

Supplementary Information for

Topology on a new facet of bismuth

C.-H. Hsu, X. Zhou, T.-R. Chang, Q. Ma, N. Gedik, A. Bansil, S.-Y. Xu, H. Lin and L. Fu

S.-Y. Xu, H. Lin and L. Fu. E-mail: suyangxu@mit.edu, nilnish@gmail.com, or liangfu@mit.edu

This PDF file includes:

Supplementary text Fig. S1 References for SI reference citations

Supporting Information Text

1. Mirror Chern Number ($n_{\mathcal{M}}$ **)**

To determine the topological phase belonging to Bi, the mirror Chern number $n_{\mathcal{M}}$ of the three mirror planes in Bi is calculated. The $n_{\mathcal{M}}$ is defined as,

$$
n_{\mathcal{M}} = (\mathcal{C}_{+} - \mathcal{C}_{-})/2,
$$

where C_{\pm} is the mirror Chern number of each subspace $\{\pm\}$ carrying opposite mirror eigenvalues *im* (*m* = \pm) and is calculated as

$$
\begin{array}{rcl} \mathcal{C}_{\pm} & = & \displaystyle \int \frac{d\boldsymbol{k}}{(2\pi)} \Omega_{\pm}, \\[1ex] \Omega_{\pm}(\boldsymbol{k}) & = & \displaystyle \sum_{n < E_f} \sum_{n \neq m} 2 \operatorname{Im} \frac{\langle \psi_{n\boldsymbol{k}}^{\pm} |v_x| \psi_{m\boldsymbol{k}}^{\pm} \rangle \langle \psi_{m\boldsymbol{k}}^{\pm} |v_y| \psi_{n\boldsymbol{k}}^{\pm} \rangle}{(E_{m\boldsymbol{k}} - E_{n\boldsymbol{k}})^2}. \end{array}
$$

The integration is carried in the 2D k space where states (ψ_{nk}) are invariant with respect to the mirror symmetry M. In the above equation, E_{mk} is the eigenenergy of band *m*, and $v_{x,y}$ is the velocity operator. Our calculation shows that $n_M = 0$ in Bi.

2. Wannier Charge Center (WCC)

The Wannier charge center (WCC) has been shown to be an useful way to analyze whether the surface states are protected by the bulk topology [\(1](#page-1-0)[–7\)](#page-1-1). Essentially, WCC is the position of the Wannier state in the unit cell and has been widely used in the modern theory of polarization for calculating bulk polarization [\(8](#page-1-2)[–11\)](#page-3-1). The WCC can be calculated by solving the eigenvalue of position operator $P\hat{x}P = Pe^{-i\delta k_x\hat{x}}P$ projected on the Bloch states [\(1,](#page-1-0) [12\)](#page-3-2), where P is the projection operator. By adopting the periodic gauge,

$$
|u_{k+G}\rangle = e^{-iG\cdot r}|u_k\rangle,\tag{1}
$$

where $|u_{\bf{k}}\rangle$ is the periodic part of the Bloch wavefunction at **k**, and *G* is the reciprocal vector, the eigenvalue (\bar{x}) of P $\hat{x}P$ has been shown to being equal to the non-Abelian Berry phase of $\langle u_{\mathbf{k}_{\perp}+G_x} | u_{\mathbf{k}_{\perp}} \rangle$ [\(1\)](#page-1-0) in the parallel transport,

$$
\bar{x} = -\frac{1}{2\pi} \text{Im} \log(\langle u_{\boldsymbol{k}_{\perp} + G_x} | \prod_{k_x = \delta k_x}^{G_x - \delta k_x} P(k_x) | u_{\boldsymbol{k}_{\perp}} \rangle)
$$
\n
$$
\tag{2}
$$

where \mathbf{k}_{\perp} is the *k* vector normal to k_x and $P(k_x) = |u_{\mathbf{k}_{\perp}+k_x}\rangle\langle u_{\mathbf{k}_{\perp}+k_x}|.$

