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Supp1 Additional information

Supp1.1 Notations

Notation Meaning

R Real numbers
·T Transposition operation
|| · ||F Frobenius norm
G (d, p) Grassmann manifold of parameters d and p (for d < p)

span Span of a set of vectors
()·,k kth column of the matrix

argmax Element that maximises the following quantity
argmin Element that minimizes the following quantity
arcos Inverse trigonometric function of the cosine
p Number of genes (∼ 19, 000)
·s Related to the source dataset (cell line or PDX)
·t Related to the target dataset (tumor)
n· Number of samples
df Number of domain-specific factors, e.g. principal components
dpv Number of principal vectors

X· ∈ Rn·p Transcriptomics data with samples in the rows
Id Identity matrix of size d× d

diag Diagonal matrix
P· ∈ Rdfp Domain-specific factors with factors in the rows.

M∗ Cosine similarity matrix
θ Principal angle

Q· ∈ Rdpvp Principal vectors with factors in the rows
Φ Geodesic in Grassmann manifold
Π Source-related rotation for geodesic in Grassmannian
Ξ Target-related rotation for geodesic in Grassmannian

τ ∈ [0, 1] Interpolation time between source and target
Φi, i ∈ {1, .., dpv} Interpolation between the ith pairs of principal vectors

D Kolmogorov-Smirnov (KS) statistics
τi Time of optimal matching for ith pairs of principal vectors
F Consensus representation

Xproj
· Data projected on the consensus representation F.
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Supp1.2 List of drugs

Drug Cancer types used in PRECISE

Erlotinib Head and Neck
Sunitinib Colorectal
Paclitaxel Breast, Ovary, Lung

Cyclopamine Breast
AX628 Lung

Sorafenib Kidney
Crizotinib Lung

S-Trityl-L-cysteine Prostate
Parthenolide Blood
Roscovitine Lung
Salubrinal Lung
Lapatinib Breast

Doxorubicin Breast, Bladder
Etoposide Testis, Lung, Brain, Ovary

Gemcitabine Breast, Ovary, Lung, Pancreas, Bladder
Mitomycin C Oesophagus
Vinorelbine Breast, Lung

Bicalutamide Prostate
5-Fluorouracil Colorectal, Oesophagus, Stomach, Skin
Thapsigargin Brain

Bleomycin Testis, Ovary, Cervix
Pazopanib Kidney
Zibotentan Prostate

Camptothecin Ovary, Lung
Vinblastine Lung, Bladder, Brain, Skin, Testis
Cisplatin Testis, Ovary, Cervix, Breast, Bladder, Head and Neck, Brain, Oesophagus
Docetaxel Breast, Head and Neck, Stomach, Prostate, Lung

Methotrexate Breast
Gefitinib Breast, Lung
Nilotinib Blood

RDEA119 Skin
Temsirolimus Kidney

Olaparib Ovary, Breast, Prostate
Lenalidomide Blood

Axitinib (+ rescreen) Kidney
Elesclomol Skin
Afatinib Lung

Vismodegib Skin
Cetuximab Colorectal, Lung, Head and Neck
Tamoxifen Breast
Trametinib Skin
Dabrafenib Skin

Temozolomide Brain
AZD6244 Lung

Supp1.3 Notes on transcriptomics data

Transcriptome levels have been measured using RNA-Seq Illumina HTSeq for both cell lines, PDX as
well as the tumors. For cell lines and tumors, RNA-Seq data was available as read counts. For PDX and
tumors, RNA-Seq data was available as FPKM. Since FPKM values are corrected for gene length at the
transcript level and already normalised for library size, they cannot directly be compared to read counts.
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Consequently, we use two separate pre-processing pipelines, following the recommendation in (Dillies
et al. (2013); Zwiener et al. (2014)). For read counts, data is first normalized using TMM (Robinson
and Oshlack (2010)), then log-transformed and mean-centered. For FPKM, data is log-transformed and
mean-centered. Experiments involving cell line to human tumor transfer have been performed using read
counts, while PDX to human tumor transfer experiments have been performed using FPKM.
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Supp2 Geodesic Flow derivation

