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Tissue in our data Mached tissue(s) in GTEx data

Blood WholeBlood
Brain BrainAnteriorcingulatecortexBA24, BrainCau-

datebasalganglia, BrainCerebellarHemisphere,
BrainCerebellum, BrainCortex, BrainFrontal-
CortexBA9, BrainHippocampus, BrainHypotha-
lamus, BrainNucleusaccumbensbasalganglia,
BrainPutamenbasalganglia

Brain CRBM BrainCerebellum, BrainCerebellarHemisphere
Brain Frontal BrainCortex, BrainFrontalCortexBA9
Brain Frontal Cortex BrainCortex, BrainFrontalCortexBA9
Brain Hippocampus BrainHippocampus
Brain MedialFrontalCortex BrainCortex, BrainFrontalCortexBA9, BrainAn-

teriorcingulatecortexBA24
Brain MidBrain no match
Brain Occipital BrainCortex
Brain Temporal BrainCortex
Breast BreastMammaryTissue
Buccal no match
CD4+ cells no match
Cord Blood WholeBlood
Esophagus EsophagusGastroesophagealJunction, Esopha-

gusMucosa, EsophagusMuscularis
Fat AdiposeSubcutaneous
Hair no match
Kidney no match
Liver Liver
Lung Lung
Menstrual Blood WholeBlood
Muscle MuscleSkeletal
Unknown (head and neck) no match
Omentum AdiposeVisceralOmentum
Pancreas Pancreas
Saliva no match
Spleen Spleen
Vaginal Swab Vagina
Whole Blood WholeBlood

Supplementary Table 1. Table of how we matched tissues in our dataset with tissues
in the data published by Aguet et al. (2017) to use the tissue similarities they reported
as prior knowledge in wenda-pn.
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Supplementary Figure 1. As an alternative to the wenda-mar baseline, we also tested
the KL-divergence DK(P ||Q) between the discretized source and target distribution as
possible feature weights (wenda-KL). Due to the asymmetry of the KL divergence, there
are two variants, wenda-KL(S, T ) and wenda-KL(T, S), depending on the order in which
the discretized source (S) and target (T ) distributions are compared.

This Figure shows the mean absolute errors of wenda-mar and wenda-KL on cerebellum
samples (a) and on the full test set (b). We report all errors relative to the mean absolute
error of en and show mean ± standard deviation over 10 runs of 10-fold cross-validation.
In all simulation scenarios, both variants of wenda-KL perform similar or worse than
wenda-mar.

Computing an empirical KL divergence for two samples of continuous variables requires
the choice of a suitable discretization method. For the results presented here we chose
a bin size based on the smaller sample (i.e., the target domain data) using the rule of
thumb proposed by Sturges (1926) and applied it to the range of values of both samples.

The KL divergence is attractive from a theoretical perspective, but is not directly appli-
cable as an alternative score in wenda-pn and wenda-cv, where we compare the value of
each feature in a test sample to the conditional distribution (in the source domain) given
the remaining features. This conditional distribution is predicted by gf and is different
for each test sample and feature, which means that we are repeatedly comparing a single
value to a single predicted distribution.
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(a) Mean abs. error on cerebellum samples.
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(b) Mean abs. error on the full test set.

Supplementary Figure 2. Comparison of the mean absolute errors of en-ls, wenda-
mar and wenda-KL (see Supplementary Figure 1) on cerebellum samples (a) and on the
full test set (b). Error bars indicate mean ± standard deviation over 10 runs of 10-fold
cross-validation.

The results of wenda-KL differ dramatically between the two variants. On Cerebellum
samples wenda-KL(T, S) performs surprisingly well, even slightly outperforming wenda-
mar, but wenda-KL(S, T ) performs substantially worse (in the range of en-ls). On the
full set, both variants have a performance in a similar range as wenda-mar.
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Supplementary Figure 3. As a second performance measure (in addition to mean
absolute error), we report the correlation between true and predicted output. This figure
shows correlations for wenda-pn, wenda-cv and wenda-mar on simulated test data. Each
row shows results on one target domain (no mismatch, 10–30% altered variables). We
report all correlations relative to the correlation of true output and predictions of en,
showing the mean ± standard deviation over 10 simulations.
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(a) Correlation on cerebellum samples.
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(b) Correlation on the full test set.

