
Supplementary Information

1 System Size Expansion

Stochastic birth-death processes can be described analytically by a master equation. For our model, with
birth rate λ(w,m) and constant death rate µ, we obtain:

∂Pi,j
∂t

= λ(i− 1, j)(i− 1)Pi−1,j + µ(i+ 1)Pi+1,j

+ λ(i, j − 1)(j − 1)Pi,j−1 + µ(j + 1)Pi,j+1

− (i+ j)
(
λ(i, j) + µ

)
Pi,j (1)

where Pi,j(t) gives the probability of being in state (i, j) = (w,m) (the time dependence is dropped
for convenience). In general, this equation will not be analytically solvable and suitable approximation
methods are required.

In this section, we use van Kampen’s system size expansion (SSE) [1] to approximate the above equa-
tion. First, we derive the leading order solution of the expansion, known as the linear noise approximation
(LNA). As we will see, the LNA provides useful insights and can accurately describe the dynamics of our
system for short time-scales. However, for longer time-scales higher order terms are required to maintain
accuracy.

Generally, a master equation can be written in the form

ṗ~n(t) = Ω

R∑
j=1

(
N∏
i=1

E−Sij − 1

)
fj(~n,Ω)p~n(t) (2)

where Ω is the system volume, R is the number of reactions involved, N is the number of species, (S)ij
is the stoichiometry matrix, ~n = (n1, n2, · · · , nN ) gives the number of particles of each species, E is a
raising and lowering operator (its effect on an arbitrary function f(~n) is given by e.g. Eif(~n) = f(~n+ ei)
and E−1

i f(~n) = f(~n− ei) where ei is a column vector with all zeros and a 1 at entry i), and p~n(t) is the
probability distribution of states ~n at time t. The equations fj(~n,Ω) specify the reaction rates. The SSE
provides an expansion of this master equation in powers of the inverse square root of the system volume
Ω.

The expansion starts by expressing the state of the system in terms of a deterministic and stochastic
component. Consider a single species whose concentration and copy number are denoted by φ(t) and n,
respectively. One expects the distribution of n to be centered around Ωφ(t) and to have a width of order√
n ∝
√

Ω. This motivates the following equation

ni = Ωφi(t) + Ω1/2ξi (3)

where ξi describe the fluctuations around the deterministic solution φi(t). All terms in the master equation
can now be expressed in the new fluctuation variables ξi according to the following transformations:

p~n(t) = Π(~ξ, t)

Ei → 1 + Ω−1/2 ∂

∂ξi
+

1

2
Ω−1 ∂

2

∂ξ2
i

+ · · ·

ṗ~n =
∂Π(~ξ, t)

∂t
− Ω1/2

N∑
i=1

∂φi
∂t

∂Π(~ξ, t)

∂ξi
(chain rule)

f(
ni
Ω

) = f(φi + Ω−1/2ξi). (4)

Substituting Eqs. (4) into Eq. (2) gives

∂Π(~ξ, t)

∂t
− Ω1/2

N∑
i=1

dφi
dt

∂Π(~ξ, t)

∂ξi
= Ω

R∑
j=1

[
− Ω−1/2

N∑
i=1

Sij
∂

∂ξi
+

1

2
Ω−1

∑
i,k

SijSkj
∂2

∂ξi∂ξk

+O(Ω−3/2)

]

×

[
fj(~φ) + Ω−1/2

∑
i

∂fj(~φ)

∂φi
ξi +O(Ω−1)

]
Π(~ξ, t) (5)
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which can be solved by collecting powers of Ω−1/2. Terms proportional to Ω1/2 form the macroscopic
rate equations. The terms of order Ω0 form a Fokker-Planck equation, the solution of which is the LNA:

∂Π(~ξ, t)

∂t
= −

2∑
i,j=1

Aij
∂(ξjΠ(~ξ, t))

∂ξi
+

1

2

2∑
i,j=1

Bij
∂2Π(~ξ, t)

∂ξi∂ξj
(6)

The coefficients Aij and Bij can be found by expanding Eq. (5) and are defined as

Aij =

R∑
k=1

Sik
∂fk
∂φj

Bij =

R∑
k=1

SikSjkfk (7)

The system we consider has two species (N = 2), four rate equations (R = 4) given by

f1 = wλ(w,m)

f2 = mλ(w,m)

f3 = wµ

f4 = mµ, (8)

and a stoichiometry matrix by

S =

(
1 0 −1 0
0 1 0 −1

)
(9)

where the two rows refer to the wildtype and mutant species, respectively, and the columns represent the
reactions fi.

In order to continue, it is useful to rewrite Eq. (5) as an expansion in derivatives with respect to
~ξ, namely ∂tΠ =

∑
i

(
− ∂
∂ξi
Ai + 1

2!
∂2

∂ξ2i
Bi − 1

3!
∂3

∂ξ3i
Ci + · · ·

)
where Ai, Bi, . . . are functions of ~ξ, Ω and ~f .

Evolution equations for the moments 〈ξiξj . . . 〉 can be obtained by multiplying this equation by ξiξj . . .

and integrating over all ~ξ. Using integration by parts, the following set of coupled ODEs can be obtained
for our N = 2 system:

dt〈ξ2
1〉 = 2A11〈ξ2

1〉+ 2A12〈ξ1ξ2〉+B11

dt〈ξ2
2〉 = 2A22〈ξ2

2〉+ 2A21〈ξ1ξ2〉+B22

dt〈ξ1ξ2〉 = (A11 +A22)〈ξ1ξ2〉+A12〈ξ2
2〉+A21〈ξ2

1〉+B12 (10)

which can be solved to give

〈ξ2
1〉 =

µw2
ss

(∂mλmss + ∂wλwss)3

(
2mss(1 +

mss

wss
)(∂mλ)2(∂mλmss + ∂wλwss)t

− 4(∂mλ)(∂wλ)mss − (∂wλ)2wss + 3(∂mλ)2mss

+ 4e(∂mλmss+∂wλwss)t
{
∂mλ∂wλmss − (∂mλ)2mss

}
+ e2(∂mλmss+∂wλwss)t

{
(∂wλ)2wss + (∂mλ)2mss

})
(11)

〈ξ2
2〉 =

µm2
ss

(∂mλmss + ∂wλwss)3

(
2wss(1 +

wss
mss

)(∂wλ)2(∂mλmss + ∂wλwss)t

− 4(∂mλ)(∂wλ)wss − (∂mλ)2mss + 3(∂wλ)2wss

+ 4e(∂mλmss+∂wλwss)t
{
∂mλ∂wλwss − (∂wλ)2wss

}
+ e2(∂mλmss+∂wλwss)t

{
(∂wλ)2wss + (∂mλ)2mss

})
(12)

〈ξ1ξ2〉 =
µwssmss

(∂mλmss + ∂wλwss)3

(
− 2(wss +mss)(∂mλ)(∂wλ)(∂mλmss + ∂wλwss)t

+ (∂wλ)2wss + (∂mλ)2mss − 2(∂wλ)(∂mλ)(wss +mss)

+ 2e(∂mλmss+∂wλwss)t
{

(∂mλ)(∂wλ)(wss +mss)− (∂wλ)2wss − (∂mλ)2mss

}
+ e2(∂mλmss+∂wλwss)t

{
(∂wλ)2wss + (∂mλ)2mss

})
(13)
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where 〈ξ2
1〉, 〈ξ2

2〉 and 〈ξ1ξ2〉 denote the wildtype and mutant variance and covariance, respectively. We
used initial conditions with zero variance, assuming all cells start in exactly the same state. This case
is the most general instance of our model. Under a linear noise approximation and for uncoupled cells,
the behaviour of an arbitrary initial distribution of heteroplasmies can then be recovered by taking an
appropriately weighted sum of the individual results for specific heteroplasmies starting at zero variance.
Mutant and wildtype copy numbers are initialized at their steady state values. The means of w and m
are calculated from the macroscopic rate equations at order Ω1/2 and are identical to the deterministic
means. The intermediate-time forms of these expressions (when the exponentially decaying terms have
died out) are given in Table 1 in the main text.

