Supporting Information

The natural product antroalbol H promotes phosphorylation of liver kinase B1 (LKB1) at threonine 189 and thereby enhances cellular glucose uptake

Fang Wang^{1,4,#}, Xiaoyan Yang^{4,5, #}, Yanting Lu^{1,4}, Zhenghui Li², Yuhui Xu¹, Jing Hu¹, Jikai Liu^{2,*} and Wenyong Xiong^{1,3,*}

From the ¹State Key Laboratory of Phytochemistry and Plant Resources in West China, Kunming Institute of Botany, Chinese Academy of Sciences, Kunming 650201, P. R. China; ²School of Pharmaceutical Sciences, South-Central University for Nationalities, Wuhan 430074, P. R. China; ³The General Hospital of Ningxia Medical University, Yinchuan 750004, P. R. China; ⁴University of the Chinese Academy of Sciences, Beijing 100049, P. R. China; ⁵Faculty of Life Science and Technology, Kunming University of Science and Technology, Kunming 650201, P. R. China

Running title: AH enhances cellular glucose uptake through T189 of LKB1

[#]Authors contributed equally to this work

*To whom correspondence should be addressed: Jikai Liu: School of Pharmaceutical Sciences, South-Central University for Nationalities, Wuhan 430074, P. R. China; <u>liujikai@mail.scuec.edu.cn</u>; Tel. 86-27-67842267. Wenyong Xiong: State Key Laboratory of Phytochemistry and Plant Resources in West China, Kunming Institute of Botany, Chinese Academy of Sciences, Kunming 650201, P. R. China; The General Hospital of Ningxia Medical University, Yinchuan 750004, P. R. China; <u>xiong.wenyong@mail.kib.ac.cn</u>; Tel. 86-871-65216750.

Keywords: sesquiterpene, fungi, glucose metabolism, liver kinase B1 (LKB1), AMP-activated protein kinase (AMPK), glucose transporter type 4 (GLUT4), diabetes, glucose homeostasis, Basidiomycete, energy sensing

Table of Content

Table S1. ¹H (400 Hz) and ¹³C NMR (100 Hz) NMR data in CDCl₃ for antroalbol H
Table S2. Antibodies used for western blotting
Table S3. SiRNA nucleotide sequence
Figure S1. Effects of antroalbol H on cell viability in 3T3-L1 adipocytes
Figure S2. Antroalbol H does not change the phosphorylation of CaMKII and Ca²⁺
Figure S3. Antroalbol H does not change the protein levels of GLUT4.
Figure S4. Key 2D NMR correlations of antroalbol H
Figure S5. ¹H NMR (400MHz, CDCl₃) spectrum of antroalbol H
Figure S7. HSQC spectrum of antroalbol H
Figure S8. ¹H-¹H COSY spectrum of antroalbol H
Figure S9. HMBC spectrum of antroalbol H
Figure S10. ROESY spectrum of antroalbol H
Figure S11. HR-ESI-MS spectrum of antroalbol H
Figure S12. IR spectrum of antroalbol H

Position	$\delta_{ m C}$ type	$\delta_{\rm H}$ mult. (J in Hz)
1	40.1, CH ₂	2.72, d (14.8)
		2.33, d (14.8)
2	211.9, C	
3	73.5, CH	4.01, t (8.0)
4	34.1, CH ₂	2.14, m
5	26.1, CH ₂	1.86, m
		1.55, m
6	55.6, C	
7	82.1, C	
8	214.1, C	
9	33.4, CH ₂	2.66, m
		2.38, m
10	36.1, CH ₂	1.78, m
		1.63, m
11	38.2, C	
12	28.0, CH ₃	1.01, s
13	25.1, CH ₃	1.12, s
14	26.4, CH ₃	1.36, s

