SUPPLEMENTARY DATA for

Responsive self-assembly of tectoRNAs with loop-receptor interactions from the tetrahydrofolate

(THF) riboswitch

Charles Mitchell¹, Julio Polanco², Laura DeWald¹, Dustin Kress¹, Luc Jaeger^{2,#} and Wade W. Grabow^{1,#} ¹Department of Chemistry and Biochemistry, Seattle Pacific University, Seattle, WA 918119-1997, USA; ²Department of Chemistry and Biochemistry, Biomolecular Science and Engineering Program, University of California, Santa Barbara, CA 93106-9510, USA.

- to whom correspondence should be addressed: Wade W. Grabow, email: <u>grabow@spu.edu</u>, phone: 206-281-2016. Luc Jaeger, email: <u>jaeger@chem.ucsb.edu</u>, phone: (805) 893-3628.

A. <u>Supplemental Materials and Methods</u>

<u>DNA Amplification</u>: All tectoRNAs were synthesized from DNA duplexes generated by PCR using the appropriate forward, reverse, and template strands (Integrated DNA Technology). Primers were designed to having annealing temperatures between 56 and 60°C. Individual dsDNA templates were synthesized using Taq DNA polymerase (Thermo Fisher Scientific) using the accompanied 10X buffer (200mM Tris-HCl pH 8.4, 500mM KCl); Magnesium Chloride (50mM)) according to manufacturer's recommendations. The annealing temperature for PCR was set to 56°C. Typically, 35 rounds of PCR were used to generate an appropriate amount of dsDNA. The resulting dsDNA was purified by GenCatchTM PCR cleanup kit (Epoch Life Science). The general signature for the three DNA strands used to generate the dsDNA used for transcription were as follows:

```
R5' L R3'
tectoRNA 5'- GGGACAGXXXXGGUAAACAGGGXXXXXXXXUCCUGUUUACCXXXXXXCUGUCC -3'
tectoRNA.tmp 5'- GGACAGXXXXXGGTAAACAGGAXXXXXXXCCCTGTTTACCXXXXCTGTCCC -3'
tectoRNA.fwd 5'- TTCTAATACGACTCACTATAGGGACAGXXXXGGTAAACAGGG - 3'
tectoRNA.rev 5'- GGACAGXXXXXXGGTAAA - 3'
```

<u>*Transcription:*</u> TectoRNAs were transcribed from resulting dsDNA templates using *in vitro* run-off transcription by T7 RNA polymerase (Thermo Fisher Scientific) using the accompanied 5X Transcription Buffer (200 mM Tris-HCl (pH 7.9 at 25°C), 30 mM MgCl2, 50 mM DTT, 50 mM NaCl and 10 mM spermidine). Reaction mixtures consisted of a total volume of 200 μ L with the following composition:

Transcription buffer (5X) 40 µL

NTPs (25 mM each)		20 µL	
DTT (100 mM)		2.0 µL	
Inorganic Pyrophosphatase (0.	1 U/µl)	6.0 µL	
RNasin (40u/µl)		1.5 μL	
T7 RNA polymerase (150 Unit	ts)	1-7.5 μL	
H2O (nanopure)	(final volume	of mix is 160	µL per reaction)
PCR DNA template purified		~40 µL	

Reaction mixtures were incubated at 37°C for 4 hours. After 4 hours, 2 μ L of RQ1 DNase (10 U/ μ l) (New England Biolabs) was added and mixture was incubated for an additional 20 minutes to degrade the DNA templates.

<u>RNA Purification and Isolation</u>: To each reaction mixture 75 μ l of urea blue (0.05% bromophenol, 0.05% xylene cyanol, 8M urea, 20 mM EDTA) was added and samples were heated at 90°C for 2 minutes before being loaded onto a denaturing polyacrylamide gel (8-10%, acrylamide bisacrylamide (19:1), 8 M urea). Samples were run for approximately 1.5 hours at 35W. Gel pieces containing RNA were visualized by UV shadowing technique, removed, and placed in elution buffer (200 mM NaCl, 10 mM Tris pH 7.5, 0.5 mM NaEDTA) and shook at 5°C overnight. The next morning the liquid was removed from the sample tubes, 900 μ L of 100% ethanol was added to each tube, and samples were stored at -20°C for 2 hours to precipitate the RNA. Samples were spun for 1 hour at 12,000 rpm. The majority of the liquid was removed and sample was washed one final time. RNA was reconstituted in nanopure water and concentrations were determined using a nanodrop UV-Vis spectrometer (Thermo Fisher Scientific).

B. <u>Supplemental Tables</u>

Table S1: Alignment of unique loop-receptor sequences. Adapted from (1). The 5' receptor, loop, and 3' receptor regions are separated by dashes. Accession numbers are shown where the last bolded three number designations in blue represent the working name of each given sequence. Sequence signatures are grouped according to uniqueness by black dashed lines. For example, sequence 980 has the same loop-receptor sequence as the first 12 other THF riboswitches. For consensus sequence: red, 95% conserved; black, 85% conserved; gray, 75% conserved; R = A or G; Y = U or C; W = A or U. For alignment: underlined nts, loop-receptor duplex with WC and non-canonical bps; gray shading, WC bps; green shading, G-U bps.