Supp2.1 Original formulation

We denote by G (d, p) the Grassmannian of d-dimensional subspaces within a p-dimensional space. This
is formally defined as the set with a Riemannian structure of the d-dimensional subspaces within a larger
p-dimensional space. The geometry of this space is non-Euclidean and therefore the shortest paths to
go from one point to another are referred to as geodesics. The source domain-specific factors can be
represented by one point in the Grassmannian and so do the target domain-specific factors. The idea
now is to find this geodesic within G (d, p) that links the two. An analytical formulation of this curve is
given in (Gong et al. (2012)).
An SVD on the cosine similarity matrix yields the matrices U1 ∈ Rd×d and U2 ∈ R(p−d)×d such that

PsPt
T = U1ΓVT where Γ = diag (cos (θ1) , .., cos (θd)) (Supp1)

Let Rs ∈ R(p−d)×p be the orthonormal complement of Ps (i.e. RsP
T
s = 0p−d,d and RsRs

T =
Ip−d,p−d). The cosine similarity matrix between the orthogonal complement of Ps and the matrix Pt

gives, after an SVD and a column-wise permutation on the right matrix:

RsPt
T = −U2ΣVT where Σ = diag (sin (θ1) , .., sin (θd)) (Supp2)

With these quantities, one can now define:

Proposition Supp2.1 (Geodesic on the Grassmann manifold). The geodesic on the Grassmann mani-
fold can be represented by the bases Φ defined as:

Φ : [0, 1] −→ G (d, p)

τ 7−→ PT
s U1Γ (τ)−RT

s U2Σ (τ)

where Γ (τ) = diag (cos (τθ1) , .., cos (τθd))

and Σ (τ) = diag (sin (τθ1) , .., sin (τθd))

(Supp3)

As shown in (Equation Supp3), this formulation requires a lot of computation since the orthogonal
complement Rs has to be computed. What is more, it links the domain-specific factors together, which
is of limited interest for our study. Indeed, we would like to have a formulation that directly links the
principal vectors instead, in order to filter out irrelevant factors that are too dissimilar to be used in the
regression model.

Supp2.2 Writing the geodesic flow in terms of principal vectors instead of
principal components

We here derive a formulation of the geodesic Φ in terms of principal vectors. We only make the assump-
tion that θd <

π
2 , which can easily be checked experimentally, and which generally holds for all practical

purposes. For problems that nevertheless do not satisfy this assumption, orthogonal principal vectors
can be removed from the problem. They indeed do not correspond to transferable features and can be
discarded.

Proposition Supp2.2 (Equivalent definition of the Geodesic). Let’s assume that θd <
π
2 , then the

geodesic can equivalently be defined as

∀τ ∈ [0, 1] , Φ (τ) = QT
s Π (τ) + QT

t Ξ (τ)

with Π (τ) = diag

(
sin ((1− τ) θi)

sin (θi)

)
and Ξ (τ) = diag

(
sin (τθi)

sin (θi)

) . (Supp4)

Proof. Since [Ps,Rs] forms a orthogonal basis of Rp, we have PT
s Ps + RT

s Rs = Ip. Summing up then
(Equation Supp1) and (Equation Supp2) yields, after multiplying by PT

s and RT
s respectively:

PT
t V = PT

s U1Γ−RT
s U2Σ (Supp5)
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We find that Φ (1) = PT
t V = QT

t , which means that the end point of the geodesic gives us the basis
of target principal vectors. Since θd <

π
2 , then ∀i ∈ {1, .., d} , θi < π

2 . Σ will thus be invertible and
(Equation Supp5) yields:

−RT
s U2 = QT

t Σ−1 −QT
s ΓΣ−1 (Supp6)

Plugging (Equation Supp6) into (Supp3) yields the desired formula. �

This way, the geodesic path is computed in O (p× d) instead of O
(
p2
)

and does not require the
computation of the orthogonal complement – which can be computationally intensive. This formulation
has the interest of taking the principal vectors as inputs, instead of the principal components. It shows
that the geodesic interpolates between principal vectors within each pair by taking features forming a
rotating arc between the source and the target principal vectors. It therefore proves that our approach
using all the principal vectors is strictly similar to the approach proposed in (Gong et al. (2012)) and in
(Gopalan et al. (2011)).

