natureresearch

Corresponding author(s): Jun Qi and Javed Khan

Reporting Summary

Nature Research wishes to improve the reproducibility of the work that we publish. This form provides structure for consistency and transparency in reporting. For further information on Nature Research policies, see <u>Authors & Referees</u> and the <u>Editorial Policy Checklist</u>.

Statistical parameters

When statistical analyses are reported, confirm that the following items are present in the relevant location (e.g. figure legend, table legend, main text, or Methods section).

n/a	Con	firmed
	\boxtimes	The exact sample size (n) for each experimental group/condition, given as a discrete number and unit of measurement
	\boxtimes	An indication of whether measurements were taken from distinct samples or whether the same sample was measured repeatedly
		The statistical test(s) used AND whether they are one- or two-sided Only common tests should be described solely by name; describe more complex techniques in the Methods section.
\boxtimes		A description of all covariates tested
\ge		A description of any assumptions or corrections, such as tests of normality and adjustment for multiple comparisons
	\boxtimes	A full description of the statistics including <u>central tendency</u> (e.g. means) or other basic estimates (e.g. regression coefficient) AND <u>variation</u> (e.g. standard deviation) or associated <u>estimates of uncertainty</u> (e.g. confidence intervals)
	\boxtimes	For null hypothesis testing, the test statistic (e.g. <i>F</i> , <i>t</i> , <i>r</i>) with confidence intervals, effect sizes, degrees of freedom and <i>P</i> value noted <i>Give P values as exact values whenever suitable.</i>
\ge		For Bayesian analysis, information on the choice of priors and Markov chain Monte Carlo settings
	\boxtimes	For hierarchical and complex designs, identification of the appropriate level for tests and full reporting of outcomes
	\boxtimes	Estimates of effect sizes (e.g. Cohen's d, Pearson's r), indicating how they were calculated
	\boxtimes	Clearly defined error bars State explicitly what error bars represent (e.g. SD, SE, Cl)
		Our web collection on statistics for biologists may be useful,

Software and code

Policy information about availability of computer code

Data collection	Data collection was performed with Illumina's NextSeq 550 system.
Data analysis	Software and Algorithms R statistical package drc Christian Ritz https://cran.r-project.org/web/packages/drc/drc.pdf NGSplot (v. 2.63) Shen Lab https://github.com/shenlab-sinai/ngsplot MACS (v 2.1.1.20160309) Zhang et al 2008 https://github.com/taoliu/MACS BWA (v 0.7.17) Li and Durbin, 2009 http://bio-bwa.sourceforge.net/ HOMER (Hypergeometric Optimization of Motif EnRichment) version 4.9.1 Heinz et al, 2010 http://homer.ucsd.edu/homer/index.html Graphpad Prism Graphpad Software https://www.graphpad.com/scientific-software/prism/ ROSE2 Charles Lin Lab https://github.com/linlabbcm/rose2 Coltron Lin et al, 2016 https://pypi.org/project/coltron/ Bamliquidator version 1.3.4 John DiMatteo https://github.com/BradnerLab/pipeline/wiki/bamliquidator GSEA software version 2.2.0 Subramanian et al, 2005 https://software.broadinstitute.org/gsea/ Bedtools version 2.27.1 Quinlan and Hall, 2010 http://bedtools.readthedocs.io/en/latest/

For manuscripts utilizing custom algorithms or software that are central to the research but not yet described in published literature, software must be made available to editors/reviewers upon request. We strongly encourage code deposition in a community repository (e.g. GitHub). See the Nature Research guidelines for submitting code & software for further information.

Policy information about availability of data

All manuscripts must include a data availability statement. This statement should provide the following information, where applicable:

- Accession codes, unique identifiers, or web links for publicly available datasets
- A list of figures that have associated raw data
- A description of any restrictions on data availability

The data reported herein is made publicly available through the Gene Expression Omnibus (https://www.ncbi.nlm.nih.gov/geo/). The GEO accession number for all ChIP-seq and RNA-seq data is GSE116344.

Field-specific reporting

Please select the best fit for your research. If you are not sure, read the appropriate sections before making your selection.

Life sciences

Behavioural & social sciences

Ecological, evolutionary & environmental sciences For a reference copy of the document with all sections, see <u>nature.com/authors/policies/ReportingSummary-flat.pdf</u>

Life sciences study design

All studies must disclose on these points even when the disclosure is negative.