We then applied eq. [2](#page-1-3) to calculate the WCC of the surface Brillouin zone (SBZ) of Bi $(1\bar{1}0)$ and (111) surfaces. For the (1 $\overline{10}$) surface, where $\overline{110}$ || \hat{x} , the SBZ (\boldsymbol{k}_{\perp}) is spanned on the $k_y - k_z$ plane. The calculated WCCs (\overline{x}) along high symmetry k_{\perp} path is shown in Figure. [S1\(](#page-2-0)a), where the high symmetry *k* points are expressed in the unit of $(\frac{2\pi}{b}, \frac{2\pi}{c})$. Two dominant WCC sheets (A and B indicated in Figure. [S1\(](#page-2-0)a)) are found in a unit cell, and are well separated along the high symmetry *k*[⊥] paths. However, this can not rule out the $C_{2[1\bar{1}0]}$ protected TCI phase, since the $C_{2[1\bar{1}0]}$ protected surface states on (1 $\bar{1}0$) can locate at a generic *k*⊥. By scanning the full SBZ, we found the connection between WCC sheet A and B (see Figure. 2(g)(h) in the main text) and confirm the $C_{2[1\bar{1}0]}$ protected topology.

We also studied the WCCs on the (111) surface, and the result is shown in Figure. [S1\(](#page-2-0)b-d). On the (111) surface, where [111] $\|\hat{z},\$ the SBZ (\mathbf{k}_{\perp}) is spanned by k_x and k_y . The results show that the WCC sheets are fully disconnected. Moreover, the calculated WCCs at the unit cell boundary, $\bar{z} = 1$ (Figure. [S1\(](#page-2-0)b)), almost reproduces the property of surface states calculated in a semi-infinite (111) surface (see Figure. 4(d)). This result reconfirms that $n_M = 0$.

References

- 1. Yu R, Qi XL, Bernevig A, Fang Z, Dai X (2011) Equivalent expression of \mathbb{Z}_2 topological invariant for band insulators using the non-Abelian Berry connection. *Physical Review B* 84(7):075119.
- 2. Fidkowski L, Jackson TS, Klich I (2011) Model Characterization of Gapless Edge Modes of Topological Insulators Using Intermediate Brillouin-Zone Functions. *Physical Review Letters* 107(3):036601.
- 3. Taherinejad M, Garrity KF, Vanderbilt D (2014) Wannier center sheets in topological insulators. *Physical Review B* 89(11):115102.
- 4. Alexandradinata A, Dai X, Bernevig BA (2014) Wilson-loop characterization of inversion-symmetric topological insulators. *Physical Review B* 89(15):155114.
- 5. Alexandradinata A, Wang Z, Bernevig BA (2016) Topological Insulators from Group Cohomology. *Physical Review X* 6(2):021008.
- 6. Benalcazar WA, Bernevig BA, Hughes TL (2017) Quantized electric multipole insulators. *Science* 357(6346):61–66.
- 7. Wieder BJ, et al. (2018) Wallpaper fermions and the nonsymmorphic Dirac insulator. *Science* 361(6399):246–251.
- 8. King-Smith RD, Vanderbilt D (1993) Theory of polarization of crystalline solids. *Physical Review B* 47(3):1651–1654.
- 9. Resta R (1994) Macroscopic polarization in crystalline dielectrics: The geometric phase approach. *Reviews of Modern Physics* 66(3):899–915.

Fig. S1. (a) WCCs of $\bar{x}(k_y, k_z)$ on (1 $\bar{1}0$) surface along high symmetry k paths. (b) WCCs of $\bar{z}(k_x, k_y)$ on (111) surface along the k paths with the k points indicated in the main text. (c,d) The zoomed-in WCCs of (b) show the fully disconnected characteristic of WCC sheets.

- 10. Wu X, Diéguez O, Rabe KM, Vanderbilt D (2006) Wannier-Based Definition of Layer Polarizations in Perovskite Superlattices. *Physical Review Letters* 97(10):107602.
- 11. Coh S, Vanderbilt D (2009) Electric Polarization in a Chern Insulator. *Physical Review Letters* 102(10):107603.
- 12. Resta R (2000) Manifestations of Berry's phase in molecules and condensed matter. *Journal of Physics: Condensed Matter* 12(9):R107–R143.