Supp2.3 Equivalence between Geodesic Flow Sampling and Principal Vector
regression

As suggested by (Gopalan et al. (2011)), a domain-invariant drug response predictor can be created by
sampling the interval [0, 1], i.e. by taking a number M + 1 of intermediate representations

{
0, 1

M ..., 1
}

,

computing the corresponding intermediate features
{
Φ (0) ,Φ

(
1
M

)
...,Φ (1)

}
, and finally projecting source

and target data on these intermediate features. We show here that it strictly equivalent to projecting on
the principal vectors and learn a linear regression model onto these principal vectors.

Proposition Supp2.3 (Equivalence of estimators without penalization). Let ŷS be the linear drug
response estimator learnt without penalization by minimizing the loss function ` on the interpolated
coefficients, and let ŷPV be the linear estimator learnt by minimizing the loss function ` on the principal
vectors. Then, ŷS = ŷPV .

Proof. Let x ∈ Rp be a sample - from either source or target. A linear model learnt on the projected
data will give a response of the form:

ŷS

(
x; (αi,j) 1≤i≤d

0≤j≤M

)
=

d∑
i=1

M∑
j=0

αi,jx
T

(
Qs,iΠi,i

(
j

m

)
+ Qt,iΞi,i

(
j

m

))

=

d∑
i=1

xT

Qs,i

M∑
j=0

αi,jΠi,i

(
j

m

)
+Qt,i

M∑
j=0

αi,jΞi,i

(
j

m

)
=

d∑
i=1

xT
[
βsiQs,i + βtiQt,i

]
= ŷPV

(
x;
(
βsi , β

t
i

)
1≤i≤d

)

(Supp7)

with:

• Qs,i (resp. Qt,i) the ith principal vector of the source (resp. target), for i ∈ {1, .., d}.

• αi,j ∈ R for all i ∈ {1, .., d} and j ∈ {0, ..,M} the coefficients of the linear model fitted on the
interpolated features.

• ∀i ∈ {1, .., d} , βsi =
∑M
j=0 αi,jΠi,i

(
j
m

)
• ∀i ∈ {1, .., d} , βti =

∑M
j=0 αi,jΞi,i

(
j
m

)
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Therefore, using this reciprocal correspondence, we can state that the non-regularized minimization
procedure, using any loss ` is equivalent for both set of parameters, namely:

min
αi,j

1

n

n∑
k=1

`
(
yk, ŷS (xk;αi,j)

)
= min

βs
i ,β

t
i

1

n

n∑
k=1

`
(
yk, ŷPV

(
xk;βsi , β

t
i

) )
(Supp8)

�

Penalization may change the matter and the solution of the two minimization procedure might change
slightly. However, we advocate for the latter penalized minimization procedure. Indeed, only 2d param-
eters have to be penalized. This in turn makes the minimization procedure easier and numerically more
stable. The former formulation would require shrinking on way more features that are expressing the
same content (same total rank).

Supp2.4 Equivalent formulation of Geodesic Flow Kernel Matrix

The original definition of the Geodesic Flow Kernel is (Gong et al. (2012)):

∀x, y ∈ Rp,
∫ 1

0

(
Φ (τ)

T
x
)T (

Φ (τ)
T
y
)
dτ = xTGy

with G =
[
PT
s U1 RT

s U2

] [Λ1 Λ2

Λ2 Λ3

] [
UT

1 Ps

UT
2 Rs

] (Supp9)

As shown in (Equation Supp9), computing the matrix G requires quadratic time in the number of
covariates, which can be prohibitive in genomics (when p ∼ 20, 000). We show here how to improve this
computation using the new formulation of (Equation Supp4).