Heteroplasmy variance can be derived using a Taylor expansion which, keeping only the leading order,
gives: var(h) ≈ ( ∂h∂w )2σ2

w + ( ∂h∂m )2σ2
m + 2( ∂h∂w )( ∂h∂m )cov(w,m) = 1

(w+m)4 (m2σ2
w +w2σ2

m− 2wm cov(w,m)).

λ(w) λ(m) λ(w,m) (including λ(w +m))

σ2
w(t) µ

∂wλ

(
e2wss∂wλt − 1

)
2 wss
mss

µ(wss +mss)t+ · · · 2µmsswss(wss+mss)

(mss∂mλ+wss∂wλ)
2 (∂mλ)2 t+ · · ·

σ2
m(t) 2mss

wss
µ(wss +mss)t+ · · · µ

∂mλ

(
e2mss∂mλt − 1

)
2µmsswss(wss+mss)

(mss∂mλ+wss∂wλ)
2 (∂wλ)2 t+ · · ·

σ2
h(t) 2msswssµ

(mss+wss)3
t

Table 1: Analytical expressions for the means and variances according to the linear noise approximation.
Solutions are shown for wildtype, mutant, and heteroplasmy variances for various types of control. Dots indicate constant
or exponentially decaying terms; full solutions are provided in Eqs. (11) - (13). Note that the initial rate of increase of
heteroplasmy variance only depends on mtDNA copy number and turnover (see also [2]).

2 Feedback control of a heteroplasmic mtDNA population

2.1 Steady states of a linear feedback control

When mutant and wildtype mtDNA molecules have identical replication (λm = λw) and degradation
(µm = µw) rates, infinitely many steady states exist (i.e. states in which λ = µ). These steady states
form lines in (w,m) space which can be straight (linear feedback control, Fig 1A), form segments of
ellipses (quadratic feedback control) or take more complicated forms. Deterministic trajectories will
asymptotically approach the steady state line while stochastic trajectories can fluctuate along the line
thereby changing heteroplasmy. Similar lines of steady states are present in the relaxed replication model
[3, 4].

A linear feedback control λ(w,m) = c0 − c1(w + δm) (with c0, c1 > 0 constants) gives rise to a
straight line of steady states, the slope of which is determined by δ. A small δ means that the steady
state line intersects the mutant axis at higher copy number than the wildtype axis, meaning that total
copy numbers are higher at h = 1 than at h = 0. In the extreme case of δ = 0, mutant copy numbers
can fluctuate off to infinity, though in practice their numbers will be bounded by space restrictions and
resource competition. When δ > 1 copy numbers will decrease as h increases; mutants are now sensed
more than wildtypes, which could be caused by e.g. excessive production of reactive oxygen species by
mutants (which is then sensed by the cell and incorporated in its feedback function).

Fig. 1 in the main text shows the near-equivalence of mean wildtype, mutant, and heteroplasmy
dynamics between three different forms of control, all of the form λ(w,m) = λ(w+δm): i) c0−c1(w+δm),
ii) d0 + d1/(w + δm) and iii) s0 − s1(w + δm)2 with c0, c1, d0, d1, s0, s1 > 0. Fig. 1B, C, D shows that
variance dynamics are also nearly identical.

We merely show that these different controls can give rise to similar dynamics by parameterising them
such that they do. First, we set the variances of each control to be equal in the absence of mutants. From
Table 1 it can be seen that the wildtype variance is now completely specified by the mtDNA degradation
rate µ, the steady state copy number wss and the control derivative ∂wλ(w) evaluated at steady state.
The latter quantity is given by i) −c1, ii) −d1/w

2
ss and iii) −2s1wss for the three controls defined above.

These expressions were all set to be −7.21× 10−6, a value that was chosen such that the wildtype steady
state distribution has a coefficient of variation of CV = 0.1. This value is arbitrary, other choices of give
similar results. We use a deterministic wildtype steady state of 1000 (in the absence of mutants), which
fixes the other control parameters. Note that it is not surprising that these different controls yield similar
dynamics after we have parameterised them to do so; we want to illustrate these similarities to stress
that which quantity is being controlled can be more important than how it is controlled.
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Figure 1: A linear feedback control has straight steady state lines. The deterministic steady state lines of the
feedback control given in Eq. (4) in the main text, using our linear version of λ(w,m), are shown in (w,m) space for
various values of δ (grey lines show particular examples of ranges of δ). Constant heteroplasmy lines form straight lines
through the origin. B, C, D) Equal variances for different feedback control mechanisms. Three different controls
(see legend), all of the form λ(w + δm) with δ = 0.5, show nearly identical wildtype, mutant and heteroplasmy variances.
Other parameters used are Nss = 1000 (referring to the steady state copy number present in the absence of mutants),
µ = 0.07 (corresponding to a half-life of 10 days), and initial copy numbers (w0,m0) = (920, 160) (corresponding to an
initial heteroplasmy of ∼ 0.15).

2.2 Homogenate heteroplasmy values

As mentioned in the main text, without explicit selection for either mtDNA species, mean cellular het-
eroplasmy remains constant at its original value, i.e. m0

m0+w0
where w0 and m0 denote the initial wildtype

and mutant copy numbers, respectively. For long times, the fraction of cells that fixate on mutant species
(i.e. h = 1) is given by m0/(w0 +m0) and these cells have mean copy number wopt/δ, whereas wildtype
cells have mean copy number wopt. We can now calculate the homogenate heteroplasmy at long times
(i.e. times at which all cells have fixated) as

〈h〉homog, t→∞ =
m0

m0 + δw0
. (14)

We note that Eq. 14 only holds when δ > 0.

3 The relationship between resource consumption and energy
production: s(ri)

3.1 A linear output model

In our cost function we need to specify how s, the power supply measured in ATP/s (including leak) of a
mitochondrion, depends on ri, a quantity resembling the resource consumption rate of a mitochondrion
or type i (w or m). For robustness, we use two different equations for s(ri) .

The first model is based on measurements in isolated mitochondria which found a linear relationship
between ri and s (e.g. [5, 6, 7]), with ri referring to oxygen consumption rate. Specifically, we use the
following equation:

s(rw) = φ(rw − β) (15)

where φ can be mapped to the effective P/O ratio (explained in section 4.1) and β indicates the respiration
rate at zero energy production and therefore specifies the amount of leak. We used the data from Ref.
[5] to fit the parameters of this linear model (Table 2, section 4.1), the result of which is shown in Fig 2A
in section 5.
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It is not clear, however, whether the observations made in isolated mitochondria, without any inter-
actions between the mitochondria and the nucleus or the endoplasmic reticulum, still hold in vivo. This
is one of the reasons to also consider another type of model, as described below.