2D	L1-2	РЗ	L3	P3′	L2-1
Consensus	AGUA	-GRAY	. GGGRWGU	UGYY-G	CAUYCCG
>NZ AAYG02000031.1/153078-152 980	AGUA	-GG <mark>AC</mark>	. GGGG <mark>A</mark> GU	UG <mark>CC</mark> -G	CAUCCCG
>NZ AAXG02000014.1/43071-43187	AGUA	-G <mark>G</mark> AC	. GGGGAGU	UG <mark>UC</mark> -G	CAUCCCG
>BABE01004909.1/284-381	AGUA		. GGGGAGU	UGUC-G	CAUCCCG
>NZ ABAW02000025.1/72799-72896	AGUA	GAAC	GGGGAGU		CAUCCCG
>NC 009706 1/3903929-3904044	ACIIA	-GAAC	GGGGAGU		CAUCCCG
NB_000000000000000000000000000000000000	ACUA		CCCCACI		CAUCCCC
>DADAU10109937.1/40-141 >DADU0101010910 1/610 715	AGUA	CUAC	CCCCACI		CAUCCCC
>DAAV01010000.1/010-/15	AGUA	GUAC	COCCACION CIT		CAUCCCG
/DAAAU1022343.1/141-43	AGUA		GGGGAGO		
>NZ_ABEDU2UUUU24.1/13/5/4-13/6/2	AGUA	-CAAC	GGGGAGU		CAUCCCG
>BABG01004557.1/3-100	AGUA	-CAAC	GGGGAGU	UGUG-G	CAUCCCG
>BAAX010026/9.1/2103-2006	AGUA	-CAAC	. G <mark>GGGA</mark> GU	UGUG-G	C <u>AUCCC</u> G
>BAAU01000940.1/627-724	AGUA	-CAAC	. G <mark>GGGA</mark> GU	UGUG-G	CAUCCCG
<pre>>hqutS7_s7_164370/285-380</pre>	AGUA	-ACAC	. G <mark>GGGA</mark> GU	UGGU-G	C <u>AUCCC</u> G
>NZ_AASF01001777.1/1578-1480	ACCA	-G <mark>G</mark> AC	. G <mark>GGGA</mark> GU	UG <mark>U</mark> C-G	C <mark>AUCCC</mark> G
>BABB01000157.1/63- 158	AGUA	-GAAC	. <mark>AGGGA</mark> GU	UG <mark>UC</mark> -G	C <mark>AUCCC</mark> G
>BABF01004573.1/52-147	AGUA	-GAAC	. <mark>AGGGA</mark> GU	UG <mark>UC</mark> -G	C <mark>AUCCC</mark> G
>BABG01026644.1/586-688	AGUA	-G <mark>AAC</mark>	. <mark>A</mark> GGG <mark>A</mark> GU	UG <mark>UC</mark> -G	C <mark>AUCCC</mark> G
>NZ ABCC02000039.1/266095-266205	AGUA	-G <mark>G</mark> AC	. <mark>A</mark> GGG <mark>A</mark> GU	UG <mark>U</mark> C-G	CAUCCCG
>hgutS7 s7 168056/60-187	ACUA	-G <mark>G</mark> AC	. <mark>A</mark> GGG <mark>A</mark> GU	UG <mark>U</mark> C-G	CAUCCCG
>BAAU01016335.1/416-525	AGUA	-GAAC	. AGGGAGU	AG <mark>UC</mark> -G	CAUCCCG
>NZ ABCA03000044.1/64560-64460 (3SUX)	AGUA	-G <mark>G</mark> AC	. GG <mark>G</mark> GAGU	UG <mark>UC</mark> -G	CAUCUCG
>NC 008525.1/1424554-1424642	AGUA		. G <mark>GAGA</mark> GU	UG <mark>CU</mark> -G	CAUCUCG
>NZ ABD001000031.1/13491-13 593	AGUA	-GAAC	. GGGAAGU	ug <mark>uc</mark> -g	CAUUCCG
>NC_008593.1/1647712-1647607	AGUA	GAAC	GGGAAGU		CAUUCCG
>NZ AAVC01000075 1/8139-8248	AGUA	-GGAC	GGGAAGU		CAUUCCG
NC 009699 1/91/572-91/676	ACITA		GGGAAGU		
NC_009495_1/914372_914070	ACUA		CCCAACU		
>NC 009495.1/09222/092551	AGOA				
>BAA2UIU2U030.1/794-894 >Dade01001528 1/104-89	AGUA				
>baut 69 a9 170001/612 710	AGUA	CCCU	CCCCACU		
NIG ANKOODOOOOA 1/164020 164726	AGOA				
>NZ_AAV002000004.1/104032-104/30	AAUA	-GAAU			
>BABEUIUI/430.1/618-522	AAUA	-GAAU	GGGGAGU		
>nqut5/_s/_164211_1/947-835	AUA	-GGAU	. GGGGAGU	UG <mark>CC</mark> -G	CA.CCCG
>BAAZ01000245.1/2377-2 470	AGUA	-GGAU	. G <mark>GGAGG</mark> U	UG <mark>CC</mark> -G	CAA.CCG
>NC_009633.1/4463946-4464038	AGUA	- <mark>G</mark> GAU	. G <mark>GGAAG</mark> U	UG <mark>CU</mark> -G	CGU.CCA
>NC_009922.1/2619446-2619 544	AGUA	-GGAU	. G <mark>GGAAG</mark> U	UG <mark>CC</mark> -G	<u>CAU.CC</u> G
>NC_004557.1/1800312-1800 211	AGUA	-GGAU	. AGGAUGU	UG <mark>CC</mark> -G	<u>CUU.CC</u> G
>NC_003030.1/2534634-2534 731	AGUA	-G <mark>G</mark> AU	. G <mark>GGAAG</mark> U	UG <mark>UC</mark> -G	<u>CUU.CC</u> G
>BABD01033677.1/236-329	AGUA	-G <mark>G</mark> AU	. G <mark>GGAAG</mark> U	UG <mark>UC</mark> -G	CUU.CCG
>NC_009706.1/1524321-1524441	AGUA	-GAAU	. G <mark>GGA<mark>G</mark>GU</mark>	UG <mark>UC</mark> -G	C <mark>UU.CC</mark> G
>NC_004350.1/559729-559641 (4LVV)	AGUA	-GAAU	. G <mark>GGAUG</mark> U	CG <mark>UC</mark> -G	CAU.CCG
>NZ_ABEE02000015.1/221133-221224	ACUA	- <mark>AGA</mark> U	. G <mark>GGAUG</mark> U	UG <mark>CU</mark> -G	CAU.CCA
>JCVI_SCAF_1101668087879/886- 799	AGUA	-AAAU	. G <mark>GGUUG</mark> U	UG <mark>UU</mark> -G	CAA.CCG
>NC_009442.1/125748-125 890	AGUA	-GG <mark>A</mark> U	. GGG <mark>G</mark> UGU	UG <mark>CC</mark> -G	CA <mark>U.CC</mark> G
>NZ AAOZ01000019.1/12278-12 377	AGUA	-GGAU	. GGGACGU	UG <mark>CC</mark> -G	CGU.CCG
>NC 004668.1/903576-903 739	AGUA	-GGAU	. GG <mark>G</mark> AUGU	UG <mark>CC</mark> -G	CAU <mark>U.C</mark> G
>NZ AAAK03000102.1/3116-3216	AGUA	-GGAU	. GG <mark>G</mark> AUGU	UG <mark>CC</mark> -G	CAUU.CG
>NC 009633.1/4839802-4839709	AGUA	-G <mark>G</mark> AU	. GGAACGU	UG <mark>U</mark> A-G	CGUU.CG
>NC 007576.1/348925-349 019	AGUA	-GAAC	GGAAUGU	. GAA-G	CAUU, CG
>NC 008526.1/2247840-2247748	AGUA	-GAAC	GGAAUGU	GAA-G	CAUU. CG
>NC 008497.1/852209-852 116	AGUA	-GAAC	GCAATIGH	GAA-C	CAULL GG
>NZ AAPZ02000001 1/1062273-1062367	GGTTA	-GAAC	GGAAUGU	GAA-C	CAULL CA
NC 007929 1/1666649-1666554	CCUT		GGAAUCU		
NC 010609 1/1983266-1983360	CCUT	-CAAC	CCANTON		CAULL CA
NIC 008531 1/122071 124050	CCTT	-GAAC	CCAAUGU	CAC C	
NG 000331.1/1237/1-124000 NBBBA01028836 1/106-1			CCCACCT	CAC-C	
NT ANGE01001777 1/1579 1400	CUCA		CCACCCCC		
-114 MAJEULUULIII.L/LJ/0-1400	COCA	GRGC	. Gongelee		CONDO