Proposition Supp2.4 (Equivalent definition of Geodesic Flow Kernel). If θd <
π
2 , then there exists

σ1, .., σd ∈ R and ω1, .., ωd ∈ R such that

G =

[
Q̃s

Q̃t

]T [
Q̃s

Q̃t

]

with

Q̃s =

Qs,1σ1 + Qt,1ω1

..
Qs,dσd + Qt,dωd

 and Q̃t =

Qs,1ω1 + Qt,1σ1

..
Qs,dωd + Qt,dσd


Proof. First, if x ∈ Rp, we define xs = xTQs and xt = xTQt as the projection of the point x and the
source and target principal vectors. Then, using flow formulation from (Equation Supp4), we get:∫ 1

0

xTΦ (τ) Φ (τ)
T
y dτ

=

∫ 1

0

xT
[
QT
s Π (τ) + QT

t Ξ (τ)
]

[Π (τ) Qs + Ξ (τ) Qt] y dτ

= xTs

[∫ 1

0

Π2 (τ) dτ

]
ys

+ xTt

[∫ 1

0

Ξ2 (τ) dτ

]
yt

+ xTs

[∫ 1

0

Π (τ) Ξ (τ) dτ

]
yt

+ xTt

[∫ 1

0

Ξ (τ) Π (τ) dτ

]
ys

=
[
xTs xTt

] [ ∫ 1

0
Π2 (τ) dτ

∫ 1

0
Ξ (τ) Π (τ) dτ∫ 1

0
Ξ (τ) Π (τ) dτ

∫ 1

0
Ξ2 (τ) dτ

] [
ys
yt

]

(Supp10)
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With simple trigonometrical identities, we can show that :∫ 1

0

Π2 (τ) dτ =

∫ 1

0

Ξ2 (τ) dt =

(
θi − sin (θi) cos (θi)

2θi sin2 (θi)

)
i

(Supp11)

∫ 1

0

Π (τ) Ξ (τ) dτ =

(
sin (θi)− θi cos (θi)

2θi sin2 (θi)

)
i

(Supp12)

Since the matrix is diagonal, we now have a formulation that only requires O (d+ dp), faster than
the O

(
p2
)

that we had before since with d = 50 and p = 19000, we get a 8x speed-up.
We can write the matrix G as a product of the principal vector instead :

G =
[
QT
s QT

t

] [Λ µ
µ Λ

] [
Qs

Qt

]
Λ = diag

(
θi − sin (θi) cos (θi)

2θi sin2 (θi)

)
µ = diag

(
sin (θi)− θi cos (θi)

2θi sin2 (θi)

) (Supp13)

Let’s denote (λ1, ..λd) the diagonal coefficients of Λ and (µ1, ..µd) the diagonal coefficients of µ. We
can now define the coefficients σi and ωi for all i ∈ {1, .., d} as

σi =
1

2

(√
λi + µi +

√
λi − µi

)
ωi =

1

2

(√
λi + µi −

√
λi − µi

) (Supp14)

and the matrix H as :

H =


σ1 ω1

... ..
σd ωd

ω1 σ1

... ..
ωd σd

 (Supp15)

H is positive semi-definite (symmetric with eigenvalues σi + ωi > 0 and σi − ωi > 0) and respect:[
Λ µ
µ Λ

]
= HTH (Supp16)

Plugging this equality in (Equation Supp13), we get:

G =
[
QT
s QT

t

]
HTH

[
Qs

Qt

]
(Supp17)

Let’s now define the two following matrices:

Q̃s =

Qs,1σ1 + Qt,1ω1

..
Qs,dσd + Qt,dωd

 and Q̃t =

Qs,1ω1 + Qt,1σ1

..
Qs,dωd + Qt,dσd

 (Supp18)

We finally get:

G =

[
Q̃s

Q̃t

]T [
Q̃s

Q̃t

]
(Supp19)

�

The geodesic flow kernel is therefore equivalent to projecting on 2d vectors that form a basis equivalent
to the source and target principal vectors. Using the same idea as in Prop Supp2.4, the ordinary least
square estimate will be equivalent to the one obtained using principal vectors.
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Supp3 Comparison of factors between source and target

Supp3.1 Comparison results for other tissues

Following experiments from Fig 2, we computed the cosine similarity and the variance explained for
other tissues. Results can be found in Fig Supp1.