Sample size	For each ChIP-seq and RNA-seq experiment, approximately 30 million uniquely mapped reads were generated.		
Data exclusions	Regions of the genome on the ENCODE blacklist (comprised of, for instance, highly repetitive regions) were excluded from called peaks prior to all downstream analysis (ie, in ChIP-seq data sets)		
Replication	For luciferase screening, each molecule (n = 63,000) we tested in duplicate initially at one concentration (10 uM). Validation was performed by dose response of top hits (n = 573) in technical quadruplicate. For luciferase screening of epigenetic drug panel, we performed dose response with technical quadruplicates and biological duplicates (only first biological replicate is shown in figures). For cell growth of HDAC inhibitors (n = 14 inhibitors) we tested RMS cell lines (n = 8) and treated in technical duplicate and dose response. Measurements for confluence were taken every 4 hours. For RNA with each small molecule tested, multiple concentrations (IC50 and IC90) were used and data analysis (ie, GSEA) was performed by treating these two concentrations as duplicates. For ChIP-seq of individual factors, we have only presented one experimental dataset per factor, although in many cases we have performed these experiments in biological duplicate or triplicate, or across multiple cell lines with multiple antibodies (data not presented).		
Randomization	This work involved no animal studies or randomized clinical trial data. All RMS patients whose samples were obtained were not the subject of randomization at the time of sampling.		
Blinding	Investigation was done without blinding, and epigenetic and transcriptomic analysis of primary tumors was done with diagnosis knowledge in hand.		

Reporting for specific materials, systems and methods

Materials & experimental systems		
n/a	Involved in the study	
	Unique biological materials	
	Antibodies	
	Eukaryotic cell lines	
\ge	Palaeontology	
\ge	Animals and other organisms	
\ge	Human research participants	

Methods

 \boxtimes

Involved in the study n/a

🔀 ChIP-seq

Flow cytometry

MRI-based neuroimaging \mathbb{X}

Unique biological materials

Policy information about availability of materials

Obtaining unique materials

All cell lines and reagents described in the methods section are either commercially available or available upon request to the authors. Materials not available to the public include the rare and limited primary tumor samples used to generate data herein.

Antibodies

Antibodies used	Rabbit polyclonal anti-HDAC2 Abcam Cat# 7029, RRID:AB_305706 Rabbit polyclonal anti-SOX8 Abcam Cat# ab104245, RRID:AB_10974591 Rabbit polyclonal anti-H3K27ac Active Motif Cat# 39133, RRID:AB_2561016 Rabbit polyclonal anti-HDAC1 Abcam Cat# 7028, RRID:AB_305705 Rabbit polyclonal anti-YY1 Abcam Cat# ab109237, RRID:AB_10890662 Rabbit polyclonal anti-HDAC3, Abcam Cat# ab7030, RRID:AB_305708 Rabbit polyclonal anti-Histone H3ac (acetyl K9 + K14 + K18 + K23 + K27) Abcam Cat# ab47915, RRID:AB_873860 Rabbit polyclonal anti-Histone H3 Cell Signaling Technology Cat# 9715, RRID:AB_331563 Goat anti-rabbit IgG-HRP Santa Cruz Biotechnology Cat# sc-2004, RRID:AB_631746
Validation	Antibody validations are available on these websites: www.abcam.com, www.scbt.com/scbt and www.activemotif.com In the case of the antibodies for SOX8, which were previously validated by western blot but not validated for ChIP-seq, we evaluated enrichments at predicted SOX binding site in RMS cells by ChIP-qPCR and reviewed the products here: https://

Eukaryotic cell lines

Policy information about <u>cell lines</u>	
Cell line source(s)	Human cancer cell lines: RH4, RH41, RH3, RH5 Peter Houghton Lab http://gsbs.uthscsa.edu/faculty/peter-houghton-ph.d SCMC line is from Dr. Janet Shipley, RD, SMS-CTR and Birch from Dr. Lee Helman.
Authentication	Validation was performed by DNA fingerprinting AmpFISTR® Identifiler® PCR Amplification Kit (Catalog Number 4322288) by Life Technologies. Additional validation was done by RNA-seq comparison to historic cell line RNA-seq data.
Mycoplasma contamination	Cell lines were tested for mycoplasma frequently within one or two passages of each experiment.
Commonly misidentified lines (See <u>ICLAC</u> register)	No misidentified cell lines were used in this study.

ChIP-seq

Data deposition

Confirm that both raw and final processed data have been deposited in a public database such as GEO.

Confirm that you have deposited or provided access to graph files (e.g. BED files) for the called peaks.