Table S2. Average K_d and standard deviation for each molecule at varying stem lengths tested in TB buffer (89mM Tris-borate, pH 8.2, 50mM KCl, and 2mM Mg²⁺) at 7°C. Further details are listed in the Material and Methods.

	Equilibrium Dissociation Constant (Kd in nM)			
THF loop-receptor	9 base pair	10 base pair	11 base pair	
4LVV	492 (±74)	252 (±94)	98 (±8)	
3SUX	> 20000	> 20000	2534 (±396)	
980	550 (±204)	30 (±16)	26 (±6)	
593	> 20000	18228 (±1902)	5148 (±474)	
158	2624 (±664)	2052 (±128)	1190 (±268)	

Table S3: Average Kd, ΔG , and $\Delta \Delta G$ values for tectoRNAs in the absence and presence of folinic acid (FA). $\Delta \Delta G_{FA}$ values correspond to the difference in ΔG between control (no folinic acid) and the ΔG of each respective construct in the presence of 200 μ M FA. All Kds were measured at 7°C and 1mM Mg²⁺ except the 3SUX variants, which did not dimerize in these conditions and were instead tested at 2 mM Mg²⁺ to achieve dimer formation. Data represent the average and standard deviation from a minimum of three independent experiments. 4LVV stands for 4LVV_11 (Table S4).

