {1, 30, 30, 1}

HT29 0.0773 0.0777 30 0.0703 {1, 30, 30, 1} 0.0853 0.0810 20 0.0726 {1, 30, 30, 1} NA 0.0831 30 0.0797 {1, 20, 20, 1}

A549 0.0755 0.0785 30 0.0708 {1, 30, 30, 1} 0.0833 0.0812 20 0.0718 {1, 30, 30, 1} NA 0.0822 30 0.0770 {1, 30, 30, 1}

VCAP 0.0643 0.0710 20 0.0632 {1, 30, 30, 1} 0.0703 0.0723 20 0.0662 {1, 30, 30, 1} NA 0.0740 30 0.0717 {1, 30, 30, 1}

YAPC 0.0728 0.0738 30 0.0679 {1, 30, 30, 1} 0.0840 0.0786 20 0.0718 {1, 30, 30, 1} NA 0.0810 30 0.0782 {1, 10, 10, 1}

HELA 0.0701 0.0715 30 0.0666 {1, 30, 30, 1} 0.0800 0.0749 20 0.0693 {1, 30, 30, 1} NA 0.0772 30 0.0739 {1, 20, 20, 1}

HCC515 0.0986 0.0994 30 0.0893 {1, 30, 30, 1} 0.1068 0.1039 20 0.0926 {1, 30, 30, 1} NA 0.1049 30 0.1000 {1, 20, 20, 1}

HEPG2 0.0948 0.0954 20 0.0907 {1, 30, 30, 1} 0.1012 0.0978 20 0.0914 {1, 30, 30, 1} NA 0.0990 30 0.0958 {1, 30, 30, 1}

HS578T 0.0407 0.0420 30 0.0403 {1, 30, 30, 1} 0.0431 0.0432 20 0.0412 {1, 30, 30, 1} NA 0.0445 10 0.0431 {1, 10, 10, 1}

MCF10A 0.0480 0.0476 10 0.0455 {1, 20, 20, 1} 0.0496 0.0482 20 0.0455 {1, 20, 20, 1} NA 0.0496 10 0.0476 {1, 20, 20, 1}

MDAMB231 0.0432 0.0440 10 0.0429 {1, 30, 30, 1} 0.0475 0.0467 20 0.0434 {1, 30, 30, 1} NA 0.0490 10 0.0456 {1, 30, 30, 1}

SKBR3 0.0415 0.0440 10 0.0416 {1, 30, 30, 1} 0.0426 0.0432 10 0.0417 {1, 10, 10, 1} NA 0.0450 10 0.0426 {1, 10, 10, 1}

BT20 0.0433 0.0441 30 0.0419 {1, 30, 30, 1} 0.0443 0.0443 20 0.0426 {1, 10, 10, 1} NA 0.0468 10 0.0439 {1, 20, 20, 1}



Supplementary Table 2. Performance evaluation of data completion by tensor decomposition algorithms for fourth-order transcriptome
data (drugs, genes, cell lines, and time points) with artificial missing values. Missing values were generated by the “random missing”
strategy. Relative standard errors (RSEs) between the original and reconstructed data from tensor decomposition were calculated for (a)
all values and (b) missing values only. The proposed TT-WOPT method and the baseline CP-WOPT method are denoted as TT and CP,
respectively. The optimized tensor ranks are shown for each method. Artificially generated missing rates of 10%, 50%, and 90% were
tested. Cell lines are listed in order of increasing original missing rates.

artificial missing rate

10% 50% 90%

standard imputation CP (baseline) CP-ranks TT (proposed) TT-ranks standard imputation CP (baseline) CP-ranks TT (proposed) TT-ranks standard imputation CP (baseline) CP-ranks TT (proposed) TT-ranks

(a) RSEs for all values

total cell lines - 0.00245 20 0.00210 {1, 20, 20, 20, 1} - 0.00234 10 0.00214 {1, 20, 20, 20, 1} - 0.00282 10 0.00214 {1, 20, 20, 20, 1}

MCF7 - 0.0023 30 0.00181 {1, 20, 20, 20, 1} - 0.00221 10 0.00186 {1, 20, 20, 20, 1} - 0.00288 10 0.00189 {1, 20, 20, 20, 1}

