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eAppendix 1: Data Set Formation 
 
Our study makes extensive use of data that is routinely collected in patients’ Electronic Health Records (EHRs). 
A major advantage of this data is that it has already been collected for the sake of delivering quality treatment, and 
can be made available for retrospective research designs in many cases. This advantage is simultaneously its major 
weakness: since this data lacks a study protocol to guarantee adequate measurements, important data quality 
challenges need to be addressed. High effort is associated with unlocking this type of data for research. Before any 
modeling can commence, several issues need to be resolved, for example regarding data extraction (i.e. obtaining 
relevant data entities from EHR systems), data provenance (i.e. tracking data points to their origin in the EHR), 
and data preparation (i.e. applying appropriate transformations to data). If the goal of a study using retrospective 
EHR data is to obtain new insights with confidence, serious attention needs to be devoted to these steps.  
 
In the Department of Psychiatry of the University Medical Center Utrecht (site 1), we initiated the Psydata Project 
in 2015, with the goal to improve care in daily practice by obtaining new insights and decision support through 
analysis of retrospective EHR data. After proving feasibility of such a project1, we set out to structurally address 
challenges such as mentioned above (data extraction, data provenance, data preparation) in order to learn from 
EHR data. Since this is a relatively new area of research, we solved this problem by developing the Capable Reuse 
of EHR data (CARED) framework2. We identified the most important challenges of reusing EHR data and then 
proposed the framework for infrastructure that can address them. A technical infrastructure based on this 
framework was implemented, to support our EHR data analysis goals. This technical infrastructure for example 
addresses reproducibility of research, data preparation, collaboration among researchers, and documentation of 
code and data. Together with organizational artefacts such as guidelines for documentation and internal control, 
this can guarantee data quality. Our current practices ensure an up-to-date, de-identified, and accessible dataset of 
most information that is recorded in the EHR. The system is maintained by a multidisciplinary team of 
professionals, that documented the process and data in detail. The dataset used for this study, consisting of 
information about admissions, incidents and clinical notes, is thus a result of careful deliberation among both data 
analysts and practitioners, securing its validity.  
 
At Antes (site 2), EHR data are extracted to a clinical data warehouse that is designed largely in line with the 
requirements of CARED. Given the goal of attempting to replicate findings in site 1, for defining the cohort and 
selecting the data we followed choices that were mandated by the study design in site 1. Where knowledge specific 
to this site was involved (e.g. in selecting the appropriate wards), extra attention was devoted to consult with local 
experts. Choices in both sites were finally discussed in a focus group with stakeholders from both sites present, in 
order to check whether any discrepancies between choices in both sites existed. No such discrepancies were 
identified during the meeting, guaranteeing a similar dataset with the same standard for data quality.  
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eAppendix 2: Paragraph2vec Model Training 
 
Since classification models use numbers as input rather than text, a suitable vector representation of clinical notes 
is needed before classification can occur. For this purpose we have used the paragraph2vec algorithm3, which is 
an extension of the earlier word2vec algorithm4. Both algorithms operate on the principle of learning a vector 
representation of arbitrary dimensionality using a large corpus of relevant text. This is achieved by training a neural 
model with a hidden layer to predict target words (i.e. a word in a sentence) based on its context words (i.e. its 
surrounding words). The learning process takes place in an unsupervised way, meaning that no outcome variable 
or document labels are needed to learn accurate vector representations. The word2vec algorithm produces a 
corresponding vector in the vector space for each word in the training corpus. It’s main advantage over a simple 
bag-of-words approach is that word2vec vector representations allow vector operations such as addition, 
subtraction and cosine similarity, that can produce semantically meaningful results. The paragraph2vec algorithm 
produces a corresponding vector for each document in the training corpus, and additionally also allows inferring 
vectors for unseen texts. This is a probabilistic process, that works by fixing the weights of the neural model and 
optimizing a randomly initialized representation vector, rather than the other way round during representation 
training.  
 