Data access links	To review ChIP-seq and RNA-seq data, use GEO accession GSE116344:
May remain private before publication.	Go to https://www.ncbi.nlm.nih.gov/geo/query/acc.cgi?acc=GSE116344
	Enter token incneucolzutdgj into the box
Files in database submission	Rh4_DMSO_T_HCK52BGXY.gene.TPM.txt
	Rh4_N1302_T_HCK52BGXY.gene.TPM.txt
	Rh4_PLX1_T_HCK52BGXY.gene.TPM.txt
	Rh4_PLX2_T_HCK52BGXY.gene.TPM.txt
	RH41Bromosporinhigh_T_C5JW5ACXX.gene.TPM.txt
	RH41Bromosporinlow_T_C5JW5ACXX.gene.TPM.txt
	RH41Cpd50high_T_C4JM1ACXX.gene.TPM.txt
	RH41Cpd50low_T_C4JM1ACXX.gene.TPM.txt
	RH41DMSOhigh_T_C4JM1ACXX.gene.TPM.txt
	RH41DMSOhigh_T_H144EBGXX.gene.TPM.txt
	RH41DMSOlow_T_C4JM1ACXX.gene.TPM.txt
	RH41DMSOlow_T_H144EBGXX.gene.TPM.txt
	RH41EZ-005high_T_C5JW5ACXX.gene.TPM.txt
	RH41EZ-005low_T_C5JW5ACXX.gene.TPM.txt
	RH41GSKJ4high_T_C4JM1ACXX.gene.TPM.txt
	RH41GSKJ4low_T_C4JM1ACXX.gene.TPM.txt
	RH41GSKLSD1high_T_H0VWNAGXX.gene.TPM.txt
	RH41GSKLSD1low_T_H0VWNAGXX.gene.TPM.txt
	RH41JQ1high_T_C4JM1ACXX.gene.TPM.txt

RH41JQ1low T C4JM1ACXX.gene.TPM.txt RH41LAQ824high_T_H144EBGXX.gene.TPM.txt RH41LAQ824low_T_H144EBGXX.gene.TPM.txt RH41LSD519high_T_C5JW5ACXX.gene.TPM.txt RH41LSD519low_T_C5JW5ACXX.gene.TPM.txt RH41LSD690high_T_C5JW5ACXX.gene.TPM.txt RH41LSD690low_T_C5JW5ACXX.gene.TPM.txt RH41MC1568high_T_H144EBGXX.gene.TPM.txt RH41MC1568low_T_H144EBGXX.gene.TPM.txt RH41Merck60high_T_C5JW5ACXX.gene.TPM.txt RH41Merck60low_T_C5JW5ACXX.gene.TPM.txt RH41OJI1high_T_C5JW5ACXX.gene.TPM.txt RH41OJI1low_T_C5JW5ACXX.gene.TPM.txt RH41PFI2high_T_C5JW5ACXX.gene.TPM.txt RH41PFI2low T C5JW5ACXX.gene.TPM.txt RH41PFI3high_T_C5JW5ACXX.gene.TPM.txt RH41PFI3low T C5JW5ACXX.gene.TPM.txt RH41SGC0946high_T_C5JW5ACXX.gene.TPM.txt RH41SGC0946low_T_C5JW5ACXX.gene.TPM.txt RH41SGCCBP30high_T_C5JW5ACXX.gene.TPM.txt RH41SGCCBP30low_T_C5JW5ACXX.gene.TPM.txt RH41Tramhigh_T_C5JW5ACXX.gene.TPM.txt RH41Tramlow_T_C5JW5ACXX.gene.TPM.txt RH41UNC0638high_T_C5JW5ACXX.gene.TPM.txt RH41UNC0638low_T_C5JW5ACXX.gene.TPM.txt RH41UNC1215high_T_H0VWNAGXX.gene.TPM.txt RH41UNC1215low_T_H0VWNAGXX.gene.TPM.txt