
Supplemental Figures

Figure S1 – Random connections allow for flexibility in memories but limit capacity. Caption
next page.



Figure S1 – Random connections allow for flexibility in memories but limit capacity. Related
to Figures 1, 3 and 5. (A) The synaptic drive fed back into a sensory sub-network from the random
network closely matches its own representation. The left column shows the synaptic drive for the entire
sensory network in response to a sensory input into sensory sub-network 1. The middle column shows the
synaptic drive to the random network resulting from this sensory input (estimated by passing synaptic
drive from sensory network through WFF ). The right column shows the feedback synaptic drive to
the sensory network from the random network (estimated by passing the synaptic drive of the random
network (middle) through WFB). The similarity between the sensory input (left) and feedback input
(right) sustains memory representations. (B-C) Absolute value of circular error increases with memory
load and with interference between memories. (B) Absolute value of the circular error computed from
ML spike decoding after 1 second of network simulation, as a function of load. Decoding time window is
100msec. (C) Absolute value of circular error as a function of the correlation between two inputs in two
sensory sub-networks. Only simulations were both memories are maintained were considered (i.e. the
error is not due to forgetting). (D-E) Model parameters can be quantitatively fit to match behavioral
results. (D) Model parameters were fit to match human behavioral performance on a change detection
task [Luck and Vogel, 1997] (left). The memory accuracy of the resulting model matches experimental
observations of memory accuracy from [Ma et al., 2014] (right). See Methods for details. (E) When
model parameters were fit to match memory accuracy (right), memory performance of the network
generalized to match experimental results (left).



Figure S2 – Dynamics of memory representations Caption next page.



Figure S2 – Dynamics of memory representations. Related to Figure 6. (A) Adding direct sen-
sory inputs into the random network and recurrence within the random network did not alter network
performance. The percentage of correct memories as a function of load is similar to Fig. 3A. Network
included direct transient input into the random network and weak recurrence within the random network
(as in Fig. 6; see Methods for details). (B-C) The dimensionality of the mnemonic subspace in the (B)
sensory network and (C) random network is similar across memory loads (‘number of items’). This
is reflected in the similar percentage of variance explained by each principal component across memory
loads (principal components are estimated for time-averaged delay activity as in [Murray et al., 2016], see
Methods for details). (D) Performance of a centroid classifier was similar when the mnemonic subspace
was defined for the current load (solid lines) or when the mnemonic subspace was defined for a single
item (load 1). Shown for both sensory network and random network. Decodability was not significantly
different across subspaces (a two-sample Wald test for load-specific subspace versus reference subspace
gives p > 0.1 for all loads). (E-L) Dynamics in sensory network. Follows the structure of Figure 6
which shows dynamics in the random network. (E) Temporal cross-correlation of neural activity in the
sensory network shows activity during the stimulation is more correlated with activity during the delay
period than for the random network (Fig. 6A). (F) Slices of the matrix represented in E: correlation of
population state from the first 50ms of the stimulus period (purple) and the last 50ms of the delay period
(orange) against all other times. (G) As in the random network, the memory is stable in the sensory
network. Here the response of the sensory network population is projected onto the mnemonic subspace
(defined by the first two principal components of time-averaged activity, see Methods for details). Each
trace corresponds to the response to a different input into sensory sub-network 1, shown over time (from
lighter to darker colors). (H) Mnemonic subspace is defined by two orthogonal, quasi-sinusoidal repre-
sentations of inputs, capturing the circular nature of sensory sub-networks. These representations were
similar between load 1 and load 4, with only an inversion of PC2. (I-K) Same as E-G but for a load
of 4. Only includes simulations for which the memory in sensory sub-network 1 was maintained (other
three memories can be forgotten). (L) The mnemonic subspace is stable across working memory load.
Decodability of memory was measured as discriminability, d’, between inputs (see Methods for details
and D for centroid classifier). Decodability is similar when mnemonic subspace was defined for a single
input (dashed line) or specific for each load (solid line). Decodability was not significantly different across
subspaces for load 3, 4, and 5 (a two-sample Wald test for optimized subspace versus reference subspace
gives respectively p = 0.24, p = 0.55, and p = 0.44). For load 2, 6, 7, and 8, the two-sample Wald test
gives p = 0.022, p = 0.0080, p = 10

�4 and p < 10

�5 respectively. Decodability is reduced with load
(p < 0.001).



Figure S3 – Memories fail by collapsing to a null state. Caption next page.