PC3 - 0.00208 20 0.00170 {1, 10, 10, 10, 1} - 0.00194 10 0.00169 {1, 10, 10, 10, 1} - 0.00265 10 0.00172 {1, 10, 10, 10, 1}

A375 - 0.00252 20 0.00213 {1, 20, 20, 20, 1} - 0.00236 10 0.00216 {1, 20, 20, 20, 1} - 0.00298 10 0.00217 {1, 20, 20, 20, 1}

HA1E - 0.00274 30 0.00245 {1, 20, 20, 20, 1} - 0.00271 10 0.00248 {1, 20, 20, 20, 1} - 0.00311 10 0.00248 {1, 20, 20, 20, 1}

HT29 - 0.00234 30 0.00201 {1, 20, 20, 20, 1} - 0.00229 10 0.00206 {1, 20, 20, 20, 1} - 0.00279 10 0.00205 {1, 20, 20, 20, 1}

A549 - 0.00285 20 0.00255 {1, 20, 20, 20, 1} - 0.00284 10 0.00259 {1, 20, 20, 20, 1} - 0.00314 10 0.00258 {1, 20, 20, 20, 1}

VCAP - 0.00255 30 0.00224 {1, 20, 20, 20, 1} - 0.00259 10 0.00228 {1, 20, 20, 20, 1} - 0.00293 10 0.00228 {1, 20, 20, 20, 1}

YAPC - 0.00249 30 0.00217 {1, 20, 20, 20, 1} - 0.00235 10 0.00222 {1, 20, 20, 20, 1} - 0.00283 10 0.00221 {1, 20, 20, 20, 1}

HELA - 0.00232 20 0.00203 {1, 20, 20, 20, 1} - 0.00228 10 0.00208 {1, 20, 20, 20, 1} - 0.00265 20 0.00207 {1, 20, 20, 20, 1}

HCC515 - 0.00283 20 0.00249 {1, 20, 20, 20, 1} - 0.00264 10 0.00253 {1, 20, 20, 20, 1} - 0.00323 10 0.00252 {1, 20, 20, 20, 1}

HEPG2 - 0.00249 30 0.00218 {1, 20, 20, 20, 1} - 0.00234 10 0.00222 {1, 20, 20, 20, 1} - 0.00292 10 0.00221 {1, 20, 20, 20, 1}

HS578T - 0.00212 20 0.00181 {1, 20, 20, 20, 1} - 0.00198 10 0.00186 {1, 20, 20, 20, 1} - 0.00243 10 0.00185 {1, 20, 20, 20, 1}

MCF10A - 0.00214 20 0.00181 {1, 20, 20, 20, 1} - 0.00204 10 0.00186 {1, 20, 20, 20, 1} - 0.00247 10 0.00185 {1, 20, 20, 20, 1}

MDAMB231 - 0.0023 20 0.00201 {1, 20, 20, 20, 1} - 0.00220 10 0.00206 {1, 20, 20, 20, 1} - 0.00261 10 0.00204 {1, 20, 20, 20, 1}

SKBR3 - 0.00246 20 0.00216 {1, 20, 20, 20, 1} - 0.00241 10 0.00221 {1, 20, 20, 20, 1} - 0.00278 10 0.00220 {1, 20, 20, 20, 1}

BT20 - 0.00215 20 0.00181 {1, 20, 20, 20, 1} - 0.00203 10 0.00186 {1, 20, 20, 20, 1} - 0.00243 10 0.00185 {1, 20, 20, 20, 1}

(b) RSEs for missing values

total cell lines 0.00271 0.00308 30 0.00266 {1, 10, 10, 10, 1} 0.00276 0.00299 10 0.00269 {1, 20, 20, 20, 1} NA 0.0036 10 0.00276 {1, 10, 10, 10, 1}

MCF7 0.00195 0.00314 30 0.00189 {1, 10, 10, 10, 1} 0.00242 0.00275 10 0.00236 {1, 10, 10, 10, 1} NA 0.00366 10 0.00263 {1, 10, 10, 10, 1}

PC3 0.00243 0.00266 30 0.00222 {1, 30, 30, 30, 1} 0.00264 0.00286 10 0.00237 {1, 30, 30, 30, 1} NA 0.00362 10 0.00257 {1, 30, 30, 30, 1}