3.2 A saturating output model

Our cost function contains a term which penalises the consumption of resources, meaning that the cheap-
est state is the one that satisfies demand with the smallest net resource consumption rate. A linear
function s(ri) then implies that, for a given demand, the optimal number of mitochondria is the mini-
mum number required to satisfy the demand with these mitochondria respiring as fast as they can (as
can be seen in Fig 2E). However, containing a minimally required number of mitochondria will make a
cell less robust to stochastic fluctuations in both mitochondrial copy numbers and demand. Moreover,
mitochondria are known to have large spare capacities [8, 9] indicating that in resting state they do not
operate near their limits. We therefore expect that there is some extra cellular cost associated with this
‘maximally respiring’ state, causing it to be non-optimal in resting conditions.

This is why we have chosen to use a second model which describes a saturating relationship between
ri and s (visualised in Fig 2A). Note that we do not claim that mitochondria become less efficient as they
respire faster, we impose the saturating shape merely to effectively assign a higher cost to high respiring
states. By imposing this saturation, the variable on the y-axis of Fig 2A can be interpreted an ‘effective
energy production’. We will refer to the two models as ‘the linear output model’ and ‘the saturating
output model’.

A changing energy production efficiency is not entirely unreasonable, though, because in experiments
with isolated mitochondria one usually uses a particular substrate (or a particular combination of sub-
strates) whereas a larger mixture of substrates will be available in the cell, and the relative presence of
each substrate may fluctuate over time. The efficiency of respiration depends on the kind of substrate
that is used, so it may be possible that at high demand (and high respiration) the substrate of first choice
has become limited and another less efficient substrate is used instead. Also, it was suggested that spare
capacity can be caused by an increase in substrate entrance in the tricarboxylic acid (TCA) cycle [10].
This would mean that a state of high respiration is caused by an increase in electron transport chain
substrates (e.g. NADH and FADH2). A ‘push’ to the proton pumping complexes instead of a ‘pull’ at
the ATP synthase would lead to an increase in the electrochemical gradient across the membrane and
therefore an increase in leak. These arguments are speculative but show that the saturation model may
not be unreasonable.

The saturating model is defined by the equation:

s(rw) = 2
smax

1 + e−krw
− (1 + ∆)smax

s(rw) = 2
smax

1 + e−krw
− 1.1smax (16)

where k is the rate at which the model saturates, smax is an indication of the maximum energy production
rate, and ∆ > 0 is introduced to ensure that, like in the linear model, a nonzero amount of resource is
required to maintain a zero energy output (due to proton leak). As proton leak accounts for ∼ 10% of
the total energy production in the linear model, we chose ∆ = 0.1. We will set the parameter values k
and smax such that the saturating and linear model show similar behaviour for low values of rw (section
4.5), as shown in Fig 2A of section 5.

4 Parameter values for the cost function

Some of our results will be a consequence of the exact structure of our cost function, and might have been
different if another type of cost function was used. We would argue, however, that the main elements
in our cost function are quite general: terms involving supply, demand, and resource. We aimed at
making our cost function simple, and using biologically interpretable parameters. We do not aim to give
a detailed kinetic description of the energetic costs involved, but present a simpler description that allows
us to compare distinct strategies relative to each other rather than providing absolute costs. We use our
cost function as a tool to characterise cost landscapes and begin to explore optimal control strategies.

In the spirit of ‘back-of-the-envelope’ reasoning in biology [11] we seek plausible and interpretable pa-
rameter estimates, using both order-of-magnitude estimations and values found in the literature. Default
parameter values are summarised in Table 2.

The final goal is to obtain a cost for a state with a certain number of mtDNA molecules; we therefore
need to express our cost as a cost ‘per mtDNA molecule’. Because the density of mtDNA molecules
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within the mitochondrial network seems to be roughly constant [12], we assume every mtDNA molecule
is associated to a particular amount of mitochondrial volume which we here define as a ‘mitochondrial
unit’. All our parameters refer to these mitochondrial units.

4.1 Mitochondrial energy production and leak: φ and β

Mitochondrial respiration is a process by which energy from nutrients is converted into (amongst others)
ATP. Part of this process involves the pumping of protons across the inner mitochondrial membrane to
create an electrochemical potential across the membrane. Energy is released when protons flow back into
the matrix and this energy can be used to create ATP. However, the coupling between proton pumping
and ATP synthesis is not perfect and protons can leak through the membrane, reducing the efficiency
of respiration. An often measured quantity in experimental studies is the mechanistic P/O ratio [13, 14]
which refers to the theoretical maximum amount of ATP (P) produced per oxygen (O) reduced by the
respiratory chain. The effective P/O ratio is more physiologically relevant and takes into account leak
[7].

In our linear model we assume a linear relationship between mitochondrial ATP production rate and
mitochondrial oxygen consumption rate, based on experimental data [5, 7, 6]. In Refs. [5, 6] measurements
show an almost perfect linear relationship between these two quantities, which is consistent with data
from Ref. [7]. The parameters φ and β correspond to the slope and intercept of the linear function,
respectively. In Ref. [5] this slope was measured to be 2.03 ± 0.13 for isolated pectoralis muscle cell
mitochondria in the presence of pyruvate and malate; we have decided to use φ = 2, mainly based on
these experiments.

The value of β is an indication of the ‘leakiness’ of the mitochondrion: it represents the rate of oxygen
consumption that is required to balance the leakage of protons across the membrane in order to maintain
the mitochondrial membrane potential. To obtain a consistent value for β we also use the data presented
in Ref. [5]. Their measurements find that β is about a tenth of the maximum respiration rate. This
maximum respiration rate is obtained by adding high (unlimited) concentrations of ADP; the state of
the cell in these conditions is known as state 3ADP. Because state 3ADP does not necessarily correspond
to in vivo conditions, we define the respiration rate in this state as rmax,t: the maximum ‘theoretical’
respiration rate. We will fix rmax,t = 1 and use this to scale our other parameters. This means that our
parameter value for β is β = 0.1.

We stress that though we have based our parameter values here on a specific study, changes in their
values will not affect the qualitative structure of our cost function but merely changes the slope and
intercept of the linear output function defined in Eq. (15).

4.2 Resource and supply and maintenance cost: rmax, rn and sn

A cell in vivo is unlikely to experience the high concentrations of ADP present in state 3ADP (defined
above). We therefore set our parameter rmax, the physiological maximum respiration rate, to be slightly
below rmax,t, i.e. rmax = 0.95 · rmax,t = 0.95.