Figure S3 – Memories fail by collapsing to a null state. Related to Figure 6 and S2. (A-B)
Sensory network activity is projected onto the mnemonic subspace (defined by the first two principal
components of time-averaged activity, see Methods for details). Each trace corresponds to the response
to a different input into sensory sub-network 1, shown over time (from lighter to darker colors). Trials
for when the memory is successfully maintained are shown in thick lines and trials for when the memory
is forgotten are shown as thin lines. Note that memories fail by collapsing to a ‘null’ state with no
activity. Timecourses are shown for a memory load of (A) 1 item and (B) 4 items. (C) The third
and fourth principal components are shown across stimulus space These components are higher order
harmonics of the circular space (see Figure S2H for PC1 and PC2). (D-E) The response of the sensory
network population projected onto the subspace defined by PC3 and PC4 (as in A and B, see Methods
for details). Note that memories fail by collapsing to a ‘null’ state with no activity. Timecourses are
shown for a memory load of (D) 1 item and (E) 4 items. (F-J) As in A-E but for the response of
neurons in the random network.



Figure S4 – Caption next page.



Figure S4 – Related to Figure 7. (A-C) The network is robust to changes in the strength of
recurrent interactions within the sensory sub-networks. (A) The strength of the center-surround
connectivity was changed by multiplying by a constant from 0% to 200% (see Methods). (B) ROC-like
plot displaying the behavior of the network (i.e. percentage of maintaining a memory, versus percentage
of creating a spurious) as the center-surround is modulated by a percentage from the original value, all
other parameters being fixed. This is shown across memory loads 1, 3, 5 and 7 (colored lines). Similar
to Figure 7A which shows network performance as feedforward/feedback weights are changed. (C)
Memory performance is reduced when the center-surround architecture is weakened. Black lines show
performance of original network; dark blue lines show performance of a network with a 10% reduction in
center-surround strength within the sensory network. However, this reduction can be partially rescued by
changing the feedforward/feedback weights between the sensory and the random networks (light blue),
with all other parameters being fixed. (D-E) Example Von Mises distributions for spreading of
feedback connections. In Fig. 7D, each feedback excitatory connection was distributed according to a
Von Mises distribution with varying concentrations. (D) Example Von Mises distributions for different
concentration parameters. (E) An example of feedback connectivity as a sum of VonMises from a neuron
from the random network to a sensory sub-network (neuron 1 to 512) when  = 1,  = 10 and  = 100

(colors as in D). (F-G) Network performance did not depend on architecture of sensory sub-
networks. (F) Schematic of alternative model architecture where the sensory network is now composed
of 4 ring-like sub-networks and 4 line sub-networks. All other parameters remained the same. (G)
Raster plot of an example trial with 8 sensory sub-networks (512 neurons each) randomly connected to
the same random network (1024 neurons). 7 sensory sub-networks (4 ring, 3 line sub-networks) receive
a Gaussian input for 0.1 seconds during the ‘stimulus presentation’ period (shaded blue region). As for
the original architecture, memories are maintained but the network has a capacity limit.



Figure S5 – Increasing the size of the random network increases memory capacity. Related to
Figure 7. (A-C) Memory performance (color axis) as a function of feedforward and feedback weights,
respectively for a random network size of (A) 512, (B) 1024, or (C) 2048. (D-F) Probability of
maintaining a memory (color axis) as a function of feedforward and feedback weights, respectively for
a random network size of 512, 1024, or 2048. (G-I) Probability of creating a spurious memory (color
axis) as a function of feedforward and feedback weights, respectively for a random network size of 512,
1024, or 2048. (J-L) Percentage of correct memories, as a function of load, for the best set of parameters
(↵,�). Note the increase in capacity as the size of the random network increases, relative to the size of
the sensory network.



Figure S6 – Caption next page.



Figure S6 – Related to Figure 7. (A-D) Lateral connection between ring-like sensory sub-
networks causes interactions between memories. (A) Schematic of lateral connections. The
8 ring-like sensory sub-networks (SN) are connected by excitatory connections to neighboring rings.
Although only the connections between SNs 1, 2, and 3 are represented, all SNs were connected in a
chain (see Methods). (B) Proportion of spurious memories created in sensory SNs 3 and 4 when both
SN 1 and 2 received inputs. Spurious memories increased if the strength of the excitatory overlapping
connections was increased (compare weight of 0.5, red line, to 1.0, blue line) or the percentage of neurons
with lateral connections was increased (x-axis). (C) Bias of memories in SN1 and SN2 as a function of
the initial angle between the two inputs. Bias is measured as the angular difference between the initial
angle and final angle of the memory. By definition, positive bias reflects attraction. This effect is similar
when the frequency or strength of lateral connections is varied (different lines). (D) Stabilization of
memories in SN1 and SN2 as a function of the initial angle between the two inputs. The probability
of forgetting a memory (y-axis) is reduced if the difference in inputs (x-axis) is smaller. This effect
is similar when the frequency or strength of lateral connections is varied (line labels as in C). (E-G)
Testing the impact of overlap in the projections from sensory sub-networks to the random
network. (E) Schematic of the feature specific structure between sensory sub-network 1 (SN1) and
sensory sub-network 2 (SN2). The ‘percent difference’ between the projections from SN1 and SN2 varied
from 0 to 100% (see Methods for details). Schematic shows an example of 0% difference: the projection
of the red neuron from SN1 to the random network is the same as the projection of the red neuron in
SN2. All other pairs of neurons in SN1 and SN2 have similarly overlapping projections. (F) Increasing
overlap (decreasing difference) improves maintenance when two inputs are presented (solid red line), but
also results in the creation of a spurious memory when only one input is presented (dashed blue line). On
the contrary, having two uncorrelated weight matrices (percent difference of 100) impairs maintenance of
two identical initial inputs in SN1 and SN2 (solid cyan line). The range 60-65% is optimal; maintaining
memories without creating spurious memories. Our initial model has a percent difference of 1�� = 65%,
in this optimal zone. (G) The error in recall when two inputs are presented to SN1 and SN2 depends
both on the initial distance between inputs and on the overlap of projections.