A375 0.00288 0.00316 20 0.00286 {1, 20, 20, 20, 1} 0.00284 0.00302 10 0.00261 {1, 30, 30, 30, 1} NA 0.00354 10 0.00254 {1, 20, 20, 20, 1}

HA1E 0.00331 0.00319 30 0.00293 {1, 30, 30, 30, 1} 0.00293 0.00317 10 0.00276 {1, 20, 20, 20, 1} NA 0.00368 10 0.00285 {1, 30, 30, 30, 1}

HT29 0.00217 0.00215 30 0.00178 {1, 30, 30, 30, 1} 0.00195 0.00225 10 0.00192 {1, 10, 10, 10, 1} NA 0.00297 10 0.00203 {1, 20, 20, 20, 1}

A549 0.00273 0.00272 30 0.00241 {1, 30, 30, 30, 1} 0.00327 0.00351 10 0.00322 {1, 10, 10, 10, 1} NA 0.00390 10 0.00333 {1, 10, 10, 10, 1}

VCAP 0.00277 0.0036 30 0.00273 {1, 10, 10, 10, 1} 0.00310 0.00334 10 0.00297 {1, 20, 20, 20, 1} NA 0.00371 10 0.00301 {1, 30, 30, 30, 1}

YAPC 0.00357 0.00371 30 0.00344 {1, 30, 30, 30, 1} 0.00367 0.00367 10 0.00319 {1, 20, 20, 20, 1} NA 0.00406 10 0.00355 {1, 20, 20, 20, 1}

HELA 0.00429 0.00348 20 0.00325 {1, 20, 20, 20, 1} 0.00396 0.00398 10 0.00372 {1, 30, 30, 30, 1} NA 0.00424 10 0.00378 {1, 20, 20, 20, 1}

HCC515 0.00230 0.00225 20 0.00155 {1, 20, 20, 20, 1} 0.00210 0.00225 10 0.00199 {1, 20, 20, 20, 1} NA 0.00310 10 0.00209 {1, 30, 30, 30, 1}

HEPG2 0.00105 0.00173 20 0.00100 {1, 10, 10, 10, 1} 0.00142 0.00169 10 0.00138 {1, 10, 10, 10, 1} NA 0.00303 10 0.00163 {1, 30, 30, 30, 1}

HS578T 0.00188 0.00177 30 0.00074 {1, 30, 30, 30, 1} 0.00108 0.00196 10 0.00102 {1, 10, 10, 10, 1} NA 0.00312 10 0.00136 {1, 10, 10, 10, 1}

MCF10A 0.00160 0.00159 30 0.00044 {1, 20, 20, 20, 1} 0.00088 0.00169 10 0.00081 {1, 30, 30, 30, 1} NA 0.00316 10 0.00106 {1, 10, 10, 10, 1}

MDAMB231 0.00061 0.00172 30 0.00049 {1, 30, 30, 30, 1} 0.00076 0.00205 10 0.00066 {1, 20, 20, 20, 1} NA 0.00281 10 0.00078 {1, 10, 10, 10, 1}

SKBR3 0.00035 0.00173 30 0.00036 {1, 30, 30, 30, 1} 0.00116 0.00219 10 0.00112 {1, 20, 20, 20, 1} NA 0.00289 20 0.00108 {1, 20, 20, 20, 1}

BT20 0.00069 0.00176 30 0.00083 {1, 20, 20, 20, 1} 0.00094 0.00198 10 0.00071 {1, 20, 20, 20, 1} NA 0.00299 20 0.00115 {1, 20, 20, 20, 1}



Supplementary Table 3. Performance evaluation of data completion by tensor de-
composition algorithms for third-order transcriptome data (drugs, genes, and cell lines)
with different rates of artificial missing values. Missing values were generated by the
“cell-based missing” strategy. Relative standard errors (RSEs) between the original and
reconstructed data from tensor decomposition were calculated for missing values only.
The proposed TT-WOPT method and the baseline CP-WOPT method are denoted as
TT and CP, respectively. The optimized tensor ranks are shown for each method. Cell
lines are listed in order of increasing original missing rates.