Figure Supp1: Cosine similarity matrices between pre-clinical models and tumors for different
tissues. Each box represents the analysis carried out on one tissue type. Within each box, the top panel
represents the cell line analysis and the bottom one represents the PDX results. Cosine similarity values
between source (cell lines or PDXs) and target (tumors) are displayed on the left. Ratio of target variance
explained by source principal components is displayed on the right panel.

Supp3.2 Significance of the cosine similarity values

To show that these cosine similarity values are significant, we performed a permutation test at the gene
level. These cosine similarity values are supposed to reflect some shared structure in the data. If we
permute the source genes while keeping the target data intact, this structure should be destroyed. The
source principal components would be different and the cosine similarity values should be impacted. We
permuted the genes order at the source level only and computed the resulting cosine similarity matrix
and variance explained 1000 times to create a meaningful comparison on 5 tissues : breast, colorectal,
lung, skin and pancreas. The results are displayed in Fig Supp2.
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Figure Supp2: Gene-level permutation results. For each (source, target) couple, genes have been
permuted in the source data. Cosine similarity values and target variance explained have then been
computed as in Subsection 3.1. For each tissue, the top row represents results between cell lines and
tumors while the bottom one represents results for PDX and tumors. The left column represents the
histogram of cosine similarity values while the right column shows the variance explained by target,
source and gene-level-permuted source principal components. 1000 permutations have been employed
to arrive to these results. For every tissue, the cosine similarity values for the permuted source data
range from 0 to 0.05, while certain cosine similarity values are as large as 0.2 for almost every tissue.
It suggests that the cosine similarity values encountered in Fig 2 and Fig Supp1 are not the product of
non-comparable signals. When it comes to the variance explained, the variance explained by permuted
source principal components is consistently two to three orders of magnitude lower than when the tumor
data is projected on the non-permuted source data. Two notable exceptions: colorectal PDXs and and
Pancreatic PDXs for which some permuted principal components show variance explained only one order
of magnitude lower than the non-permuted one.
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Supp3.3 Comparison with random signals

Gene-level permutation, although yielding useful insights as shown in Subsection Supp3.2, restricts the
pool of principal components values to the feature-level permutations. To go one step further in the
identification, we used a random signal to quantify the commonality. We computed the cosine similarity
values and the tumor variance explained for 250 random covariance matrices using the following protocol:

1. A random covariance matrix was sampled uniformly from the positive semi-definite matrices.

2. 1000 data points were drawn from the Gaussian distribution with 0-mean and the covariance matrix
drawn in 1.

3. Principal components were computed from the these data points and cosine similarity values were
computed alongside the tumor explained variance and compared to real data.

Although the second step could be removed and principal components could be computed directly
using the randomly drawn covariance matrix, we decided to use sampled data to be the closest possible
to our original setting. 1000 corresponds to the total number of cell lines available and is therefore
comparable to our settings. Results are shown in Fig Supp3.
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Figure Supp3: Random signal results. For each (source, target) couple, 250 positive semi-definite
matrices were drawn randomly. For each matrix, 1000 data points were then drawn from a Gaussian
distribution with this matrix as covariance. Cosine similarity and tumor variance explained were finally
computed. These purely random signals are here compared to the real results. For each tissue, the top
panel represents the comparison for cell lines while the bottom represents the results for PDXs. On
the left are compared the cosine similarity values and on the right the tumor variance explained ratio.
The random cosine similarity values appear to be consistently ranging between 0 and 0.02 while cosine
similarity between tumors and real source data are as large as 0.2 for some principal components. It
indicates that the similarity values between pre-clinical systems and tumors are not the product of the
comparison of two random signals. In terms of variance explained, the variance explained by random
principal components is two to five orders of magnitude lower than the tumor variance explained by real
source principal components. This result is consistent across all tissue type and once again indicate the
existence of some common structure between source and target.
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Supp4 Principal Vectors analysis for different set of tissues

Supp4.1 Breast vs Breast for PDX

In Fig 3, we compared breast cancer cell lines to human breast tumors. The same experiment was run
using PDXs instead of cell lines and results are shown in Fig Supp5.