Figure S7 – Training the weight matrix to optimize performance on fixed inputs does not
generalize to new inputs. Caption next page.



Figure S7 – Training the weight matrix to optimize performance on fixed inputs does not
generalize to new inputs. Related to Figure 7E. As detailed in the Methods, a network was trained
to maximize performance for 1, 5 or 10 input patterns across all loads (from 1 to 8). (A-B) Training
improved the percent of maintained memories (A) and minimized the percent of spurious memories
(B). The difference between these statistics was used to compute memory performance in Figure 7E. As
detailed in the main text, learning was slower when the number of inputs to be simultaneously optimized
was increased. Dashed lines show network performance on a set of 100 random input patterns, across all
loads. The optimization did not generalize beyond the set of trained inputs. (C) Memory performance
was increased by increasing the correlation in the random network of trained memories. As seen in
Figures S8 and S6F,G, too much correlation leads to spurious memories, likely leading to the plateau
in correlation during training. (D-E) Training interfered with the maintenance of other memories. We
tested how well other inputs were remembered in the network trained to remember 1 input pattern.
Both memory performance (D) and accuracy (E) of the network were quantified across training steps
(y-axis). We systematically varied the input into sensory sub-network 1 (SN1), relative to the trained
input into SN1 (x-axis) while also varying the memory load (load 2, 4, and 8 are shown in the left,
middle, and right columns, respectively). Load was increased by providing inputs to a random subset
of sub-networks other than SN1. These sub-networks always received their trained input during testing.
Both memory performance and accuracy for the trained input improved over training. However, training
disrupted the ability of the network to successfully remember inputs different from the trained input.



Figure S8 – Replacing the ring-like sub-networks by a Hopfield-like sensory network to show
the flexibility of the proposed architecture. Caption next page.



Figure S8 – Replacing the ring-like sub-networks by a Hopfield-like sensory network to show
the flexibility of the proposed architecture. Related to Figure 8. (A) Illustration of the eight
‘Hopfield’ patterns used in B,C,D,E, as well as the overlapping pattern used in F,G. (B) Raster plot
of a simulated trial of the Hopfield-like sensory network alone, with ‘stronger weights’ (� = 600, see
Methods). All presented patterns are maintained throughout the delay. (C) Same simulation as B, but
now the weights are depleted (� = 800). No pattern is maintained. (D) Same simulation as C, but with
the addition of the random network. Three patterns are maintained, out of the four presented initially.
(E) Performance of the Hopfield-like sensory network with ‘weaker weights’ (� = 800, see Methods),
with or without the random network. As with the other sensory network architectures, representations
interfere in the random network, leading to a decrease in performance with the number of items in
memory. (F-G) One pattern is replaced by a new pattern that overlapped with pattern 4 (see A).
‘Percent maintained’ (solid lines) refers to the fraction of trials where the initial pattern 4 is maintained.
‘Percent spurious’ (dashed lines) refers to the fraction of trials when the new overlapping pattern was
spuriously activated when pattern 4 was presented. The load is varied by adding, on top of pattern 4,
other non-overlapping patterns (patterns 1-3 and 5-7 in A). (F) The Hopfield-like sensory network with
stronger weights, and without the random network always maintains the initial pattern 4. However, it
also creates a spurious memory of the overlapped pattern above 16%, with higher probability when the
overall memory load is lower. (G) The random network is added to the Hopfield-like sensory network
with weaker weights. The addition of an overlapping memory helps to stabilize memory pattern 4 (solid
lines, increasing performance for increasing overlap). However, as in the Hopfield-like sensory network
with strong weights, too much overlap can lead to spurious activation of the overlapping pattern (dashed
lines).