artificial (a) RSEs for all values (b) RSEs for missing values

missing cell CP (baseline) CP-ranks TT (proposed) TT-ranks CP (baseline) CP-ranks TT (proposed) TT-ranks

MCF7 0.1811 30 0.1523 {1, 30, 30, 1} 0.6673 30 0.5498 {1, 30, 30, 1}

PC3 0.2170 20 0.1525 {1, 30, 30, 1} 0.8199 20 0.5514 {1, 30, 30, 1}

A375 0.2216 10 0.1511 {1, 30, 30, 1} 0.8122 10 0.5459 {1, 30, 30, 1}

HA1E 0.2495 20 0.1539 {1, 30, 30, 1} 0.9562 20 0.5583 {1, 30, 30, 1}

HT29 0.2577 30 0.1551 {1, 30, 30, 1} 0.9910 30 0.5638 {1, 30, 30, 1}

A549 0.2401 10 0.1529 {1, 30, 30, 1} 0.9157 10 0.5537 {1, 30, 30, 1}

VCAP 0.2196 20 0.1531 {1, 30, 30, 1} 0.8329 20 0.5549 {1, 30, 30, 1}

YAPC 0.2604 20 0.1530 {1, 30, 30, 1} 1.0015 20 0.5547 {1, 30, 30, 1}

HELA 0.2695 20 0.1540 {1, 30, 30, 1} 1.0390 20 0.5590 {1, 30, 30, 1}

HCC515 0.2109 30 0.1528 {1, 30, 30, 1} 0.7910 30 0.5541 {1, 30, 30, 1}

HEPG2 0.1657 20 0.1564 {1, 30, 30, 1} 0.5855 20 0.5696 {1, 30, 30, 1}

HS578T 0.2281 30 0.1517 {1, 30, 30, 1} 0.8655 30 0.5476 {1, 30, 30, 1}

MCF10A 0.2157 20 0.1508 {1, 30, 30, 1} 0.8139 20 0.5439 {1, 30, 30, 1}

MDAMB231 0.2134 20 0.1537 {1, 30, 30, 1} 0.8029 20 0.5571 {1, 30, 30, 1}

SKBR3 0.2208 20 0.1546 {1, 30, 30, 1} 0.8307 20 0.5609 {1, 30, 30, 1}

BT20 0.2238 30 0.1538 {1, 30, 30, 1} 0.8500 30 0.5574 {1, 30, 30, 1}



Supplementary Table 4. Performance evaluation of data completion by tensor de-
composition algorithms for fourth-order transcriptome data (drugs, genes, cell lines,
and time points) with artificial missing values. Missing values were generated by the
“cell-based missing” strategy. Relative standard errors (RSEs) between the original
and reconstructed data from tensor decomposition were calculated for (a) all values
and (b) missing values only. The proposed TT-WOPT method and the baseline CP-
WOPT method are denoted as TT and CP, respectively. The optimized tensor ranks
are shown for each method. Cell lines are listed in order of increasing original missing
rates.

artificial (a) RSEs for all values (b) RSEs for missing values

missing cell CP (baseline) CP-ranks TT (proposed) TT-ranks CP (baseline) CP-ranks TT (proposed) TT-ranks