We introduce rn and sn as the ‘normal’ respiration rate and ATP production rate which are present
in resting conditions, respectively. Their values are not used directly in our model equations, but only
to connect our parameter estimates to actual physiological values (section 4.8). Mitochondria have spare
capacity, i.e. in normal unstressed conditions they use only part of their maximal oxygen consumption
rate (OCR). The amount of spare capacity is usually measured as the fold-change in OCR that occurs
after adding FCCP to cells, a mitochondrial uncoupler. Several measurements of the fold-change in OCR
are: in the range (2-4)-fold [15], 1.4- to 2.5-fold [10], about 2-fold [8] and about 2.5-fold [9]. The maximum
respiration rate when adding FCCP is known as State 3FCCP, and is higher than State 3ADP (see e.g.
[16]). We interpret the spare capacity as the ratio State 3FCCP/rn, meaning that the ratio rmax/rn is
lower than this. We have decided to take rmax/rn = 1.5, meaning that rn = rmax/1.5 ≈ 0.63. For the
linear output model, the value of sn is now simply sn = s(rn) ≈ 1.1 (this abstract value is related to
actual values in ATP/s in section 4.8).

4.3 Maintaining, building and degrading: ρ1, ρ2 and ρ3

The model organism with the most quantitative data on mitochondrial energy budgets is budding yeast,
Saccharomyces cerevisiae. Reasoning that the scales of biophysical costs of mitochondria are likely com-
parable across eukaryotes, we first draw from this literature to motivate order-of-magnitude estimates
for a range of essential mitochondrial processes. We will later construct parallel estimates using other
organisms.
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We first focus on estimating the mitochondrial building cost ρ2 (in ATP). We provide three distinct
estimations and combine them to obtain our final estimate.

For the first estimation we use a list of mitochondrial proteins in yeast [17], and obtain information
on turnover rates, abundance (per yeast cell), and lengths (amino acid length) of these proteins by using
the Saccharomyces Genome Database [18]. We end up with a list of ∼ 200 mitochondrial proteins in
yeast S. cerevisiae. We incorporate the observation that it takes about 5.2 ATP molecules to elongate
a growing peptide chain by adding an amino acid [19], which means that the total synthesis cost of the
mitochondrial proteins included in our list is given by 5.2

∑
i lengthiabundancei ≈ 2 × 1010 ATP per

yeast cell. The known number of mitochondrial proteins in S. cerevisiae is on the order of 1000 [20];
we will therefore assume that the protein synthesis cost obtained from our protein list corresponds to
roughly a fifth of the total mitochondrial protein synthesis cost. We might expect that the proteins best
known [17] are the more abundant ones, meaning that our final cost is likely to be an overestimate. We
also assume that all of the mitochondrially associated proteins are used exclusively for mitochondrial
function. In E. coli, the mitochondrial protein synthesis cost represents ∼50% of the total mitochondrial
synthesis cost (two other major contributors are phospholipid synthesis and RNA synthesis)[19]; we will
make the assumption that this observation in E. coli holds in mitochondria as well. This brings the
total mitochondrial building cost in a single yeast cell to be ∼ 1.9× 1011 ATP. Assuming 50-100 mtDNA
molecules per yeast S. cerevisiae cell [21], the building cost associated with a single mtDNA molecule
(and therefore the building cost of a mitochondrial unit) is given by (2− 4)× 109 ATP.

For our second estimation we use the total protein weight of a single mitochondrion which was mea-
sured to be about 3× 10−10 mg in rat liver [22], as well as the typical weight of a single protein which is
about 5×10−17 mg [19]. This means that a mitochondrion contains about 6×106 proteins. Using that the
typical length of a protein is 300 amino acids [23, 24, 19] together with the 5.2 ATP cost of adding amino
acids and the estimation that protein costs represent 50% of the entire building cost, the mitochondrial
building cost is estimated to be 2 × 1010 ATP. Note that this cost does not necessarily represent our
mitochondrial unit because it is unknown how many mtDNAs a ‘mitochondrion’ corresponded to when
measuring its weight in Ref. [22].

The third estimation is based on the building cost of an E. coli, which is about 1010 ATP [19]. Keeping
in mind that we want the building cost of a fraction of mitochondrial volume corresponding to a single
mtDNA molecule, we need to convert the building cost of an E. coli (which has a volume of about 1
µm3) to represent our mitochondrial unit. It was estimated that the total mitochondrial network length
in yeast S. cerevisiae is about 25 µm with a total mtDNA copy number of 50-100 [21]. Assuming that the
mitochondria form tubules with a constant diameter of 300 nm [25] gives a total mitochondrial volume
of about 1.8 µm3; another total mitochondrial volume estimate in yeast S. cerevisiae is 1.5 µm3 [25].
Uniform distributions for the mitochondrial volume (1.5-1.8 µm3) and mtDNA copy numbers (50-100)
leads to a volume of (2.3 ± 0.5) × 10−2µm3 per mitochondrial unit. This means that rescaling the E.
coli building cost gives us an estimate of (2.3 ± 0.5) × 10−2 · 1010 = (2.3 ± 0.5) × 108 ATP to build a
single mitochondrial unit. Note that this may represent an overestimation because E. coli is a unicellular
organism, whereas the mitochondrion is an organelle which cannot survive in isolation [26].

While there are differences in these estimates, arising both from uncertainty and different quantitative
lines of reasoning, they together give an overall scale for mitochondrial building cost of around 109 ATP.
Because in our model we only need a rough estimate of the mitochondrial building cost, we use ρ2 = 109

ATP.
We interpret the maintenance cost, denoted by ρ1, as the cost in molecules ATP/s corresponding to, for

example, maintaining the mitochondrial lipid membranes, importing/exporting proteins, and synthesizing
new proteins. To obtain an estimation of ρ1, we again use the Saccharomyces Genome Database [18]. We
can calculate the cost of continuously turning over the ∼ 200 proteins in our list (obtained from [17]),
leading to 5.2

∑
i lengthiabundancei(degradation rate)i ≈ 6× 105 ATP/s per yeast cell. In other words,

the maintenance cost per second of our set of mitochondrial proteins is about five orders of magnitude
less than their synthesis cost. We therefore assume ρ1 = 10−5ρ2.

The mitochondrial degradation cost ρ3 is the most challenging parameter to estimate, as the process
of mitochondrial degradation remains poorly characterised. Protein production and biosynthesis costs
form the bulk of mitochondrial production requirements, and from cell-wide studies on energy budgets
are among the most considerable demands in cell biology. We therefore assume that degradation has
lower energy requirements than production, and set its upper limit at ρ3 = 0.1 · ρ2. Lowering ρ3 further
has little impact on the outcomes of our model.

4.4 Demand and resource availability: D and R

We want to model two kinds of cells: low copy number cells (1000 wildtype mtDNAs in resting state)
and high copy number cells (5000 wildtype mtDNAs in resting state). Denoting this desired number of
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‘normal’ mitochondria by wn (which are assumed to operate at the ‘normal’ production rate sn (section
4.2)), we obtain

D = wn(sn − ρ1 − µρ3 − λρ2) (17)

where µ and λ are the degradation and replication rates per second. This equation states that the overall
net output of wn mitochondria exactly satisfies demand. Using wn = 1000 and wn = 5000 leads to
D ≈ 1055 and D ≈ 5275 ATP/s. These abstract values for demand are mapped to actual cellular ATP
demands in section 4.8.