Molecule	Kd (no FA)	ΔG (no FA)	Kd (+FA)	$\Delta G (+FA)$	$\Delta\Delta G_{FA}$
980	1944 (±108)	-7.32 (±0.03)	28 (±2)	-9.67 (±0.04)	-2.35 (±0.05)
148	540 (±20)	-8.03 (±0.02)	104 (±28)	-8.94 (±0.15)	-0.91 (±0.15)
4LVV	1072 (±20)	-7.65 (±0.01)	86 (±12)	-9.05 (±0.08)	-1.40 (±0.08)
4LVV_9	3694 (±432)	-6.96 (±0.07)	74 (±6)	-9.13 (±0.05)	-2.17 (±0.08)
4LVV_9.1	2338 (±114)	-7.21 (±0.03)	978 (±30)	-7.69 (±0.02)	-0.48 (±0.03)
3SUX*	2534 (±396)	-7.17 (±0.09)	3918 (±1132)	-6.92(±0.16)	0.25 (±0.18)
3SUX.1*	13640 (±2694)	-6.23 (±0.11)	9786 (±2136)	-6.41 (±0.12)	-0.18 (±0.16)

Name	TectoRNA Sequence	Interaction	Kd nM	∆G(kcal/mol)
4LVV_9	5'-gGGACAG <mark>AGUA</mark> GGUAAACGG <mark>AU-GGGAUGUCG</mark> UCGUUUACC <mark>GCAUC-CG</mark> CUGUCC	5'AUG <u>GGAUG</u> UCG 3'GCCUACG	492 (±74)	-8.08(±0.08)
4LVV_10	5'-gGGACAG <mark>AGUA</mark> GGUAAACA-GG <mark>AU-G<u>GGAUG</u>UCG</mark> UC-UGUUUACC <mark>G<u>CAUC-C</u>G</mark> CUGUCC	5'AUGGGAUGUCG 3'GCCUACG	250(±94)	-8.46(±0.21)
4LVV_11 (641)	5′-gGGACAG <mark>AGUA</mark> GGUAAACAGGG <mark>AU-GGGAUGUCG</mark> UCCUGUUUACC <mark>GCAUC-CG</mark> CUGUCC	5'AUG <u>GGAUG</u> UCG 3'GCCUACG	98 (±8)	-8.98(±0.05)
3SUX_9	5'-gGGACAG <mark>AGUA</mark> GGUAAACGG <mark>AC-GGGGAGUUG</mark> UCGUUUACC <mark>GCAUCUCG</mark> CUGUCC	5'ACG <u>GGGAG</u> UUG 3' GCUCUACG	>20000	N.A.
3SUX_10	5'-gGGACAG <mark>AGUA</mark> GGUAAACA-GG <mark>AC-GGGGAGUUG</mark> UC-UGUUUACC <mark>GCAUCUCG</mark> CUGUCC	5'ACGGGGAGUUG 3' GCUCUACG	>20000	N.A.
3SUX_11 (460)	5′-gGGACAG <mark>AGUA</mark> GGUAAACAGGG <mark>AC-GGGGAGUUG</mark> UCCUGUUUACC <mark>GCAUCUCG</mark> CUGUCC	5'ACG <u>GGGAG</u> UUG 3' GCUCUACG	2534(±396)	-7.17(±0.09)
980_9	5'-gGGACAG <mark>AGUA</mark> GGUAAACGG <mark>AC-GGGGAGUUG</mark> UCGUUUACC <mark>GCAUCCCG</mark> CUGUCC	5'ACGGGGAGUUG 3' GCCCUACG	550(±202)	-8.02(±0.20)
980_10	5'-gGGACAG <mark>AGUA</mark> GGUAAACA-GG <mark>AC-GGGGAGUUG</mark> UC-UGUUUACC <mark>GCAUCCC</mark> GCUGUCC	5'ACGGGGAGUUG 3' GCCCUACG	30(±16)	-9.64(±0.30)
980_11	5'-gGGACAG <mark>AGUA</mark> GGUAAACAGGG <mark>AC-GGGGAGUUG</mark> UCCUGUUUACC <mark>GCAUCCC</mark> GCUGUCC	5'ACGGGGAGUUG 3' GCCCUACG	26(±6)	-9.72(±0.13)
158_9	5'-gGGACAG <mark>AGUA</mark> GGUAAACGG <mark>AC-AGGGAGUUG</mark> UCGUUUACC <mark>GCAUCCCG</mark> CUGUCC	5'ACAGGGAGUUG 3' GCCCUACG	2624(±664)	-7.15(±0.14)
158_10	5'-gGGACAG <mark>AGUA</mark> GGUAAACA-GG <mark>AC-AGGGAGUUG</mark> UC-UGUUUACC <mark>GCAUCCC</mark> GCUGUCC	5'ACAGGGAGUUG 3' GCCCUACG	2052(±128)	-7.29(±0.03)
158_11	5'-gGGACAG <mark>AGUA</mark> GGUAAACAGGG <mark>AC-AGGGAGUUG</mark> UCCUGUUUACC <mark>GCAUCCCG</mark> CUGUCC	5'ACAGGGAGUUG 3' GCCCUACG	1190(±268)	-7.59(±0.12)
593_9	5'-gGGACAG <mark>AGUA</mark> GGUAAACGG <mark>AC-GGGAAGUUG</mark> UCGUUUACC <mark>GCAUUCCG</mark> CUGUCC	5'ACG <u>GGAAG</u> UUG 3' GCCUUACG	>20000	N.A.
593_10	5'-gGGACAG <mark>AGUA</mark> GGUAAACA-GG <mark>AC-GGGAAGUUG</mark> UC-UGUUUACC <mark>GCAUUCCG</mark> CUGUCC	5'ACGGGAAGUUG 3' GCCUUACG	18226(±1904)	-6.07(±0.06)
593_11	5'-gGGACAG <mark>AGUA</mark> GGUAAACAGGG <mark>AC-GGGAAGUUG</mark> UCCUGUUUACC <mark>GCAUUCC</mark> GCUGUCC	5'ACGGGAAGUUG 3' GCCUUACG	5148(±472)	-6.77(±0.05)
736	5'-gGGACAG <mark>AAUA</mark> GGUAAACAGGG <mark>AU-GGGGAGUUG</mark> UCCUGUUUACC <mark>GCA-CCC</mark> GCUGUCC	5'AUG <u>GGGAG</u> UUG 3' GCCCACG	34(±20)	-9.57(±0.33)

Table S4: List of tectoRNA constructs tested in this study with their corresponding Kds and free energies. Data represent the average and standard deviation from a minimum of three independent experiments performed in presence of 2 mM Mg(OAc)_2 at 7° C.