MCF7 0.2693 30 0.0071 {1, 30, 30, 30, 1} 1.0749 20 0.0266 {1, 30, 30, 30, 1}

PC3 0.2215 20 0.0064 {1, 30, 30, 30, 1} 0.8859 20 0.0236 {1, 30, 30, 30, 1}

A375 0.1811 20 0.0122 {1, 30, 30, 30, 1} 0.7245 20 0.0481 {1, 30, 30, 30, 1}

HA1E 0.2568 10 0.0052 {1, 30, 30, 30, 1} 1.0273 10 0.0173 {1, 30, 30, 30, 1}

HT29 0.295 10 0.0056 {1, 30, 30, 30, 1} 1.1522 20 0.0198 {1, 30, 30, 30, 1}

A549 0.2222 20 0.0111 {1, 30, 30, 30, 1} 0.8887 20 0.0436 {1, 30, 30, 30, 1}

VCAP 0.1543 10 0.0115 {1, 30, 30, 30, 1} 0.6172 10 0.0452 {1, 30, 30, 30, 1}

YAPC 0.1838 30 0.0055 {1, 30, 30, 30, 1} 0.7352 30 0.0198 {1, 30, 30, 30, 1}

HELA 0.2073 20 0.0098 {1, 30, 30, 30, 1} 0.8291 20 0.0380 {1, 30, 30, 30, 1}

HCC515 0.3141 30 0.0048 {1, 30, 30, 30, 1} 1.0315 10 0.0171 {1, 30, 30, 30, 1}

HEPG2 0.2077 30 0.0051 {1, 30, 30, 30, 1} 0.8308 30 0.0175 {1, 30, 30, 30, 1}

HS578T 0.1887 30 0.0101 {1, 30, 30, 30, 1} 0.7548 30 0.0395 {1, 30, 30, 30, 1}

MCF10A 0.1678 20 0.0108 {1, 30, 30, 30, 1} 0.6713 20 0.0421 {1, 30, 30, 30, 1}

MDAMB231 0.2241 30 0.0053 {1, 30, 30, 30, 1} 0.8964 30 0.0191 {1, 30, 30, 30, 1}

SKBR3 0.2164 20 0.0108 {1, 30, 30, 30, 1} 0.8654 20 0.0423 {1, 30, 30, 30, 1}

BT20 0.2711 30 0.0052 {1, 30, 30, 30, 1} 1.0127 20 0.0178 {1, 30, 30, 30, 1}



Supplementary Figure 1. Flow diagram of the tensor-train weighted optimization
(TT-WOPT) algorithm.



Supplementary Figure 2. Performance comparison on drug indication prediction
among the inverse signature, XSum, and multitask learning methods with and without
tensor decomposition. The top panel shows the distribution of AUC scores calculated
using all prediction scores for individual diseases. The bottom panel shows the missing
rate in each cell line. Cell lines are listed in increasing order of missing rates.



Supplementary Figure 3. Distribution of drugs repositioned from the original dis-
ease class to other disease classes. Nodes (indicated by gray diamonds) represent ICD-
10 disease chapters (shown with the chapter number and short chapter name). Edges
(indicated by blue lines) indicate potential correlations between diseases according to
the new therapeutic indications of drugs. Node size indicates the sum of the edges
of each node. Edge width indicates the number of drugs repositioned between two
disease chapters. The chapters are as follows: Chapter I: certain infectious and par-
asitic diseases (A00–B99). Chapter II: neoplasms (C00–D48). Chapter III: diseases
of the blood, blood-forming organs, and certain disorders involving immune mecha-
nisms (D50–D89). Chapter IV: endocrine, nutritional, and metabolic diseases (E00–
E90). Chapter V: mental and behavioral disorders (F00–F99). Chapter VI: diseases of
the nervous system (G00–G99). Chapter VII: diseases of the eye and adnexa (H00–
H59). Chapter VIII: diseases of the ear and mastoid process (H60–H95). Chapter IX:
diseases of the circulatory system (I00–I99). Chapter X: diseases of the respiratory
system (J00–J99). Chapter XI: diseases of the digestive system (K00–K93). Chapter
XII: diseases of the skin and subcutaneous tissue (L00–L99). Chapter XIII: diseases
of the musculoskeletal system and connective tissue (M00–M99). Chapter XIV: dis-
eases of the genitourinary system (N00–N99). Chapter XV: pregnancy, childbirth, and
the puerperium (O00–O99). Chapter XVI: certain conditions originating in the peri-
natal period (P00–P96). Chapter XVII: congenital malformations, deformations; and
chromosomal abnormalities (Q00–Q99). Chapter XVIII: symptoms, signs, and abnor-
mal clinical and laboratory findings not elsewhere classified (R00–R99). Chapter XIX:
injury, poisoning, and certain other consequences of external causes (S00–T98). Chap-
ter XX: external causes of morbidity and mortality (V01–Y98). Chapter XXI: factors
influencing health status and contact with health services (Z00–Z99). Chapter XXII:
codes for special purposes (U00–U99).



Supplementary Figure 4. Drug–disease association network predicted using the mul-
titask learning method with tensor decomposition. Blue circles and green diamonds de-
note drugs and diseases, respectively. Gray and red lines denote known and predicted
associations, respectively.