The parameter R denotes the maximum rate at which resource can be consumed by all of the mito-
chondria together and represents a cellular resource availability. In normal resting state the total resource
that is consumed is wnrn, and the resource consumed when these mitochondria respire as fast as they
can is wnrmax. We then assume this maximal respiration rate is achieved by using all of the available
resources, i.e. R ≈ wnrmax. It may be, however, that a state of maximum respiration can only be
maintained for a short time, and in our cost function we want to describe the ‘steady state cost’ for
different states. We therefore use R < wnrmax (R now denotes the maximal respiration rate that can
be maintained for longer periods of time). We chose to use R = 0.8wnrmax leading to R = 760 and
R = 3800 for wn = 1000 and wn = 5000, respectively.

4.5 Saturating model parameters: smax and k

We set the parameters of the saturating model described in Eq. (16) such that it matches the linear
model for low respiration. This lead to k = 3.0 and smax = 1.54.

4.6 The cost of resource consumption α

The value of α, i.e. the scaling parameter that appears in the cost function given by

C(w,m) = |D − S(w,m)|+ α(wrw +mrm) (18)

is hard to determine. Its value describes the cost of a unit of resource consumption relative to the cost
of a unit of ‘energy deficiency’ (the cost of S(w,m) being one energy-unit below D). We estimated that
a penalty for resource consumption usage should be about an order-of-magnitude less than the penalty
for not-satisfying demand, and have therefore decided to assume α = 0.1. We note that the value of α
has no influence on the shape of the demand-satisfying region, it only changes the relative costs within
(and outside of) the region.

4.7 Mutant parameters: ε1, ε2

In the main text we vary the parameter ε1, describing the resource uptake rate of mutants relative to
wildtypes. Additionaly, mutants can be less efficient than wildtypes, producing less energy per resource
consumed; we denote this lower mutant efficiency by ε2 ∈ [0, 1]. Because the number of protons that are
pumped across the mitochondrial inner membrane by the electron transport chain complexes for every
unit of resource (NADH) that is consumed is fixed, a lower ε2 would have to mean that either i) the
mutation has increased proton leak (or other ways of depolarising the membrane), or ii) the mutation has
made the ATP synthase dysfunctional. The value of ε2 can be related to the P/O ratio of the mutants
relative to that of the wildtypes. Most mtDNA mutations, however, affect the electron transport chain
complexes themselves and are therefore likely to reduce the flow of resources through the chain (which
would mean a low value for ε1). This is why we assume ε2 = 1 in our main model and only vary the
parameter 0 < ε1 < 1. For completion, here in the SI we provide a heatmap showing the cost in (w,m)
space for various values of ε2 (Fig 3).

4.8 Parameter units

We can relate our parameter values to actual values, e.g. expressing our demand D in ATP/s. As
an example of an ATP demand we use the ATP production rate in unstressed human skin fibroblasts.
Assuming that these healthy cells satisfy their demand, their net ATP production rate should equal their
ATP demand. The rate of ATP production in skin fibroblasts was estimated to be about 109 ATP/s,
the large majority of which is supplied by mitochondria [27]. The number of mtDNAs in healthy human
skin fibroblasts was measured to be roughly in the range 2400-5200 [28] (the variation in copy number
was partly due to variation in ages of the individuals), and we will use the value 4000 as an estimation.
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Using wn = 4000 we obtain

109 = 4000(sn − ρ1 − λρ2 − µρ3)

≈ 4000(sn − ρ2(10−5 + λ+ 0.1µ)

≈ 4000
(
sn − 109

[
10−5 + 0.07/(24 · 3600) + 0.1 · 0.07/(24 · 3600)

])
(19)

Here we used an mtDNA half-life (T1/2) of 10 days, giving a degradation rate ln(2)/10 ≈ 0.07 day−1, and
assumed that the cells are in steady state with λ = µ. This leads to sn ≈ 2.6× 105 ATP/s meaning that,
considering we used sn ≈ 1.1, our parameters sn, D are expressed in units of about 2.6 × 105 ATP/s.
This means that, in our units, the parameter values we use for ρ1, ρ2 and ρ3 are ρ1 ≈ 0.04, ρ2 ≈ 3828,
and ρ3 ≈ 383.

Par. Description Default value

D Mitochondrial energy demand in ATP/s. The default values given are in units of 2.6×105

ATP/s, as explained in section 4.8. We introduce two values of D, one for high and one
for low copy number cells.

5110.7 (high)
1022.1 (low)

R Maximum rate of resource supplied by the cell per second to be used by the mitochondria.
We use the term ‘resource’ as an amalgamation of different mitochondrial resources, e.g.
NAD(H), pyruvate, lactate, succinate, ADP, Pi, and oxygen. Two different values for R
are used, corresponding to high and low copy number cells.

3800 (high)
760 (low)

φ φ is related to the effective P/O ratio of a wildtype mtDNA molecule, it represents the
slope of the linear relationship between rw and s given in Eq. (15).

2.0

β β denotes the resource consumption rate (in ‘resource’ per second) at zero energy pro-
duction, and is therefore a measure of proton leak. Because we fix the maximum resource
consumption rate to be 1 (section 4.1), β provides the fraction of resource consumption
that is destined for ‘futile’ leakage.

0.1

k Parameter describing the saturation of the saturating model. 3
smax An indication of the aximum energy supplied by a wildtype mtDNA molecule in the

linear model in ATP/s.
1.54

rmax Maximum rate of resource uptake by an mtDNA molecule (i.e. by a mitochondrion
containing the mtDNA molecule). This can be interpreted as the maximum flow through
the respiratory chain.

0.95

ρ1 The mitochondrial maintenance cost in units of 2.6× 105 ATP/s. 0.04
ρ2 The mitochondrial building cost in units of 2.6× 105 ATP. 3828
ρ3 The mitochondrial degradation cost in units of 2.6× 105 ATP. 383
ε1 The mutant energy production efficiency (the energy produced per unit of resource con-

sumed) relative to that of wildtype mtDNA molecules. A low value of ε1 can be caused
by a high proton leak or a deficient ATP synthase.

free parameter ε1 ∈
[0, 1]

ε2 The mutant resource uptake rate relative to that of wildtype mtDNA molecules. We
will mainly use ε1 = 1 and ε2 < 1 because mtDNA mutations usually affect the proton
pumping electron transport chain complexes. A defect in e.g. complex I will reduce its
activity and therefore also the rate of consumption of NADH.

free parameter ε2 ∈
[0, 1]

α Scaling parameter in the cost function in front of resource consumption term. 0.1
wopt The cheapest value for w when m = 0, using all of the above parameter values. We have

four values for wopt, corresponding to the linear and saturating output models at low
and high copy number.

1524 (sat. low)
7616 (sat. high)
638 (lin. low)
3129 (lin. high)

Table 2: Parameters used in our mitochondrial cost function with their descriptions. Param-
eter values are derived and motivated in section 4. In this table, ‘high’ and ‘low’ refer to high and low
copy numbers, respectively, and the abbreviations ‘sat.’ and ‘lin.’ are used to indicate our saturating
and linear output models.