736.1	5'-gGGACAG <mark>AGUA</mark> GGUAAACAGGG <mark>AU-GGGGAGUUG</mark> UCCUGUUUACCGCA-CCCGCUGUCC	5' AUG <u>GGGAG</u> UU <mark>G</mark>	84(±26)	-9.06(±0.17)
		3' GCCCACG		
488	5'-gGGACAG <mark>AGUA</mark> GGUAAACAGGG <mark>CU-G<u>GGGAG</u>UCG</mark> UCCUGUUUACC <mark>GCA-CCCG</mark> CUGUCC	5'CUG <u>GGGAG</u> UCG	180(±54)	-8.64(±0.17)
		3' GCCCACG		
488.1	5'-gGGACAG <mark>AGUA</mark> GGUAAACAGGG <mark>AU-GGGGAGUCG</mark> UCCUGUUUACC <mark>GCA-CCCG</mark> CUGUCC	5'AUGGGGAGUCG	256(±18)	$-8.44(\pm 0.04)$
		3' GCCCACG		
731	5′-gGGACAG <mark>AGUA</mark> GGUAAACAGGG <mark>AU-G<u>GGAAG</u>UUG</mark> UCCUGUUUACC <mark>G<u>CUUC-C</u>G</mark> CUGUCC	5'AUGGGAAGUUG	46(±16)	-9.40(±0.19)
		3' GCCUUCG		
739	5′-gGGACAG <mark>AGUA</mark> GGUAAACAGGG <mark>AU-G<u>GGAUG</u>UUG</mark> UCCUGUUUACC <mark>GCAUU-C</mark> GCUGUCC	5'AUGGGAUGUUG	11368(±1180)	-6.33(±0.06)
		3' GCUUACG		
799	5′-gGGACAG <mark>AGUA</mark> GGUAAACAGGG <mark>AU-GGGUUGUUG</mark> UCCUGUUUACC <mark>GCAAC-CG</mark> CUGUCC	5'AUGGGUUGUUG	182(±30)	-8.63(±0.09)
		3' GCCAACG		
038	5′-gGGACAG <mark>AGUA</mark> GGUAAACAGGG <mark>AU-GGGAAGUUG</mark> UCCUGUUUACC <mark>GCGUC-CA</mark> CUGUCC	5' AUGGGAAGUUG	184(±16)	-8.63(±0.05)
		3' ACCUGCG		
038.1	5'-gGGACAG <mark>AGUA</mark> GGUAAACAGGG <mark>AU-GGGAAGUUG</mark> UCCUGUUUACC <mark>GCGUC-CG</mark> CUGUCC	5'AUGGGAAGUU <mark>G</mark>	42(±20)	-9.45(±0.26)
		3' GCCUGCG		
224	5'-gGGACAG <mark>AGUA</mark> GGUAAACAGGG <mark>AU-GGGAUGUUG</mark> UCCUGUUUACC <mark>GCAUC-CA</mark> CUGUCC	5' AUGGGAUGUU <mark>G</mark>	50(±22)	-9.35(±0.24)
		3' ACCUACG		
224.1	5'-gGGACAG <mark>AGUA</mark> GGUAAACAGGG <mark>AU-GGGAUGUUG</mark> UCCUGUUUACC <mark>GCAUC-CG</mark> CUGUCC	5' AUGGGAUGUU <mark>G</mark>	28(±4)	-9.68(±0.08)
		3' GCCUACG		
709	5′-gGGACAG <mark>AGUA</mark> GGUAAACAGGG <mark>AU-GGAACGUUG</mark> UCCUGUUUACC <mark>GCGUU-CG</mark> CUGUCC	5'AUGGAACGUUG	362(±54)	-8.25(±0.08)
		3' GCUUGCG		
544	5′-gGGACAG <mark>AGUA</mark> GGUAAACAGGG <mark>AU-GGGAAGUUG</mark> UCCUGUUUACC <mark>GCAUC-CG</mark> CUGUCC	5' AUGGGAAGUU <mark>G</mark>	180(±14)	-8.64(±0.04)
		3' GCCUACG		
544.1	5'-gGGACAG <mark>AGAU</mark> GGUAAACAGGG <mark>AU-GGGAAGUUG</mark> UCCUGUUUACC <mark>GCAUC-CG</mark> CUGUCC	5' AUGGGAAGUU <mark>G</mark>	50(±20)	-9.35(±0.22)
		3' GCCUACG		
211	5′-gGGACAG <mark>AGUA</mark> GGUAAACAGGG <mark>AU-AGGAUGUUG</mark> UCCUGUUUACC <mark>GCUUC-CG</mark> CUGUCC	5' AUAGGAUGUU <mark>G</mark>	2218(±118)	-7.24(±0.03)
		3' GCCUUCG		
367	5'-gGGACAG <mark>GGUA</mark> GGUAAACAGGGAC-GGAAUGU-GUCCUGUUUACCGCAUU-CACUGUCC	5' ACGGAAUGU <mark>G</mark>	>20000	N.A.
		3' ACUUACG		
060	5′-gGGACAG <mark>GGUA</mark> GGUAAACAGGG <mark>AC-GGAAUGU-G</mark> UCCUGUUUACC <mark>GUGUU-AG</mark> CUGUCC	5' ACGGAAUGU <mark>G</mark>	>20000	N.A.
		3' GAUUGUG		
019	5′-gGGACAG <mark>AGUA</mark> GGUAAACAGGG <mark>AC-GGAAUGU-G</mark> UCCUGUUUACC <mark>GCAUU-CG</mark> CUGUCC	5' ACGGAAUGUG	8580 (±446)	-6.49(±0.03)
(367.1)		3' GCUUACG		
061	5'-gGGACAG <mark>AGUA</mark> GGUAAACAGGG <mark>CG-GGGACGU-G</mark> UCCUGUUUACC <mark>GUCGUCCG</mark> CUGUCC	5'CGGGGACGUG	80(±20)	-9.09(±0.14)
		3' GCCUGCUG		