Supplementary Figure 4. Correlation of predicted and true age for all models on
cerebellum samples (a) and on the full test set (b). For wenda-pn we computed corre-
lations only based on samples which were in the evaluation set. We show the mean and
standard deviation over 10 runs of 10-fold cross-validation or, in case of wenda-pn, over
all considered splits of the test tissues.

6



0.
2

0.
4

0.
6

0.
8

m
ea

n 
ab

s.
 e

rr
or

● ● ● ●

en
 (

α 
tu

ne
d)

en
−

ls
 (

α 
tu

ne
d)

en
 (

α 
=

 0
.8

)

en
−

ls
 (

α 
=

 0
.8

)

en
 (

α 
tu

ne
d)

en
−

ls
 (

α 
tu

ne
d)

en
 (

α 
=

 0
.8

)

en
−

ls
 (

α 
=

 0
.8

)

en
 (

α 
tu

ne
d)

en
−

ls
 (

α 
tu

ne
d)

en
 (

α 
=

 0
.8

)

en
−

ls
 (

α 
=

 0
.8

)

en
 (

α 
tu

ne
d)

en
−

ls
 (

α 
tu

ne
d)

en
 (

α 
=

 0
.8

)

en
−

ls
 (

α 
=

 0
.8

)

no mismatch 10% altered 20% altered 30% altered

(a)
5

15
25

35

m
ea

n 
ab

s.
 e

rr
or

 [y
ea

rs
]

● ●

●

●

en
 (

α 
tu

ne
d)

en
−

ls
 (

α 
tu

ne
d)

en
 (

α 
=

 0
.8

)

en
−

ls
 (

α 
=

 0
.8

)

en
 (

α 
tu

ne
d)

en
−

ls
 (

α 
tu

ne
d)

en
 (

α 
=

 0
.8

)

en
−

ls
 (

α 
=

 0
.8

)

on cerebellum samples on the full test set

(b)

Supplementary Figure 5. Comparison of the mean absolute errors of multiple base-
line models on simulated data (a) and on the DNA methylation data (b). The models
included are en and en-ls, each with fixed α = 0.8 and with α determined during
cross-validation (in steps of 0.05). We show the mean and standard deviation over 10
simulations and 10 runs of 10-fold cross-validation, respectively.

On simulated data, all baseline models perform very similarly and tuning α during cross-
validation does not lead to an improvement. This is consistent across all considered
target domains. On the DNA methylation data, all baseline models show very similar
performance on the full test set, but en-ls with α = 0.8, which we use as reference in
the main article, outperforms all other baseline models on cerebellum samples. It seems
that even though tuning α in addition to λ may give the model slightly more flexibility
to fit the training data well, it does not necessarily improve how the model generalizes
to other domains.

On the DNA methylation data we found that only very small values of α were selected
(either 0 or 0.05). This means that the resulting models were much closer (or even equal)
to ridge regression than to LASSO and produced less sparse solutions. The sparsity of
our baseline en-ls with α = 0.8 might be the reason why it generalizes better. It could
also explain why the subsequent least-squares fit of en-ls is beneficial for α = 0.8, but
not for tuned α. The final least-squares fit can help if many of noisy features were
already excluded by the elastic net. If most features remain in the fit, removing the
regularization penalty only increases variance.

7



References

Aguet, F., Brown, A. A., Castel, S. E., Davis, J. R., He, Y., et al. (2017). Genetic effects
on gene expression across human tissues. Nature, 550(7675), 204–213.

Sturges, H. A. (1926). The choice of a class interval. Journal of the American Statistical
Association. 21(153), 65–66.

8