5 Cost function outputs

5.1 Output visualisations

Fig 2A shows the behaviour of Eqs. (15) - (16) for various parameter values. Note that none of the lines
in the figure crosses the origin, because even when no ATP is created, respiration is required to maintain
the gradient which would otherwise be lost due to proton leak. Fig 2B-E shows how resource consumption
rate and cost change as the number of mtDNAs changes. Three regimes can be distinguished: 1) there
are too few mitochondria present to satisfy demand and they use their maximum possible resource uptake
to get their energy production rate as close to D as possible; 2) demand can be satisfied and the cost
now only depends on the amount of resource that is used; 3) resource has become limiting and demand
cannot be satisfied any more. The main difference between the two models is that in the linear model,
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when demand is satisfied, the cheapest state is the one with the smallest mtDNA copy number possible
whereas the saturating model is cheapest at a higher copy number. This is because mitochondria in the
saturating model becomes more efficient as less resources are being consumed per mitochondrion.

Figs 3A,B show the cost function as a heatmap in (w,m) space. This figure is similar to Fig 2 in the
main text except that here we have fixed ε1 = 1 and varied ε2. Mutants are now less tolerated because
they consume just as many resources as wildtypes, but still produce less output. It is now not the
case that intermediate heteroplasmies are less efficient; intermediate heteroplasmies are only less efficient
when ε1 < 1 (mutants consume less resource) and when a saturating output model (Fig 2) is used. When
ε1, ε2 < 1, it is possible for intermediate heteroplasmies to be less efficient but the smaller the value
of ε2, the smaller the range of values of ε1 for which this is true; therefore, the effect of intermediate
heteroplasmies being less efficient will be most easily observed when the mutant efficiency is close to that
of the wildtypes.

Figure 2: Relationship between resource consumption and energy output. A) The energy production rate of a
single wildtype mitochondrion as a function of its resource consumption rate is shown, as given by Eqs. (15) and (16). For
the linear model (corresponding to the straight lines) the parameters φ and β are changed by 10%, for the saturating model
we vary smax and k. The magenta line indicates rmax. B) As w increases, demand is shared between more mitochondria
and each individual one can afford to consume resources at a lower rate (the same figure legend applies for figures C, D and
E). C) The total resource consumption increases with w because the mitochondria need to consume a non-zero amount of
resources to produce a net energy output and each mitochondrion comes with a maintenance cost. D) The total energy
produced by wildtypes increases when mutants are present. E) When demand is satisfied, the cost increases with w in the
linear model, resulting in minimal costs when copy numbers attain the minimum number required to satisfy demand (1). In
contrast, for the saturating model the cost decreases at first because as individual resource consumption drops, the energy
production efficiency increases. Minimum cost now occurs when mitochondria are working most efficiently (2). Parameters
ε1 = 0.1 and ε2 = 1.0 were used.
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Figure 3: Changing mutant efficiency (ε2) does not lead to expensive intermediate heteroplasmies. A), B)
Similar to Fig 2 in the main text, these figures show the cost values in (w,m) space, but now as a function of ε2 (mutant
efficiency) instead of ε1. This time we show the cost in the entire space. The white lines show the region in which demand
is satisfied for our default parameter values. Because mutants consume the same amount of resource as wildtypes (ε1 = 1),
resource becomes limiting at relatively low values of m compared to when ε1 < 1. Note that intermediate heteroplasmies
are not less efficient here.

5.2 Expensive intermediate heteroplasmies - explanation and robustness

Here we attempt to provide an explanation for why, in certain cases, intermediate heteroplasmy values are
more expensive than high or low values. In these cases, in high heteroplasmy regions it is more efficient
to increase heteroplasmy even more, whereas in low h conditions it is more efficient to decrease h; this
automatically implies there exists some intermediate heteroplasmy value that is least efficient. Figs 4A, B
show the amount of resource consumed by individual wildtype and mutant mitochondria in four different
example states. All states have identical total copy numbers (w + m = 104) and total outputs (equal
to demand), but different heteroplasmy values (h = 0.1, 0.3, 0.7 and 0.9). When heteroplasmy increases,
the individual resource consumption rates rw and rm both increase to compensate for the higher mutant
copy number; this is true both in a low-h region (h increases from 0.1 to 0.3, Fig 4A) and a high-h
region (h increases from 0.7 to 0.9, Fig 4B). However, the total resource consumption rate does not
necessarily increase because the increase in h has caused a number of wildtype mitochondria to become
mutants, thereby decreasing the combined wildtype resource usage. Computing the values of the resource
consumption rates for the states with h = 0.1 and 0.3, while referring to Fig 4A, gives:

w1rw1 = 9000 · rw1 ≈ 3227

m1rm1 = 1000 · rm1 ≈ 125

w2rw2 = 7000 · rw2 ≈ 2981

m2rm2 = 3000 · rm2 ≈ 447, (20)

while the states h = 0.7 and 0.9 (referring to Fig 4B) give

w1rw1
= 3000 · rw1

≈ 1982

m1rm1
= 7000 · rm1

≈ 1618

w2rw2
= 1000 · rw2

≈ 846

m2rm2
= 9000 · rm2

≈ 2665. (21)

Comparing the states with h = 0.1 and h = 0.3, the total rates of resource usage are 3352 and 3428
respectively; the lower heteroplasmy state is more efficient. However, when heteroplasmies are higher,
the high heteroplasmy state (0.9 rather than 0.7, with total resource usage 3511 vs 3600) is most efficient.
This effect is due to the nonlinearity of Eq. 16.

Next, we investigate how robust the existence of an expensive intermediate heteroplasmy value is.
Let hmax denote the value of h with maximum cost at fixed total copy number (w + m). Fig 5A shows
hmax as a function of both total copy number and ε1, setting all other parameters to their default values.
The range of total copy numbers was chosen to correspond roughly to the range for which demand can
be satisfied in a fully wildtype cell (with the objective of considering ‘plausible’ copy number regions).
We see that an intermediate value of hmax exists for a wide range of parameter values, but only for large
enough ε1. This means we only expect to see expensive intermediate h values when neither of the two
mtDNA species are severely dysfunctional. We further varied the parameters ρ1 and smax which play
important roles in the cost function overall (ρ1) and the specifics of the saturating output model (smax),
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examples of which are shown in Fig 5B,C,D which illustrates their values have little influence on hmax.
Similar results were obtained by varying the parameters ρ2 and ρ3 by an order of magnitude.

Figure 4: Intermediate h values require more resources to satisfy demand, but only if mutants consume
less resources. A) The resource consumption rates and energy production rates of wildtypes and mutants are shown for
two states: (w1,m1, h1) = (9000, 1000, 0.1) and (w2,m2, h2) = (7000, 3000, 0.3). In both cases, the total energy output
is equal to the demand. When heteroplasmy is higher (h = 0.3), the individual resource consumption rates are higher
in order to maintain a constant total energy output. Overall, the state with h = 0.1 uses the least resources (Eqs. 20).
ε1 = 0.35 was used. B) This figure is similar to figure (D) but now the two states (w1,m1, h1) = (3000, 7000, 0.7) and
(w2,m2, h2) = (1000, 9000, 0.9) are compared. The state with h = 0.9 uses the least resources (Eqs. (21)).