Since clinical text is a domain-specific language that can contain idiosyncrasies, spelling errors, and terms that 
have domain-specific meanings, pre-trained paragraph2vec models that are for instance trained on Wikipedia or 
Google News data do not necessarily yield useful representations for clinical notes. For this reason, in both sites 
we obtained a large internal set of de-identified clinical notes, both with at least 1 million notes, to train 
paragraph2vec models. As preprocessing steps, we transformed all text to lowercase, remapped special characters, 
and removed all characters that were not whitespace, period or alphabetical characters. We then tokenized text (i.e. 
split it to words), removed stop words, and applied stemming (i.e. mapping inflections of words to their stem). The 
resulting sequence of terms was then used to train a paragraph2vec model. Optimal paragraph2vec model settings 
are still a topic of ongoing research, we based our choices on default model settings in the Gensim5 package that 
was used for training, in combination with information by Chiu et al. and Lau et al.6,7 (eTable 1). We used the 
Distributed Memory model for training the algorithm, which concatenates input vectors and is thus able to take 
word order into account. Model dimensionality typically ranges between 100 and 1000, we opted for a 
dimensionality of 300 as a middle ground. We slightly decreased the window size from 5 to 2, and increased the 
minimum word count from 5 to 20 to mitigate effects of lack of structure and spelling errors present in clinical 
text. We increased the number of epochs to 20, in order to increase the likeliness of reaching model convergence 
on our data set. Other parameters were not changed from Gensim defaults. The result of training includes two 
independent paragraph2vec models that comprise the machine learning pipeline together with the classification 
models.  
 
In order to determine numerical representations of clinical notes in our dataset using the trained paragraph2vec 
model, we first concatenated all relevant notes for a single admission, and then averaged over ten paragraph2vec 
inferences of this unseen concatenation of notes, to cancel out inaccuracies due to the probabilistic nature of the 
inference. 
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eAppendix 3: Cross-validation Procedure 
 
When applying machine learning models to a dataset, one must ensure that data is never simultaneously used to 
train and test a model. Information leakage between these two sets will inevitably lead to overly optimistic 
estimates of model predictive validity. We chose a nested cross validation procedure, to simultaneously optimize, 
train and assess the predictive validity of a model on a single dataset while obtaining a reliable estimate of 
performance without bias.  
 
Our classification model consists of a Support Vector Machine with a radial kernel. This type of machine learning 
algorithm has two hyperparameters that should be optimized: the cost parameter (C) that determines how strong 
models during training are penalized for data points on the wrong side of the classification boundary, and the 
gamma (ϒ) parameter that determines how far the influence of a single training example reaches. We determined 
the optimal values for these parameters using a grid search, i.e. by training a Support Vector Machine for multiple 
combinations of C and ϒ values. For C we chose a range of [10-1, 100, 101], and for ϒ we chose [10-6, 10-5, …,100]. 
We chose a relatively narrow range for C because models trained on our dataset are empirically not very sensitive 
to this parameter, and to speed up model training time. Model performance was then estimated on a hold-out set, 
i.e. a subset of data that is not used for training models. Since using one single hold-out set can introduce bias into 
performance estimates, we used cross validation to repeat this process five times on non-overlapping test sets, and 
chose hyperparameters that perform best on average. This procedure comprises the inner cross validation loop 
CVinner.  
 
A new model was then trained using data of all five CVinner folds, using the optimal hyperparameters found in the 
CVinner loop, and performance was tested on yet another hold-out set. For the same reasons as mentioned above, 
we repeated this procedure in five folds as well, in the CVouter cross validation. While the CVinner loop is used to 
determine optimal hyperparameters, the CVouter loop is used obtain a reliable estimate of performance on unseen 
data. In both cross validation loops, we furthermore ensured that datapoints from the same patients (i.e. previous 
or future admissions) were always grouped in the same fold, mainly to prevent information of future admissions 
influencing performance assessment.  
 