RH41UNC1999high_T_C5JW5ACXX.gene.TPM.txt RH41UNC1999low_T_C5JW5ACXX.gene.TPM.txt RH41WT161high_T_C5JW5ACXX.gene.TPM.txt RH41WT161low_T_C5JW5ACXX.gene.TPM.txt RH4 D1 T HVNVFBGX2.gene.TPM.txt RH4_D24_T_HVNVFBGX2.gene.TPM.txt RH4_D6_T_HVNVFBGX2.gene.TPM.txt RH4_ENT1_T_HVNVFBGX2.gene.TPM.txt RH4 ENT24 T HVNVFBGX2.gene.TPM.txt RH4_ENT6_T_HVNVFBGX2.gene.TPM.txt Sample_RH41Bromosporinhigh_T_C5JW5ACXX_R1.fastq.gz Sample_RH41Bromosporinhigh_T_C5JW5ACXX_R2.fastq.gz Sample_RH41Bromosporinlow_T_C5JW5ACXX_R1.fastq.gz Sample_RH41Bromosporinlow_T_C5JW5ACXX_R2.fastq.gz Sample_RH41Cpd50high_T_C4JM1ACXX_R1.fastq.gz Sample_RH41Cpd50high_T_C4JM1ACXX_R2.fastq.gz Sample_RH41Cpd50low_T_C4JM1ACXX_R1.fastq.gz Sample_RH41Cpd50low_T_C4JM1ACXX_R2.fastq.gz Sample_RH41DMSOhigh_T_C4JM1ACXX_R1.fastq.gz Sample_RH41DMSOhigh_T_C4JM1ACXX_R2.fastq.gz Sample_RH41DMSOhigh_T_H144EBGXX_R1.fastq.gz Sample_RH41DMSOhigh_T_H144EBGXX_R2.fastq.gz Sample_RH41DMSOlow_T_C4JM1ACXX_R1.fastq.gz Sample_RH41DMSOlow_T_C4JM1ACXX_R2.fastq.gz Sample_RH41DMSOlow_T_H144EBGXX_R1.fastq.gz Sample_RH41DMSOlow_T_H144EBGXX_R2.fastq.gz Sample_RH41EZ-005high_T_C5JW5ACXX_R1.fastq.gz Sample_RH41EZ-005high_T_C5JW5ACXX_R2.fastq.gz Sample_RH41EZ-005low_T_C5JW5ACXX_R1.fastq.gz Sample_RH41EZ-005low_T_C5JW5ACXX_R2.fastq.gz Sample_RH41GSKJ4high_T_C4JM1ACXX_R1.fastq.gz Sample_RH41GSKJ4high_T_C4JM1ACXX_R2.fastq.gz Sample RH41GSKJ4low T C4JM1ACXX R1.fastq.gz Sample_RH41GSKJ4low_T_C4JM1ACXX_R2.fastq.gz Sample_RH41GSKLSD1high_T_H0VWNAGXX_R1.fastq.gz Sample_RH41GSKLSD1high_T_H0VWNAGXX_R2.fastq.gz Sample_RH41GSKLSD1low_T_H0VWNAGXX_R1.fastq.gz Sample RH41GSKLSD1low T H0VWNAGXX R2.fastq.gz Sample_RH41JQ1high_T_C4JM1ACXX_R1.fastq.gz Sample RH41JQ1high T C4JM1ACXX R2.fastq.gz Sample_RH41JQ1low_T_C4JM1ACXX_R1.fastq.gz Sample_RH41JQ1low_T_C4JM1ACXX_R2.fastq.gz Sample_RH41LAQ824high_T_H144EBGXX_R1.fastq.gz Sample_RH41LAQ824high_T_H144EBGXX_R2.fastq.gz Sample_RH41LAQ824low_T_H144EBGXX_R1.fastq.gz Sample_RH41LAQ824low_T_H144EBGXX_R2.fastq.gz Sample_RH41LSD519high_T_C5JW5ACXX_R1.fastq.gz Sample_RH41LSD519high_T_C5JW5ACXX_R2.fastq.gz