Supp4.2 Breast vs All

In Fig 4, PRECISE was trained using all cell lines in order to enhance the sample size to around 1000 –
only 52 breast cancer cell lines are available. We compared the making of the principal vectors between
all cell lines and the breast tumors to make sure that these principal vectors still show some enrichment.
Results are shown in Fig Supp5.

Supp4.3 Skin vs Skin

We repeated the experiment of Fig 3 to another tissue: skin. As shown in Fig Supp6, the same behavior
as in breast appears, with immune related pathways mostly enriched in the least similar PVs.

Supp4.4 Other tissue

We computed the similarity scores for other tissues: skin, lung, pancreas and colorectal. Results are
shown in Fig Supp7 for both cell lines and PDXs.
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Figure Supp4: Principal vectors (PVs) computed from breast PDXs and breast tumors from
20 principal components.. (A) Cosine similarity matrix between PDX and tumor principal vectors.
As shown on the diagonal, the similarity is higher than in Fig 3A for a similar sample size. This
is encouraging since PDXs are expected to mimic human tumors more closely than cell lines. (B)
Spearman Correlation between PDX and tumor PV Normalized Enrichment Score (NES) for several
gene set collections. The spearman correlation is almost 1 up to the 8th PV, suggesting that the same
pathways get enriched. The last PV pair shows a negative correlation, in accordance with the almost null
similarity. (C) The NES based on the Canonical Pathways for each PV pair with the NES for the source
PV on the left and the NES for the target PV on the right (separated by a dashed line). Non-significant
gene sets are represented as white cells. For this figure panel, we selected the ten gene sets that were
most highly enriched in the first five PVs, the ten gene sets that showed the highest enrichment in the
bottom PVs as well as all the gene sets related to extra-cellular matrix. The top PVs are exclusively
enriched in pathways related to cell cycle. Immune system-related pathways are enriched in the middle
and bottom PVs and PVs at the bottom tend to show enrichment for the target PVs only. Compared
to results of Fig 2C, the gene sets related to the immune system appear to be again enriched only in the
less similar PVs, while extracellular matrix related pathways are this time showing some enrichment for
the top PVs. (D) The NES for each PV as displayed in (C), for the CHARAFE and VANTVEER gene
sets. The top principal vectors are significantly enriched in sets associated with breast cancer subtypes.
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Figure Supp5: Principal vectors (PVs) computed from breast cell lines and breast tumors
from 70 principal components... (A) Cosine similarity values between the top 70 principal vectors. A
zoom is performed on the top 20, showing that similarity is as high as 90% for the top pair. (B) Spearman
correlation between Normalised Enrichment Scores (NES) within each pair of PVs. Correlations close to
1 in the top 30 PV show that gene sets get the same enrichment in cell line and tumor PV and indicate
an important structural similarity. (C) The NES based on the Canonical Pathways for each PV pair
with the NES for the source PV on the left and the NES for the target PV on the right (separated by a
dashed line). Non-significant gene sets are represented as white cells. For this figure panel, we selected
the ten gene sets that were most highly enriched in the first five PVs, the ten gene sets that showed the
highest enrichment in the bottom PVs as well as all the gene sets related to extra-cellular matrix. (D)
The NES for each PV as displayed in (C), for the CHARAFE and VANTVEER gene sets. The top
principal vectors are significantly enriched in sets associated with breast cancer subtypes.
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Figure Supp6: Principal vectors (PVs) computed from skin cell lines and skin tumors from 20
principal components.. (A) Cosine similarity matrix between cell lines and tumor principal vectors.
(B) Spearman Correlation between PDX and tumor PV Normalized Enrichment Score (NES) for several
gene set collections. For the skin, the spearman correlations between NES are lower than for breast,
although they remain larger than 0.8 for the top 10 PVs. (C) The NES based on the Canonical Pathways
for each PV pair with the NES for the source PV on the left and the NES for the target PV on the right
(separated by a dashed line). Non-significant gene sets are represented as white cells. For this figure
panel, we selected the ten gene sets that were most highly enriched in the first five PVs, the ten gene
sets that showed the highest enrichment in the bottom PVs. Although two immune-related pathways are
enriched in the top PVs, the same pattern as in Fig 3 appears with several pathways enriched exclusively
in the last principal vectors.