470	5′-gGGACAG <mark>AGUA</mark> GGUAAACAGGG <mark>AU-GGGAGGUUG</mark> UCCUGUUUACC <mark>GCAAC-CG</mark> CUGUCC	5'AUGGGAGGUUG 3' GCCAACG	2700(±642)	-7.13(±0.13)
148	5'-gGGACAG <mark>AGCA</mark> GGUAAACAGGG <mark>AC-GGGGAGUUG</mark> UCCUGUUUACC <mark>GCAUCCCG</mark> CUGUCC	5' ACG <u>GGGAG</u> UUG 3' GCCCUACG	344(±96)	-8.28(±0.15)
441	5'-gGGACAG <mark>AGUA</mark> GGUAAACAGGG <mark>AU-GGGAGGUUG</mark> UCCUGUUUACCGCUUC-CGCUGUCC	5'AUGGGAGGUUG 3' GCCUUCG	30(±2)	-9.64(±0.04)
894	5'-gGGACAG <mark>AGUA</mark> GGUAAACAGGGACGGGGAAGUUGUCUGUUUACCGCAUUCCGCUGUCC	5'ACG <u>GGGAA</u> GUUG 3' GCCUUACG	738(±44)	-7.86(±0.03)
480	5'-gGGACAG <mark>CUCA</mark> GGUAAACAGGG <mark>GC-GGAGCGCUG</mark> UCCUGUUUACC <mark>GCCUAUUU</mark> CUGUCC	5'GCGGAGCGCUG 3'UUUAUCCG	>20000	N.A.
480.1	5'-gGGACAG <mark>AGUA</mark> GGUAAACAGGG <mark>AC-GGAGCGCUG</mark> UCCUGUUUACC <mark>GCCUAUUG</mark> CUGUCC	5'ACGGAGCGCUG 3' GUUAUCCG	>20000	N.A.
890	5'-gGGACAG <mark>AGUA</mark> GGUAAACAGGG <mark>AU-GGGGUGUUG</mark> UCCUGUUUACC <mark>GCAUC-CG</mark> CUGUCC	5'AUG <u>GGGUG</u> UUG 3' GCCUACG	166(±48)	-8.69(±0.16)
980.1	5'GGACAG <mark>AGUA</mark> GGUAAACAGGG <mark>AU-GGGGAGUUG</mark> UCCUGUUUACC <mark>GCAUCCCG</mark> CUGUCC	5'AUG <u>GGGAG</u> UUG 3' GCCCUAC <mark>G</mark>	84(±18)	-9.06(±0.12)
980.2	5'GGACAG <mark>AGUA</mark> GGUAAACAGGG <mark>AC-G<mark>GGGAGUUG</mark>UCCUGUUUACC<mark>G-<u>AUCCC</u>G</mark>CUGUCC</mark>	5'ACG <u>GGGAG</u> UUG 3' GCCCUAG	282(±56)	-8.39(±0.11)
980.3	5'GGACAG <mark>AGUA</mark> GGUAAACAGGG <mark>AC-G<mark>GGGAGUUG</mark>UCCUGUUUACC<mark>G-CUCCCG</mark>CUGUCC</mark>	5'ACG <u>GGGAG</u> UUG 3' GCCCUCG	46(±6)	-9.40(±0.07)
980.4	5'GGACAG <mark>AGUA</mark> GGUAAACAGGG <mark>AC-GGGGAGUUG</mark> UCCUGUUUACCGCCUCCCGCUGUCC	5'ACG <u>GGGAG</u> UUG 3' GCCCUCCG	56(±12)	-9.29(±0.12)
980.5	5'GGACAG <mark>AGUA</mark> GGUAAACAGGG <mark>AU-G<mark>GGGAG</mark>UUG</mark> UCCUGUUUACC <mark>G-<u>AUCCC</u>G</mark> CUGUCC	5'AUG <u>GGGAG</u> UUG 3' GCCCUAG	22(±2)	-9.81(±0.05)
980.6	5'GGACAG <mark>AGUA</mark> GGUAAACAGGG <mark>AU-GGGGAGUUG</mark> UCCUGUUUACC <mark>GC-UCCCG</mark> CUGUCC	5'AUG <u>GGGAG</u> UUG 3' GCCCUCG	20(±2)	-9.86(±0.06)
980.7	5'-gGGACAG <mark>AGUA</mark> GGUAAACAGGG <mark>AC-GA<u>GGAG</u>UUG</mark> UCCUGUUUACC <mark>GCAUCCCG</mark> CUGUCC	5'ACGA <u>GGAG</u> UUG 3' GCCCUACG	>20000	N.A.
980.8	5'-gGGACAG <mark>AGUA</mark> GGUAAACAGGG <mark>AC-GGGGAGUUG</mark> UCCUGUUUACC <mark>GCAUCCUG</mark> CUGUCC	5'ACG <u>GGGAG</u> UUG 3' GUCCUACG	>20000	N.A.
980.9	5'-gGGACAG <mark>AGUA</mark> GGUAAACAGGG <mark>AC-GAGGAGUUG</mark> UCCUGUUUACC <mark>GCAUCCUG</mark> CUGUCC	5'ACG <u>AGGAG</u> UUG 3' GUCCUACG	122(±24)	-8.86(±0.11)
980.10	5'-gGGACAG <mark>AGUA</mark> GGUAAACAGGG <mark>AC-C<u>GGGAG</u>UUG</mark> UCCUGUUUACC <mark>GCAUCCCG</mark> CUGUCC	5' ACC <u>GGGAG</u> UUG 3' GCCCUACG	22(±2)	-9.81(±0.05)
980.11	5'-gGGACAG <mark>AGUA</mark> GGUAAACAGGG <mark>AC-G<u>CGGAG</u>UUG</mark> UCCUGUUUACC <mark>GCAUCCGG</mark> CUGUCC	5'ACG <u>CGGAG</u> UUG 3' GGCCUACG	30(±16)	-9.64(±0.30)