Sample RH41LSD519low T C5JW5ACXX R1.fastq.gz Sample_RH41LSD519low_T_C5JW5ACXX_R2.fastq.gz Sample_RH41LSD690high_T_C5JW5ACXX_R1.fastq.gz Sample_RH41LSD690high_T_C5JW5ACXX_R2.fastq.gz Sample_RH41LSD690low_T_C5JW5ACXX_R1.fastq.gz Sample_RH41LSD690low_T_C5JW5ACXX_R2.fastq.gz Sample_RH41MC1568high_T_H144EBGXX_R1.fastq.gz Sample_RH41MC1568high_T_H144EBGXX_R2.fastq.gz Sample_RH41MC1568low_T_H144EBGXX_R1.fastq.gz Sample_RH41MC1568low_T_H144EBGXX_R2.fastq.gz Sample_RH41Merck60high_T_C5JW5ACXX_R1.fastq.gz Sample_RH41Merck60high_T_C5JW5ACXX_R2.fastq.gz Sample_RH41Merck60low_T_C5JW5ACXX_R1.fastq.gz Sample_RH41Merck60low_T_C5JW5ACXX_R2.fastq.gz Sample_RH41OJI1high_T_C5JW5ACXX_R1.fastq.gz Sample_RH41OJI1high_T_C5JW5ACXX_R2.fastq.gz Sample_RH41OJI1low_T_C5JW5ACXX_R1.fastq.gz Sample_RH41OJI1low_T_C5JW5ACXX_R2.fastq.gz Sample_RH41PFI2high_T_C5JW5ACXX_R1.fastq.gz Sample_RH41PFI2high_T_C5JW5ACXX_R2.fastq.gz Sample_RH41PFI2low_T_C5JW5ACXX_R1.fastq.gz Sample_RH41PFI2low_T_C5JW5ACXX_R2.fastq.gz Sample_RH41PFI3high_T_C5JW5ACXX_R1.fastq.gz Sample_RH41PFI3high_T_C5JW5ACXX_R2.fastq.gz Sample_RH41PFI3low_T_C5JW5ACXX_R1.fastq.gz Sample_RH41PFI3low_T_C5JW5ACXX_R2.fastq.gz Sample_RH41SGC0946high_T_C5JW5ACXX_R1.fastq.gz Sample_RH41SGC0946high_T_C5JW5ACXX_R2.fastq.gz Sample_RH41SGC0946low_T_C5JW5ACXX_R1.fastq.gz Sample_RH41SGC0946low_T_C5JW5ACXX_R2.fastq.gz Sample_RH41SGCCBP30high_T_C5JW5ACXX_R1.fastq.gz Sample_RH41SGCCBP30high_T_C5JW5ACXX_R2.fastq.gz Sample_RH41SGCCBP30low_T_C5JW5ACXX_R1.fastq.gz Sample_RH41SGCCBP30low_T_C5JW5ACXX_R2.fastq.gz Sample_RH41Tramhigh_T_C5JW5ACXX_R1.fastq.gz Sample RH41Tramhigh T C5JW5ACXX R2.fastq.gz Sample_RH41Tramlow_T_C5JW5ACXX_R1.fastq.gz Sample_RH41Tramlow_T_C5JW5ACXX_R2.fastq.gz Sample_RH41UNC0638high_T_C5JW5ACXX_R1.fastq.gz Sample_RH41UNC0638high_T_C5JW5ACXX_R2.fastq.gz Sample_RH41UNC0638low_T_C5JW5ACXX_R1.fastq.gz Sample_RH41UNC0638low_T_C5JW5ACXX_R2.fastq.gz Sample_RH41UNC1215high_T_H0VWNAGXX_R1.fastq.gz Sample_RH41UNC1215high_T_H0VWNAGXX_R2.fastq.gz Sample_RH41UNC1215low_T_H0VWNAGXX_R1.fastq.gz Sample RH41UNC1215low T H0VWNAGXX R2.fastq.gz Sample_RH41UNC1999high_T_C5JW5ACXX_R1.fastq.gz Sample_RH41UNC1999high_T_C5JW5ACXX_R2.fastq.gz Sample_RH41UNC1999low_T_C5JW5ACXX_R1.fastq.gz Sample_RH41UNC1999low_T_C5JW5ACXX_R2.fastq.gz Sample RH41WT161high T C5JW5ACXX R1.fastq.gz Sample_RH41WT161high_T_C5JW5ACXX_R2.fastq.gz Sample_RH41WT161low_T_C5JW5ACXX_R1.fastq.gz Sample_RH41WT161low_T_C5JW5ACXX_R2.fastq.gz Sample_RH4_D1_T_HVNVFBGX2_R1.fastq.gz Sample_RH4_D1_T_HVNVFBGX2_R2.fastq.gz Sample_RH4_D24_T_HVNVFBGX2_R1.fastq.gz Sample_RH4_D24_T_HVNVFBGX2_R2.fastq.gz Sample_RH4_D6_T_HVNVFBGX2_R1.fastq.gz Sample RH4 D6 T HVNVFBGX2 R2.fastq.gz Sample_Rh4_DMSO_T_HCK52BGXY_R1.fastq.gz Sample_Rh4_DMSO_T_HCK52BGXY_R2.fastq.gz Sample_RH4_ENT1_T_HVNVFBGX2_R1.fastq.gz Sample_RH4_ENT1_T_HVNVFBGX2_R2.fastq.gz Sample RH4 ENT24 T HVNVFBGX2 R1.fastq.gz Sample_RH4_ENT24_T_HVNVFBGX2_R2.fastq.gz Sample RH4 ENT6 T HVNVFBGX2 R1.fastq.gz Sample_RH4_ENT6_T_HVNVFBGX2_R2.fastq.gz Sample_Rh4_N1302_T_HCK52BGXY_R1.fastq.gz Sample Rh4 N1302 T HCK52BGXY R2.fastq.gz Sample_Rh4_PLX1_T_HCK52BGXY_R1.fastq.gz Sample_Rh4_PLX1_T_HCK52BGXY_R2.fastq.gz Sample_Rh4_PLX2_T_HCK52BGXY_R1.fastq.gz Sample_Rh4_PLX2_T_HCK52BGXY_R2.fastq.gz