Figure 5: The existence of intermediate heteroplasmy values is a robust feature of the saturating output
model. We show the value of hmax, the most expensive heteroplasmy value at constant copy number, as a function of total
copy number and ε1 (describing mutant pathology). White regions correspond to hmax = 1. A) Using our default parameter
values, an intermediate hmax exists for large enough mutant functionality ε1. B) The parameter smax is increased by 50%
with minimal effect on the output. We kept the parameter k fixed as it defines the amount of proton leak (the resource
consumption rate at zero energy output) which agrees with the amount of proton leak in the linear output model whose
parameters are based on experimental data. C) The parameter ρ1 is increased by an order of magnitude with minimal
effect on the output. D) The parameter ρ1 is increased by an order of magnitude and smax is decreased by 50%. Again,
change in hmax are small.
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5.3 Comparison of the cost of different control mechanisms

In the main text we introduced four different feedback controls and compared their mean costs. Here, we
additionally show the means and variances of the wildtypes, mutants and cost up to ∼ 82 years resulting
from stochastic simulations. The parameter values we used to compare the four controls are summarised
in Table 3 for clarity. We observe that the increase in cost for the linear control with δ = 0 is mainly
caused by an increase in mean mutant copy number.

Figure 6: Wildtype, mutant and cost dynamics for four different control strategies. Dynamics are shown for
the four controls I, II, III, and IV defined in Table 3. Again, we see that the effects of the control are more noticeable in
low copy number cells. Parameter are set as given in Table 3. Values for wopt are those for the saturating output model at
low and high copy number. The free parameters in control III and IV (δ and η) were optimised over initial conditions in
the range h ∈ [0, 0.2]. For the optimization the default cost function parameters were used as well as ε1 = 0.3.

Fig 7 shows the optimal values for δ in the linear feedback control λ(w,m) = µ+ c1(Nss − (w+ δm))
as a function of ε1. Stochastic simulations starting in steady state at either h0 = 0.1 or h0 = 0.8 were
performed for T = 104 days. The mean integrated cost over these 104 days was evaluated for different
values of δ, and the optimal δ values are shown. This was done for both the linear and the saturating
model. The general trend is, as was shown for T = 100 in the main text, the lower ε1 the lower the
optimal δ.
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Label Control optimal parameters satisfying our
two constraints

I λ(w) = µ+ c1(wopt − w) c1 = αRµ/wopt
II λ(w +m) = µ+ c1(wopt − (w +m)) c1 = αRµ/wopt
III λ(w + δm) = µ+ c1(wopt − (w + δm)) c1 = αRµ/wopt

δ is optimised

IV λ(w,m) =
µ(αR(wopt−w−ηm)+w+ηm)

(w+m)
αR = 10.0
η is optimised

Table 3: Parameter values for the four different control mechanisms we employ. Two parameters of each control
are set by the two constraints we impose. The parameter αR was proposed to lie in the range 5-17 [3] and here we used αR
= 10. The values for δ and η are found by optimizing our cost function over the steady states corresponding to our initial
conditions. We used 50 initial conditions equally spread over the range h0 ∈ [0, 0.2]. The two values used for wopt are 1524
and 7616 (Table 2). We further use µ = 0.07 day−1.

Figure 7: At long times and high heteroplasmies, energy sensing control becomes suboptimal. The optimal
value of δ in a linear feedback control is shown as a function of ε1. Here we used T = 104 days (optimization time) and low
copy numbers for both the linear and saturating model. The solid and dashed lines correspond to trajectories starting at
h0 = 0.1 and h0 = 0.8, respectively. The less resources the mutants consume (and the less output they therefore produce)
the lower their optimal contribution to the control.

6 Zinc Finger nuclease treatment model

6.1 Visualisation of Zinc Finger concentrations during treatment

As explained in the main text, we simulate the treatment of cells with mitochondrially targeted zinc
finger nucleases (mtZFNs). The concentration of mtZFNs is modelled by Eq. (9) in the main text, which
is shown for different treatment durations (different values for b) in Fig 8A.

6.2 Heteroplasmy values can increase after nuclease treatments

As mentioned in the main text, there is a possibility for cellular heteroplasmy to increase after a treatment
has been applied. This is true especially if the selectivity of the treatment is low (i.e. ξ is close to
1) and the initial heteroplasmy of a cell is high; in this case treating a cell may even eliminate all
wildtype mitochondria, increasing heteroplasmy to 1. To model the extent of this effect we initialise a
cell with a given heteroplasmy h0, and let it undergo one round of treatment and recovery after which the
final heteroplasmy is recorded. This process is repeated to obtain the probability that, given an initial
heteroplasmy h0, the final heteroplasmy after treatment exceeds h0 (P (hfinal > h0|h0)). Figs 8B,C show
these probabilities as a function of h0 and selectivity parameter ξ, for initial mtDNA copy numbers 500
and 5000. We observe that the effect-size is larger for low copy number cells. Fig 8D shows an example of
the distribution of post-treatment heteroplasmies. The recovery time used in the simulations is 30 days
which is long enough for the cells to recover their initial copy numbers and short enough for the change
in h to be almost completely due to treatment, rather than due to naturally occurring random drifts in
heteroplasmy values. Chances of increasing heteroplasmy are highest when h0 is very high or very low
(if h0 is low the low mutant copy numbers increase the effect of stochastic fluctuations). In the examples
shown, when ξ <= 0.6 (i.e. for every mutant that is cleaved, 0.6 wildtypes are cleaved) increases in
heteroplasmy are very unlikely to occur.
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Figure 8: Zinc Finger Nuclease concentrations for short and long treatments. A) Here we show the concentration
of mitochondrially targeted Zinc Fingers as modelled by Eq. (9) in the main text. The parameter values for the short and
strong treatment illustrated here (I0 = 36, b = 11) are similar to those found in fitting the model to the data. For the
mtZFN degradation rate we used µZ = log(2) day−1 (corresponding to a mtZFN half-life of 1 day). There exists a
possibility of increasing heteroplasmy levels through treatment. B) The probability of increasing heteroplasmy
above its initial pre-treatment value h0, after one round of treatment and recovery, is shown as a function of h0 and ξ.
Cells are initialised with a total copy number of 500. The cross indicates the parameters used in figure (D). The parameter
values for I0, b and c1 are fixed at: (I0, b, c1) ≈ (39, 20, 3× 10−4); these values provide good fits to experimental data when
assuming a total initial copy number of 500. We used δ = 1. C) Similar to figure (B), but now cells are initialised with a
total copy number of 5000; in these large copy number cells stochastic fluctuations in copy number have less effect and the
probabilities of exceeding initial heteroplasmy values are smaller compared to figure (B). D) An example of a distribution
of post-treatment heteroplasmy values is shown using parameters h0 and ξ as indicated by the cross in figure (B). The
orange line indicates the value of h0 (the heteroplasmy that was present before the treatment started).

6.3 Measurement of mtZFN expression profile

It was previously shown that the mtZFN pairing NARPd(+) and COMPa(-) specifically cleaves mtDNA
with the m.8993T>G mutation [29, 30, 31]. We confirmed the transient expression profile of mtZFNs
used in the modelling by transfecting 143B cells with a plasmid encoding NARPd(+) that co-expresses
fluorescent marker protein mCherry. At 24 hours post-transfection, transfected cells were sorted using
fluorescence activated cell sorting (FACS), to ensure a homogenously transfected sample (Fig 9A). Cells
were harvested at 24 hours, and the remainder returned to culture dishes, to be harvested at later time
points. Total protein was extracted from cells and analysed by western blotting, using antibodies to the
HA epitope. Coomassie (CM) staining was used to verify equal loading of the gel. For full protocol
see Ref. [32]. We observe that expression of mtZFNs is almost undetectable by 96 hours, and is totally
undetectable by 120 hours (Fig 9B).