980.12	5′-gGGACAG <mark>AGUA</mark> GGUAAACAGGG <mark>AC-G<u>GCGAG</u>UUG</mark> UCCUGUUUACC <mark>GC<u>AUCGC</u>G</mark> CUGUCC	5'ACGGCGAGUUG	790(±298)	-7.82(±0.21)
		3' GCGCUACG		
980.13	5′-gGGACAG <mark>AGCA</mark> GGUAAACAGGG <mark>AC-G<u>GGGAG</u>CUG</mark> UCCUGUUUACC <mark>GC<u>AUCCC</u>G</mark> CUGUCC	5'ACGGGGAGCUG	1086(±54)	-7.64(±0.03)
		3' GCCCUACG		
980.14	5′-gGGACAG <mark>AGUA</mark> GGUAAACAGGG <mark>AC-GGAGAGUUG</mark> UCCUGUUUACC <mark>G-<u>AUCUC</u>G</mark> CUGUCC	5' ACGGAGAGUUG	36(±18)	-9.54(±0.28)
		3' GCUCUAG		
593.1	5′-gGGACAG <mark>AGUA</mark> GGUAAACAGGG <mark>AC-G<u>GGGAG</u>UUG</mark> UCCUGUUUACC <mark>GC<u>AUUCC</u>G</mark> CUGUCC	5'ACGGGGAGUUG	364(±126)	-8.25(±0.19)
		3' GCCUUACG		
4LVV.1	5′-gGGACAG <mark>AGUA</mark> GGUAAACAGGG <mark>AU-G<u>GGUUG</u>UCC</mark> UCCUGUUUACC <mark>GCAAC-C</mark> GCUGUCC	5'AUGGGUUGUCG	2194(±116)	-7.25(±0.03)
		3' GCCAACG		
4LVV.2	5′-gGGACAG <mark>AGUA</mark> GGUAAACAGGG <mark>AU-G<u>GGAAG</u>UCG</mark> UCCUGUUUACC <mark>GCAUC-C</mark> GCUGUCC	5'AUGGGAAGUCG	8822(±988)	-6.48(±0.06)
		3' GCCUACG		
4LVV.3	5′-gGGACAG <mark>AGUA</mark> GGUAAACAGGG <mark>AU-G<u>GGUAG</u>UCG</mark> UCCUGUUUACC <mark>G<u>CAAC-C</u>G</mark> CUGUCC	5'AUGGGUAGUCG	>20000	N.A.
		3' GCCAACG		
4LVV.4	5′-gGGACAG <mark>AGUA</mark> GGUAAACAGGG <mark>AU-GGGAAGUCG</mark> UCCUGUUUACC <mark>GCUUC-C</mark> GCUGUCC	5'AUGGGAAGUCG	20(±2)	-9.86(±0.06)
		3' GCCUUCG		
4LVV_9.1	5'-gGGACAG <mark>AGCA</mark> GGUAAACGG <mark>AU-GGGAUGUCG</mark> UCGUUUACC <mark>GCAUC-CG</mark> CUGUCC	5'AUGGGAUGUCG	494(±62)	-8.08(±0.07)
		3' GCCUACG		
3SUX.1	5'-gGGACAG <mark>AGCA</mark> GGUAAACAGGG <mark>AC-G<u>GGGA</u>GUUG</mark> UCCUGUUUACC <mark>GCAUCUCG</mark> CUGUCC	5'ACGGGGAGUU <mark>G</mark>	13640(±2634)	-6.23(±0.11)
		3' GCUCUACG		
377	5′-gGGACAG <mark>AGUA</mark> GGUAAACAGGG <mark>AU-GGGACGUUG</mark> UCCUGUUUACC <mark>GCGUC-CG</mark> CUGUCC	5'AUGGGACGUUG	Not tested	
		3' GCCUGCG		
525	5′-gGGACAG <mark>AGUA</mark> GGUAAACAGGG <mark>AC-A<u>GGGAG</u>UAG</mark> UCCUGUUUACC <mark>GC<u>AUCCC</u>G</mark> CUGUCC	5'AUGGGACGUUG	Not tested	
		3' GCCCUACG		
642	5′-gGGACAG <mark>AGUA</mark> GGUAAACAGGG <mark>AC-GGAGAGUUG</mark> UCCUGUUUACC <mark>GCAUCUC</mark> GCUGUCC	5'ACG <u>GAGAG</u> UU <mark>G</mark>	Not tested	
		3' GCUCUACG		
116	5′-gGGACAG <mark>AGUA</mark> GGUAAACAGGG <mark>AC-GCAAUGU-G</mark> UCCUGUUUACC <mark>GCAUU-G</mark> GCUGUCC	5'ACGCAAUGUG	Not tested	
		3' GGUUACG		
Heterodimer R+L				
R980	980 5'-gGGACAGAGUAGAAGUUCCGGGGG—AAACUUGGUUCUUCGCAUCCCGCUGUCC			
L980	5'GGGAUAU <u>GGAAG</u> UU <u>CCAGG<mark>AC-GGGGAGUUG</mark>UCUGG</u> UU <u>CUUCC</u> UAAGUCCCU		N.A.	
R980+L980	980 - FA		38(±7)	
R980+L980	+ FA		<1	