16



Figure Supp7: The cosine similarity matrix between principal vectors for other tissues with
20 principal components. (A) Similarity values when target is set as skin tumors and source set as
skin cell lines (left) or skin PDXs (right). (B) Similarity values when target is set as pancreatic tumors
and source set as pancreatic cell lines (left) or pancreatic PDXs (right). (C) Similarity values when
target is set as lung tumors and source set as lung cell lines (left) or lung PDXs (right). (D) Similarity
values when target is set as colorectal tumors and source set as colorectal cell lines (left) or colorectal
PDXs (right).
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Supp5 Choice of the hyper parameters for the experiments

Supp5.1 Variance-based approach for selecting the number of Principal Com-
ponents

We selected the number of domain-specific factors (PCs) based on the variance explained by the cell line
principal components. Since the sample size is always larger for tumors, this cut-off point is lower for
cell lines than for tumors and we only showed the cell line behavior. As shown in Fig Supp8, we took 20
PCs when the same tissue is used for source and for target ; we took 70 PCs when all cell lines are used
as source data.

Supp5.2 Comparison to the randomly-sampled data for determining the sim-
ilarity cut-off point

Once the number of PCs had been settled, we needed to determine the number of PVs to select. For that
purpose, we computed the similarity between tumor data and data drawn from a gaussian distribution
with a random covariance matrix. We repeated this experiment 250 times and got 250 similarity profiles.
We took as threshold the maximum random similarity and selected PVs with similarity at least as large.
As shown in Fig Supp8, it yields 15 PVs when only one tissue is used for source, and 40 when all cell
lines are taken into account.

Figure Supp8: Choice of hyperparameters df and dpv. The top panel shows the cumulative variance
explained, while the bottom panel shows the similarity between the resulting PVs computed from the
number of PCs found with the top panel. (A) shows results for breast cell lines (with breast tumors), (B)
shows results for skin cell lines (with skin tumors), and (C) shows results for all cell lines (with breast
tumors). For selecting the number of PCs, we drew a line corresponding to the asymptotic behavior
of the cumulative variance and selected the principal components for which the cumulative variance
explained does not follow this behavior. This gives a cut-off slightly before 20 for breast, slightly above
20 for skin and around 70 for all. Since we want to use the same number of PCs for all experiment
having one tissue for the source, we settled for 20 that makes consensus between skin and breast. We
settled to 70 for experiments with all cell lines. Once this number of PCs had been settled, we needed
to determine where to put the PV threshold. For that, we sampled data from random covariance matrix
1000 times and compute 1000 similarity profiles following a similar idea than in Fig Supp3. We take the
top similarity as cut-off, which yields 15 PVs for breast, slighlty more for skin and around 40 for PVs.
Based on this experiment, we decided to settle for 15 PV when one tissue of the cell line is taken and 40
PVs when all cell lines are taken into account.
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Supp6 Comparison with known biomarkers

Supp6.1 PRECISE correlation with other known mechanisms

We repeated the experiment of Fig 4 with other known biomarker-drug associations. We also repeated
the same experiments but took only one tissue for the cell lines. Results shown in Fig Supp9 indicate
than PRECISE successfully recapitulates known associations coming from independent data sources.