6.4 MtDNA copy number measurements in heteroplasmic cells

To determine the absolute mtDNA copy number in the pre-treatment 80% heteroplasmy cells, a plasmid
construct containing the mitochondrial region of interest was created. The exact molecular weight of the
dsDNA plasmid molecule was calculated based on nucleotide composition (3318.8 kDa). The plasmid
and experimental sample concentrations were measured in triplicate with a Qubit fluorometer using the
Qubit dsDNA BR Assay Kit (ThermoFisher Scientific).

Three 10-fold plasmid serial dilutions were made (spanning 8 orders of magnitude) and analysed by
quantitative PCR. Five similar dilutions of the experimental sample were measured in triplicate. Highest
and lowest values were removed from further analysis to reduce the effect of pipetting errors. The
calculated mtDNA copy number per µL sample (1.13 × 107) was determined as the average number for
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Figure 9: mtZFN expression profile during transient transfection of 143B cells. A) Here we show a schematic
of the experiments involving i) transient transfection of high-heteroplasmy cells with plasmids expressing mtZFN monomers
and fluorescent marker proteins, ii) FACS-based selection of cells expressing both mtZFN monomers (NARPd(+) and
COMPa(-)), and iii) phenotypic evaluation of treated cells. Technical details are provided in Ref. [32]. B) Western blots
showing the mtZFN expression profile indicate that the mtZFNs are almost undetectable at 96 hours post-transfection, and
completely undetectable at 120 hours. Details of the protocol are provided in Ref. [32].

each unknown replicate using the average result based on each of the three standard curves. The number
of cells per µL was calculated based on the mass of DNA per single diploid cell (6.57 pg) [33]. As 143B
cells are mildly aneuploid, this is likely to be a small underestimate.

Primers and probe used for qPCR:
mtDNA 3211 F: 5 CACCCAAGAACAGGGTTTGT 3,
mtDNA 3298 R: 5 TGGCCATGGGTATGTTGTTAA 3
mtDNA 3242 probe: 6-Fam-TTACCGGGCTCTGCCATCT-Tamra

Using this method, we calculate that each pre-treatment 143B cell (with heteroplasmy 0.8) in the
initial cycle of iterative mtZFN treatments contained 889 ± 214 (S.E.) mtDNA copies per cell. Based on
these measurements, we use a total initial copy number of 900 in our MCMC simulations used to fit the
experimental data provided in Ref. [31].

6.5 Bayesian inference model outputs

Fig 10 shows posterior distributions and inference traces following our Metropolis sampling procedure.
Some of the distributions shown are log-transforms of the actual parameters in our model. The posterior
distribution of the parameter b reaches the upper bound set by the prior (specified below). This is due
to a degeneracy in the model for large values of b because, in this case, the mtZFN concentration can be
written as

[ZFN ](t) =
I0
b
e−µzt. (22)

Therefore, as long as the ratio I0/b is constant, a larger value for b does not influence the mtZFN dynamics
and therefore the mtDNA dynamics. Because it is the ratio I0/b that determines the mtZFN dynamics
at large b, we have performed the inference using this ratio rather than the parameter I0 itself.

Fig 11 shows that our model predictions of mtZFN expression profiles are in broad accord with the
experimental data obtained in this study. Our prior distribution on the treatment duration parameter b
allows for much more slowly decaying mtZFN concentrations, but our inference selected values for b that
predict very low mtZFN concentrations 5 days post-transfection, agreeing with the experimental data.

Prior distributions used are: δ: N (1.0, 1.0) bounded between 0 and 10; log10 I0/b: U(−1, 3); log10 b:
U(−3, 3); ξ: U(0, 1); log10 c1: U(−7,−2); σh: U(0, 0.5); σT : U(0, 0.5). The priors of the standard
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deviations were chosen to be U(0, 0.5) because both h and T mostly lie in the range [0, 1] and experimental
data indicate a standard deviation smaller than 0.5. The prior distribution of c1 was motivated by
investigating the general behaviour of mtDNA dynamics for various values of c1. We found that if
c1 = 10−2 the control is unrealistically strong whereas if c1 = 10−7 it takes unrealistically long time to
return to a steady state value when out of equilibrium.

6.6 Parameter values used in Fig 6 in the main text

Figs 6A,B in the main text were obtained using stochastic Gillespie simulations in which mtDNA dynamics
were simulated using Eq. (12) in the main text. 104 cells were simulated for 400 days with the following
initial heteroplasmy distributions, all with mean 〈h〉 = 0.8: i) all h values fixed at 0.8 (left), ii) Beta(12, 3)
(middle), and iii) Beta(0.4, 0.1) (right). The following parameters were used: wopt = 5000, I0 = 39.6,
b = 12.4, ξ = 0.76, c1 = 5.1 × 10−5, δ = 1.0 and µ = 0.07 day−1. These parameter values were chosen
because they provide good fits to the experimental data in Ref. [31].

Fig 6C is obtained from stochastic simulations using our default cost function parameters for ‘low’
copy number settings (Table 2), and using the following mtZFN treatment parameters (which provided
a good fit to experimental data): b = 11.9, ξ = 0.76, c1 = 2.5 × 10−4, δ = 1.0 and µ = 0.07 day−1. For
each value of ε1, the value for I0 corresponding to the minimum cost over a simulation time of 400 days
was found.

The short and strong treatment in Fig 6D (blue line) uses b = 11.9, ξ = 0.76, c1 = 2.5× 10−4, δ = 1.0,
and µ = 0.07 day−1. We further used I0 = 47.1 which was found to be optimal for ε1 = 0.2 (the cost
function corresponding to this value of ε1 is shown in the figure). The long and weak treatment uses
b = 0.1 and I0 = 0.6 (the optimal treatment strength when using ε1 = 0.2 and b = 0.1). For the more
selective treatment (magenta line) we set ξ = 0.4, b = 11.9 and I0 = 41.75 (the optimal treatment
strength under these ξ and b). The heteroplasmy mappings corresponding to short and long treatments
shown in Fig 6E were obtained from stochastic simulations using parameters identical to the ones for the
short and long treatments in Fig 6D. We note that in finding I0,opt, we initialised all cells at identical
states. When a distributions of initial states is used, the variance that is now present is likely to affect
the optimal treatment strength.
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Figure 10: Posterior mtZFN treatment parameter distributions. Here we show our posterior distributions obtained
after running our MCMC algorithm (left) as well as the corresponding sample values (right). Prior distributions are provided
in the text. The posterior of log10 b is cut off due to a degeneracy in our model (Eq. (22)), which does not affect our model
predictions.
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Figure 11: Predictions of mtZFN expression are broadly consonant with experimental data. Drawing from
our posterior distributions for I0 and b obtained through Metropolis sampling, we show 50% and 95% confidence intervals of
our predicted mtZFN expression profile (solid black line denotes the maximum a posteriori (MAP) estimate). Data points
are obtained through quantification of the western blots shown in Fig 9B and were subsequently rescaled to investigate
whether our model can broadly account for the experimentally observed dynamics (our predicted mtZFN concentrations
are proportional to the measurement data points with an arbitrary proportionality constant).
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