ChIP-seq:

Sample_RH4_HDAC2_005_C_H7WKVBGXX_peaks.narrowPeak.nobl.GREAT.bed Sample RH4 SOX8 016 C HJ73HBGXY peaks.narrowPeak.nobl.GREAT.bed Sample_RH3_H3K27ac_016_C_HJ73HBGXY_peaks.narrowPeak.nobl.GREAT.bed Sample_RH4_D6_bioJQ1_016_C_HJ73HBGXY_peaks.narrowPeak.nobl.GREAT.bed Sample_RH4_D6_H3K27ac_018_C_HWC77BGXY_peaks.narrowPeak.nobl.GREAT.bed Sample_RH4_Ent1_H3K27ac_018_C_HWC77BGXY_peaks.narrowPeak.nobl.GREAT.bed Sample RH4 Ent6 H3K27ac 018 C HWC77BGXY peaks.narrowPeak.nobl.GREAT.bed Sample_RH4_D6_Pol2_018_C_HWC77BGXY_peaks.narrowPeak.nobl.GREAT.bed Sample RH4 Ent1 Pol2 018 C HWC77BGXY peaks.narrowPeak.nobl.GREAT.bed Sample_RH4_Ent6_Pol2_018_C_HWC77BGXY_peaks.narrowPeak.nobl.GREAT.bed Sample_RH30_H3K27ac_016_C_H5JKVBGX3_peaks.narrowPeak.nobl.GREAT.bed Sample_RH4_D6_H3K36ac_021_C_H5JKVBGX3_peaks.narrowPeak.nobl.GREAT.bed Sample_RH4_Ent6_H3K36ac_021_C_H5JKVBGX3_peaks.narrowPeak.nobl.GREAT.bed Sample RH4 D6 RAD21 021 C H5JKVBGX3 peaks.narrowPeak.nobl.GREAT.bed Sample_RH4_Ent6_RAD21_021_C_H5JKVBGX3_peaks.narrowPeak.nobl.GREAT.bed Sample RH4 D6 HDAC2 021 C H5JKVBGX3 peaks.narrowPeak.nobl.GREAT.bed Sample_RH4_Ent6_HDAC2_021_C_H5JKVBGX3_peaks.narrowPeak.nobl.GREAT.bed Sample_RH4_D6_HDAC1_024_C_HLFMLBGX3_peaks.narrowPeak.nobl.GREAT.bed Sample_RH4_D6_RAD21_025_C_HFH72BGX5_peaks.narrowPeak.nobl.GREAT.bed Sample_RH4_Ent6_RAD21_025_C_HFH72BGX5_peaks.narrowPeak.nobl.GREAT.bed Sample RH4 D6 YY1 025 C HFH72BGX5 peaks.narrowPeak.nobl.GREAT.bed Sample_RH4_Ent6_YY1_025_C_HFH72BGX5_peaks.narrowPeak.nobl.GREAT.bed Sample_RH4_DMSO_6hr_ATAC_H7H5CBGX5_peaks.narrowPeak.nobl.GREAT.bed Sample_RH4_Ent_1hr_ATAC_H7H5CBGX5_peaks.narrowPeak.nobl.GREAT.bed Sample_RH4_Ent_6hr_ATAC_H7H5CBGX5_peaks.narrowPeak.nobl.GREAT.bed Sample RH4 HDAC2 005 C H7WKVBGXX R1.fastq.gz Sample_RH4_SOX8_016_C_HJ73HBGXY_R1.fastq.gz Sample_RH3_H3K27ac_016_C_HJ73HBGXY_R1.fastq.gz Sample_RH3_input_016_C_HJ73HBGXY_R1.fastq.gz Sample_RH4_D6_bioJQ1_016_C_HJ73HBGXY_R1.fastq.gz Sample_RH4_D6_H3K27ac_018_C_HWC77BGXY_R1.fastq.gz Sample_RH4_Ent1_H3K27ac_018_C_HWC77BGXY_R1.fastq.gz Sample_RH4_Ent6_H3K27ac_018_C_HWC77BGXY_R1.fastq.gz Sample_RH4_D6_Pol2_018_C_HWC77BGXY_R1.fastq.gz Sample RH4 Ent1 Pol2 018 C HWC77BGXY R1.fastq.gz Sample_RH4_Ent6_Pol2_018_C_HWC77BGXY_R1.fastq.gz Sample_RH30_H3K27ac_016_C_H5JKVBGX3_R1.fastq.gz Sample_RH30_input_016_C_H5JKVBGX3_R1.fastq.gz Sample_RH4_D6_H3K36ac_021_C_H5JKVBGX3_R1.fastq.gz Sample_RH4_Ent6_H3K36ac_021_C_H5JKVBGX3_R1.fastq.gz Sample_RH4_D6_RAD21_021_C_H5JKVBGX3_R1.fastq.gz Sample_RH4_Ent6_RAD21_021_C_H5JKVBGX3_R1.fastq.gz Sample_RH4_D6_HDAC2_021_C_H5JKVBGX3_R1.fastq.gz Sample_RH4_Ent6_HDAC2_021_C_H5JKVBGX3_R1.fastq.gz Sample RH4 D6 HDAC1 024 C HLFMLBGX3 R1.fastq.gz Sample_RH4_D6_RAD21_025_C_HFH72BGX5_R1.fastq.gz Sample_RH4_Ent6_RAD21_025_C_HFH72BGX5_R1.fastq.gz Sample_RH4_D6_YY1_025_C_HFH72BGX5_R1.fastq.gz Sample_RH4_Ent6_YY1_025_C_HFH72BGX5_R1.fastq.gz Sample RH4 DMSO 6hr ATAC H7H5CBGX5 R1.fastq.gz Sample RH4 Ent 1hr ATAC H7H5CBGX5 R1.fastq.gz Sample_RH4_Ent_6hr_ATAC_H7H5CBGX5_R1.fastq.gz Sample_RH4_DMSO_6hr_ATAC_H7H5CBGX5_R2.fastq.gz Sample_RH4_Ent_1hr_ATAC_H7H5CBGX5_R2.fastq.gz Sample_RH4_Ent_6hr_ATAC_H7H5CBGX5_R2.fastq.gz