Supp6.2 Biomarker correlation for Ridge regression without any domain
adaptation or with ComBat as preprocessing step

We compared PRECISE results to the scenario where no domain adaptation is used and a Ridge re-
gression is trained on the cell lines and directly transferred on the human tumors. We also compared
PRECISE to the pipeline used in (Geeleher et al. (2014)), where the difference between cell lines and
human tumors is modelled as a batch effect. As shown in Fig Supp10, most of the associations are still
recapitulated by the two scenarios, but PRECISE offers a higher discriminative power on most of the
biomarkers.
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Figure Supp9: Comparison to other known biomarkers. Following the same experimental procedure
as in Fig 4, we compared IC50 predicted by PRECISE with some known biomarkers. Using all cell lines as
source data, we show that PRECISE prediction are validated in (A) Dabrafenib (sensitive to BRAFV600E

mutation), (B) Vemurafenib (sensitive to BRAFV600E mutation), (C) Imatinib (sensitive to BCR/ABL
translocation), (D) Olaparib (sensitive to BRCA1 deletion) and (E) Talazoparib (sensitive to BRCA1
deletion). We repeated the experiment using only one tissue type in cell lines with all of the investigated
drugs. We show that using only breast cell lines reduces the predicted power of ERBB2 in Lapatinib
(F) and of BRCA1 in Talazoparib (L). However, it increases the power of BRAFV600E mutation in all
the MEK inhibitors considered (G,H,I), completely discriminates BCR/ABL translocated tumors for
Imatinib (J) and increases the power of BRCA1 deletion in Olaparib (K).
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Figure Supp10: Stratification with a Ridge regression on the bulk set of genes or with ComBat
as domain adaptation. We compared the results of Fig 4 and Fig Supp9 to two scenarios: one
without any domain adaptation between cell lines and tumors, and one with ComBat as the domain
adaptation step. (A) Lapatinib predicted response correlation with ERBB2 amplification is comparable
to PRECISE, whether ComBat is used or not. (B) Trametinib sensitivity to BRAFV600E mutation,
however, is not predicted. When using ComBat, a slight discrimination is observed between wild type and
mutated tumors but the regression model fails to discriminates between V600E and other mutations. In
Dabrafenib (C) and Vemurafenib (D), Ridge regression and ComBat successfully indicate the sensitivity
to BRAFV600E mutation, but the power is lower than PRECISE. BCR/ABL is not discriminated by
neither Ridge nor ComBat + Ridge (E). Finally, PARP inhibitors Olaparib (F) and Talazoparib (G)
are also recovered, but with correlations two to three times lower than with PRECISE.

21



References

Dillies, M.-A., Rau, A., Aubert, J., Hennequet-Antier, C., Jeanmougin, M., Servant, N., Keime, C., Marot, G., Castel, D., Estelle,

J., et al. (2013). A comprehensive evaluation of normalization methods for illumina high-throughput rna sequencing data

analysis. Briefings in bioinformatics, 14(6), 671–683.

Geeleher, P., Cox, N. J., and Huang, R. S. (2014). Clinical drug response can be predicted using baseline gene expression levels

and in vitro drug sensitivity in cell lines. Genome Biology.

Gong, B., Shi, Y., Sha, F., and Grauman, K. (2012). Geodesic flow kernel for unsupervised domain adaptation. In Computer

Vision and Pattern Recognition (CVPR), 2012 IEEE Conference on, pages 2066–2073. IEEE.

Gopalan, R., Li, R., and Chellappa, R. (2011). Domain adaptation for object recognition: An unsupervised approach. In Computer

Vision (ICCV), 2011 IEEE International Conference on, pages 999–1006. IEEE.

Robinson, M. D. and Oshlack, A. (2010). A scaling normalization method for differential expression analysis of rna-seq data.

Genome biology, 11(3), R25.

Zwiener, I., Frisch, B., and Binder, H. (2014). Transforming rna-seq data to improve the performance of prognostic gene signatures.

PloS one, 9(1), e85150.

22