Given the five folds testouter

1 , …, testouter
5  that were used to estimate performance in CVouter, we computed the Area 

Under Curve by averaging over the five folds, i.e. using AUC	= 
1

5
∑ AUC(testouter

௜ )5
௜=1 . To estimate standard error 

of the mean of AUC, we used the DeLong method8 for estimating variance of AUC for each fold using VAR௜ ൌ
delong-varሺtestouter

௜ ሻ. The DeLong method is applicable in this case, and preferred when other methods based on 
bootstrapping are computationally not feasible9. We then computed average variance (VAR) over the five folds 
VAR ൌ	 ଵ

ହ
∑ VAR௜ହ
௜ୀଵ , and took the square root to compute the average standard deviation SD = √VAR. To 

estimate the standard error of the mean AUC we finally used SE = SD √5⁄ , given AUC samples in five different 
folds. Other outcome statistics were determined based on a 2x2 contingency table, showing true negatives, false 
negatives, false positives and true positives. To map classification probabilities (i.e. probability of showing violent 
behavior) to a binary outcome, we set a classification threshold so that classification has the same distribution as 
outcome (i.e. the true labels). This ensures false positives and false negatives are balanced, as the optimal balance 
for daily practice still needs to be established. The classification threshold was set per fold, because predictions 
among different folds are not necessarily calibrated with regard to each other. The contingency table was finally 
determined by summing per-fold contingency tables, and other statistics such as sensitivity and specificity are 
determined based on this contingency table.  
 
Results of the hyperparameter optimization procedure are displayed in eTable 2. The Area Under Curve (AUC) 
values are based on internal cross validation loop. These values are relatively close to outer cross validation results, 
showing that model convergence has been reached, while the cross validation setup has inhibited overtraining of 
models.  
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eAppendix 4: Code and Data Availability 
 
We have made all analysis code, predictions, and output logs available in an online GitHub repository. This allows 
other researchers to verify that analysis was indeed performed as described in this paper, makes data accessible 
for meta studies and allows potential reproduction of our results by other researchers on new and independent 
datasets.  

The analysis code is available in the form of a set of Jupyter Notebooks, which implement Python scripts 
developed for this study. Predictions and output logs are available in csv and text files. The GitHub repository is 
accessible at the following link, where additional information and documentation can be found: 
https://www.github.com/vmenger/violence-risk-assessment. 

All data associated with the study is stored internally, so that results can be verified and modifications of 
method or potentially new modeling techniques can be applied in the future. Unfortunately, the datasets cannot be 
shared with other researchers due to legal and privacy constraints. 
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eAppendix 5: Model Explainability 
 
In order to explore whether classification model behavior at the local level can be explained, we applied the Linear 
Model-Agnostic Explanations (LIME) method10 to our trained models. This method tries to approximate the 
decision boundary near a specific data point using a linear function. Specifically, it samples points around a data 
point that is to be explained, and uses the trained machine learning pipeline to classify this set of data points. Based 
on these data points and their classified outcome, LIME trains a k-lasso model on a bag-of-words representation 
of sampled data points, returning a set of k terms in these texts that are relevant for the local decision boundary.  
 
Based on an exploratory evaluation that presented explanations of a small subset of data points to eight human 
subjects, we found that presenting an explanation (e.g. eFigure 1) in combination with a risk assessment increased 
participants’ trust in the system. We additionally found no evidence of bias (e.g. discrimination against protected 
groups) in the classification model. Some points of model failure were finally identified, where texts were 
classified using, apparently to the human user, arbitrary terms. This information can be used as feedback to 
improve the dataset and trained models.  
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eFigure. Two Samples of Local Explanations of Models  
The explanation on the left predicted high risk of aggression, which is reflected in terms 
such as politie (‘police’) and noodmedicatie (‘emergency medication’). The explanation 
on the right predicted low risk, explained by terms such as genieten (‘enjoy’) and 
suïcidale (‘suicidal’), but also exhibits high-risk terms such as schopt (‘kicks’) and 
gevaar (‘danger’).  
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eTable 1. Chosen Paragraph2vec Model Settings 
Parameter Value 
Batch size 10,000 
Epochs 20 
Learning rate 0.025 – 0.001 
Learning rate decay Linear  
Minimum count 20 
Model Distributed Memory 
Sub sampling 0.001 
Vector size 300 
Window size 2 
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eTable 2. Optimal Hyperparameters and Optimal AUC Based on the Inner Cross-
validation Loop  