Genome browser session (e.g. <u>UCSC</u>)

Methodology

Replicates

Sequencing depth

We viewed all datasets in IGV, not a public browser website. TDF files, a compressed version of BEDGRAPHS for IGV viewing, can be made available to reviewers if needed.

ChIP-seq replicates were performed across multiple cell lines rather than multiple experiments per cell line, with the exception of RAD21 in RH4 cells, which was performed in biological duplicate (deposited as Rep1 and Rep2).

All ChIP-seq and ChIP-Rx experiments were performed in single-end read mode, 75 base pairs. Spike in reads were measured in parrallel mapping to dm3 and hg19, with results as follows: ChIP-Rx Sample name Human_Reads Sample_RH4_D6_BRD4_024_C_HLFMLBGX3 33045619 Sample_RH4_D6_HDAC2_021_C_H5JKVBGX3 23460819 Sample_RH4_D6_p300_024_C_HLFMLBGX3 26822752 Sample_RH4_D6_RAD21_021_C_H5JKVBGX3 16714974 Sample_RH4_D6_RAD21_025_C_HFH72BGX5 51895856 Sample_RH4_D6_YY1_025_C_HFH72BGX5 23373134 Sample_RH4_Ent6_BRD4_024_C_HLFMLBGX3 72847125

	ChIP-RX Sample name SpikeIn_Drosopnila_Reads Sample_RH4_D6_BRD4_024_C_HLFMLBGX3 1072779 Sample_RH4_D6_p300_024_C_HLFMLBGX3 3786163 Sample_RH4_D6_RAD21_021_C_H5JKVBGX3 949948 Sample_RH4_D6_RAD21_025_C_HFH72BGX5 813980 Sample_RH4_D6_RAD21_025_C_HFH72BGX5 659906 Sample_RH4_Ent6_BRD4_024_C_HLFMLBGX3 2023651 Sample_RH4_Ent6_HDAC2_021_C_H5JKVBGX3 4005804 Sample_RH4_Ent6_RAD21_021_C_H5JKVBGX3 1263186 Sample_RH4_Ent6_RAD21_022_C_HFH72BGX5 41313 Sample_RH4_Ent6_RAD21_025_C_HFH72BGX5 414133 Sample_RH4_Ent6_AD21_025_C_HFH72BGX5 414133 Sample_RH4_Ent6_Y11_025_C_HFH72BGX5 450454 Sample_RH4_Ent6_Y1_025_C_HFH72BGX7 650454 Sample_RH4_D6_H3K27ac_018_C_HWC77BGXY 660454 Sample_RH4_Ent1_H3K27ac_018_C_HWC77BGXY 663539 Sample_RH4_Ent1_H3K27ac_018_C_HWC77BGXY 66379 Sample_RH4_Ent6_H3K27ac_018_C_HWC77BGXY 586269 Sample_RH4_Ent6_H3K36ac_021_C_H5JKVBGX3 373765
Antibodies	same antibodies listed above.
Peak calling parameters	Peaks were called using MACS2 (version 2.1.1.20160309, https://github.com/taoliu/MACS) using "narrow" mode for all targets reported in this paper, as they form sharp genomic peaks. Parameters for MACS2 usage: [format BAMcontrol input.bamkeep-dup allpvalue 0.0000001]. Regions called as peaks which are known to be spurious mapping artifacts were removed before any further analysis (reference locations for sites black-listed by the ENCODE consortium, https:// sites.google.com/site/anshulkundaje/projects/blacklists).
Data quality	Samples are listed with the number of peaks at a threshold of p < 1x10^(-7) in the 2nd column, and, in the 3rd column, the number of peaks with at least 5-fold or more enrichment are reported. SampleFile PEAKS_PVALUE7 PEAKS_FOLD_CHANGE5 Sample_RH4_HBX27ac_001_C_HSTLGBGXX 69895 66719 Sample_RH4_HDAC2_005_C_HTWKVBGXX 31422 29444 Sample_SCMC_H3K27ac_008_C_HHC7JBGXX 37036 38696 Sample_RD_H3K27ac_008_C_HHC7JBGXX 47078 38039 Sample_RD_H3K27ac_009_C_HHC7BGXX 51045 2402 Sample_CTR_D48_H3K27ac_000_C_HHC7BGXX 31042 58143 54262 Sample_CTR_D48_H3K27ac_010_C_HMKGLBGXX 38141 36786 Sample_CTR_048_H3K27ac_010_C_HMKGLBGXX 38141 36786 Sample_RH4_SOX8_016_C_HJ73HBGXY 4009 435683 Sample_RH4_SOX8_016_C_HJ73HBGXY 4009 43565 Sample_RH4_D6_biol01_016_C_HJ73HBGXY 21905 20612 Sample_RM5259_H3K27ac_007_C_HHF57BGXX 2164 33674 Sample_RM5209_H3K27ac_007_C_HHF57BGXX 2164 33674 Sample_RM5209_H3K27ac_007_C_HHF57BGXX 29736 28428 Sample_RM5206_H3K27ac_007_C_HHF57BGXX 287483 30773 Sample_RM5216_H3K27ac_007_C_HHF57BGXX 23943 31325 Sample_RM5216_H3K27ac_007_C_HHF57BGXX 23943 31325 Sample_RM5216_H3K27ac_018_C_HWC77BGXY 63599 60301 Sample_RM4_ent1_H3K27ac_018_C_HWC77BGXY 2014 24297 Sample_RH4_Ent1_Pol_018_C_HWC77BGXY 21338 19232