Table S1. 1 H (400 Hz) and 13 C NMR (100 Hz) NMR data in CDCl₃ for antroalbol H

Antibody	Vendor	Cat. No.	Fold Dilution
Rabbit anti-AMPKα	Cell Signaling Technology	2532	1000
Rabbit anti-phospho-AMPKα	Cell Signaling	2535	1000
	Technology		
Rabbit anti-phospho-AMPK B	Cell Signaling	4186	1000
(Ser182)	Technology		
Rabbit anti- AMPK $\beta 1/2$	Cell Signaling Technology	4150	1000
Rabbit anti-phospho-Acetyl-CoA	Cell Signaling		
Carboxylase (Ser79)	Technology	11818	1000
Rabbit anti- Acetyl-CoA	Cell Signaling	2662	1000
Carboxylase	Technology	3662	
Rabbit anti-Akt	Cell Signaling Technology	9272	1000
Rabbit anti-phospho-Akt (S473)	Cell Signaling Technology	4060	1000
Rabbit anti-phospho-Akt (T308)	Cell Signaling Technology	13038	1000
Rabbit anti- LKB1	Santa Cruz Biotechnology	Sc-374300	1000
Rabbit anti-phospho-LKB1 (T189)	Cell Signaling Technology	3054	1000
Rabbit anti- phospho-LKB1 (S307)	Merck-Millipore	09-478	1000
Rabbit anti-phospho-LKB1 (S428)	Cell Signaling Technology	3482	1000
Rabbit anti-CaMKII	Cell Signaling Technology	3362	1000
Rabbit anti-phospho-CaMKII	Cell Signaling	1071 -	1000
(T286)	Technology	12/10	
Mouse anti-N-cadherin	Cell Signaling Technology	13116	1000
Mouse anti-GLUT4	Abcam	Ab654	1000
Mouse anti-β-Actin	Sigma	A5316	8000

Table S2. Antibodies used for western blotting

Alexa Fluor ® 488-conjugated	Jackson		
AffiniPure goat anti-mouse lgG	ImmunoResearch A5316		2000
(H+L)	Laboratories Inc.		
CyTM 3-conjugated AffiniPure goat anti-mouse lgG (H+L)	Jackson		
	ImmunoResearch	A5316	2000
	Laboratories Inc.		

Table S3. siRNA nucleotide sequence.

Genes	siRNA sequence
Control	UUCUCCGAACGUGUCACGUTT
ΑΜΡΚα	AUGAUGUCAGAUGGUGAAUUU
LKB1	CGGUCAAGAUCCUCAAGAAUU

Figure S1. Effects of antroalbol H on cell viability in 3T3-L1 adipocytes. 3T3-L1 adipocytes were treated with 20 - 320 μ M AH for 24 h, the cytotoxicity was detected by MTS assay. Results were represented as means \pm SEM (n = 6).

Figure S2. Antroalbol H does not change the phosphorylation of CaMKII and Ca²⁺. (A and B) Immunoblots of p-CaMKII^{T286}, t-CaMKII and β -actin in L6 myotubes. L6 myotubes were treated with 0-20 μ M AH for 24 h or 10 μ M AH for indicated hours. Results were represented as means \pm SEM (n = 3). (C and D) Ca²⁺ signal assay in L6 myotubes and 3T3-L1 adipocytes. Cells were grown on 24-well plate and washed three times with Ca²⁺-containing resting buffer (145 mM NaCl, 5 mM KCl, 2.6 mM CaCl₂, 1 mM MgCl₂, 5.6 mM D-glucose, and 10 mM HEPES, pH 7.4). Loading with 10 μ M Fluo 3-AM was for 30 min at 37 °C. Washed plate were mounted in fluorescence microscope and recorded of fluorescence (excitation490 nm, emission 530 nm) was initiated about 30 seconds prior to addition of 0.1% DMSO (Con), 1 μ M ionomycin or 10 μ M AH. Results were represented as the net increase value of fluorescence in 15-20 cells per condition (n = 3).

Figure S3. Antroalbol H does not change the protein levels of GLUT4. (A) 3T3-L1 adipocytes were treated with 5-20 μ M AH for 24 h or 100 nM insulin for indicated times, then immunoblots of GLUT4 and β -actin were performed. (B) L6 myotubes were treated with 0-20 μ M AH for 24 h, GLUT4 protein levels also assayed by western blotting. Results were represented as means \pm SEM (n = 3).

Figure S4. Key 2D NMR correlations of antroalbol H. (A) ¹H-¹H COSY and key HMBC correlations of antroalbol H. (B) Key NOESY correlations of antroalbol H.

Figure S5. ¹H NMR (400MHz, CDCl₃) spectrum of antroalbol H

Figure S6. ¹³C NMR (400MHz, CDCl₃) spectrum of antroalbol H

Figure S7. HSQC spectrum of antroalbol H

Figure S8. ¹H-¹H COSY spectrum of antroalbol H

Figure S9. HMBC spectrum of antroalbol H

Figure S10. ROESY spectrum of antroalbol H

Elemental Composition Report

Page 1

Figure S11. HR-ESI-MS spectrum of antroalbol H

Figure S12. IR spectrum of antroalbol H