Fold  Site 1  Site 2 
 C ϒ Inner AUC (SD) Outer AUC C ϒ Inner AUC (SD) Outer AUC 
1 0.1 0.001 0.797 (0.008) 0.755 1.0 0.01 0.753 (0.044) 0.761 
2 0.1 0.001 0.792 (0.038) 0.813 1.0 0.01 0.759 (0.029) 0.741 
3 0.1 0.001 0.784 (0.019) 0.805 10.0 0.01 0.742 (0.044) 0.784 
4 1.0 0.0001 0.790 (0.038) 0.792 1.0 0.01 0.741 (0.039) 0.782 
5 0.1 0.001 0.786 (0.040) 0.818 1.0 0.01 0.762 (0.038) 0.752 

A grid search is performed to determine the optimal support vector machine 
parameters. The Inner AUC column shows the average AUC over five inner folds, while 
the Outer AUC column specifies performance on the hold-out fold for this iteration. 
Abbreviations: AUC = Area Under Curve, SD = Standard Deviation, C = cost, ϒ = 
inverse of kernel radius.  
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eTable 3. Subgroup Analysis of Model Performance: Early vs Late Violence  

Evaluation 

Day of first 
violence 
incident 
(median) 

Early violence 
AUC (95% CI) 

Late violence 
AUC (95% CI) 

Difference 
(95% CI) 

P-
value 

Internal (CV), 
site 1 

6 
0.821 (0.787 to 

0.854) 
0.775 (0.740 to 

0.810) 
0.046 (-0.003 to 

0.094) 
0.06 

Internal (CV), 
site 2 

9 
0.771 (0.724 to 

0.818) 
0.755 (0.708 to 

0.803) 
0.015 (-0.051 to 

0.082) 
0.65 

External 
model, site 1 

6 
0.745 (0.704 to 

0.785) 
0.698 (0.652 to 

0.744) 
0.046 (-0.015 to 

0.108) 
0.14 

External 
model, site 2 

9 
0.653 (0.609 to 

0.698) 
0.632 (0.587 to 

0.678) 
0.021 (-0.042 to 

0.085) 
0.51 

Abbreviations: CI = Confidence Interval, CV = Cross Validation. 

  



© 2019 Menger V et al. JAMA Network Open. 

 

eTable 4. Subgroup Analysis of Model Performance: Short vs Long Admissions 

Evaluation 
Length of 
admission 
(median) 

Short admissions 
AUC (95% CI) 

Long admissions 
AUC (95% CI) 

Difference 
(95% CI) 

P-
value 

Internal (CV), 
site 1 

16 
0.805 (0.764 to 

0.846) 
0.792 (0.758 to 

0.826) 
0.012 (-0.041 

to 0.066) 
0.65 

Internal (CV), 
site 2 

15 
0.789 (0.738 to 

0.839) 
0.730 (0.686 to 

0.774) 
0.058 (-0.008 

to 0.125) 
0.09 

External 
model, site 1 

16 
0.704 (0.653 to 

0.755) 
0.736 (0.700 to 

0.775) 
0.032 (-0.033 

to 0.096) 
0.34 

External 
model, site 2 

15 
0.655 (0.607 to 

0.702) 
0.633 (0.589 to 

0.678) 
0.022 (-0.043 

to 0.087) 
0.52 

Abbreviations: CI = Confidence Interval, CV = Cross Validation 
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