Sample_RH4_Ent6_HDAC2_021_C_H5JKVBGX3 24487174 Sample_RH4_Ent6_p300_024_C_HLFMLBGX3 22568713 Sample_RH4_Ent6_RAD21_021_C_H5JKVBGX3 22368744 Sample_RH4_Ent6_RAD21_025_C_HFH72BGX5 37802129

Sample_RH4_Ent6_YY1_025_C_HFH72BGX5 40957167 Sample_RH4_D6_H3K27ac_018_C_HWC77BGXY 29336224 Sample_RH4_D6_Pol2_018_C_HWC77BGXY 45354877 Sample_RH4_Ent1_H3K27ac_018_C_HWC77BGXY 31486542 Sample_RH4_Ent1_Pol2_018_C_HWC77BGXY 33191147 Sample_RH4_Ent6_H3K27ac_018_C_HWC77BGXY 38211649 Sample_RH4_Ent6_Pol2_018_C_HWC77BGXY 35643654 Sample_RH4_Ent6_Pol2_018_C_HSIKVBGX3 29947004 Sample_RH4_Ent6_H3K36ac_021_C_H5JKVBGX3 22926282

ChIP-Rx Sample name SpikeIn_Drosophila_Reads

Sample_RH4_Ent6_Pol2_018_C_HWC77BGXY 29228 26854 Sample_Birch_H3K27ac_016_C_H5JKVBGX3 27818 27711 Sample_RH30_H3K27ac_016_C_H5JKVBGX3 37404 36761 Sample_RH4_D6_H3K36ac_021_C_H5JKVBGX3 1309 20147 Sample_RH4_Ent6_H3K36ac_021_C_H5JKVBGX3 13744 13319 Sample_RH4_D6_RAD21_021_C_H5JKVBGX3 13350 13351 Sample_RH4_D6_HDAC2_021_C_H5JKVBGX3 1278 21256 Sample_RH4_D6_HDAC2_021_C_H5JKVBGX3 14590 14266 Sample_RH4_Ent6_HDAC2_021_C_H5JKVBGX3 28588 27817 Sample_RH4_D6_HDAC2_021_C_H5JKVBGX3 28588 27817 Sample_RH4_D6_HDAC1_024_C_HLFMLBGX3 75609 72600 Sample_RH4_D6_RAD21_025_C_HFH72BGX5 37633 36978 Sample_RH4_D6_Y11_025_C_HFH72BGX5 18963 17921 Sample_RH4_Ent6_YY1_025_C_HFH72BGX5 15440 13650 Sample_RH4_Ent_1hr_ATAC_H7H5CBGX5 29204 27063 Sample_RH4_Ent_6hr_ATAC_H7H5CBGX5 49207 45234

Software

Motif analysis was performed on peaks called from MACS2, using findMotifsGenome.pl from HOMER version 4.9.1 (http:// homer.ucsd.edu/homer/index.html). Super enhancers were identified using the ROSE2 package (https://github.com/ linlabbcm/rose2) employing stitching parameter of 12500 bp. The scripts used for core regulatory analysis are available here (https://pypi.org/project/coltron/). For peak comparisons, we used Bedtools version 2.27.1 (http:// bedtools.readthedocs.io/en/latest/). Plots of ChIP-seq data were made with NGSplot v. 2.63 (https://github.com/shenlabsinai/ngsplot).