Figure S1: Comparison of the secondary structure diagrams of THF riboswitch [pdb_ID: 4LVV], THF tectoRNA homodimer, GAAA/11nt tectoRNA homodimer [according to pdb_ID: 2JYJ] and THF tectoRNA heterodimer. (A) The 3D schematic of the THF riboswitch on the far left is adapted from ref. (2). The distance separating the G:A mediated interactions (indicated by red stars) is 11bps in all structural contexts. The nomenclature for non-canonical base pairs and tertiary interactions are according to references (3,4). In the boxed legend: WC, Watson-Crick edge; HG, Hoogsteen edge; SG, shallow groove edge. (B) 2D diagrams of 3SUX and 980 interactions. The THF interaction might adopt two alternative structures. The conformations on the left and right correspond to the pattern of tertiary contacts observed in the crystallographic structures 3SUX and 4LVV, respectively. Note that 3SUX and 980 differ at only one nucleotide position.

Figure S2: Stereographic images of the 4LVV_9 and 3SUX_11 tectoRNA models. (A) 4LVV tectoRNA dimer shows that a connector stem of 9 bps are preferable to the one of 11 bps for promoting assembly in presence of folinic acid (FA). (B) 3SUX tectoRNA dimer with connector stems of 11 bps, in absence of FA.

Figure S3: Self-assembly properties of THF loop-receptor interactions. (A) Comparison of the stability of long-range pairings in the 4LVV, 3SUX/980 and 441 contexts (4LVV context: U6, C14, del17; 3SUX/980 context: C6, U14, C17; 441 context: U6, U14, del17). Names in blue and black are for natural and artificial loop-receptors, respectively. (B) Mutational network of most loop-receptor variants: point mutations in single stranded regions 1-7, 13-17 and 23 are indicated in red, those in the long-range pairing (8-12; 18-22) are indicated in violet. The number of arrows between two 2D loop-receptor diagrams indicates the number of point mutations between them. Kd values (in nM) are indicated under each diagram in blue. (C) Additional loop-receptors in the U14del structural context (e.g. 019, 367 and 061) or with the mutation G6.1 (894).

Figure S4: Lead(II)-induced cleavage analysis of 4LVV, 980 and 148 tectoRNAs in absence or presence of 200 μ M FA. Typical gels are shown. Cleavage experiments were carried out with 10 mM Pb(II) for 5 min at various concentrations of Mg(OAc)₂ at 20°C as described in the Materials and Methods section. Lead cleavage patterns for: (A) 3SUX, 980 and 148 at 0.05, 0.5 and 2 mM Mg(OAc)₂, (B) 4LVV at 0.5 and 2 mM Mg(OAc)₂, (C) 980 and 148 at 0.5 mM Mg(OAc)₂.

D. <u>Supplemental References</u>

- 1. Ames, T.D., Rodionov, D.A., Weinberg, Z. and Breaker, R.R. (2010) A eubacterial riboswitch class that senses the coenzyme tetrahydrofolate. *Chemistry & biology*, **17**, 681-685.
- 2. Peselis, A. and Serganov, A. (2014) Themes and variations in riboswitch structure and function. *Biochimica et biophysica acta*, **1839**, 908-918.
- 3. Leontis, N.B. and Westhof, E. (2001) Geometric nomenclature and classification of RNA base pairs. *RNA*, 7, 499-512.
- 4. Jaeger, L., Verzemnieks, E.J. and Geary, C. (2009) The UA_handle: a versatile submotif in stable RNA architectures. *Nucleic Acids Res.*, **37**, 215--230.