

Supplemental Figure 1. Purity of CD4+ and CD19+ cell isolation and viability of CD4+ T cells after culture with metabolic inhibitor drugs. (**A**) Representative flow cytometry plots of whole blood before isolation and post-Rosette Sep CD4+ enrichment (**B**) Representative flow cytometry plots of PBMCs isolated by density centrifugation before isolation and post EasySep CD4+ enrichment (**C**) Representative flow cytometry plots of PBMCs isolated by density centrifugation before isolated with anti-CD3ε/anti-CD28 and treated for 24 h with 2 mM metformin or 100nM of either rotenone, antimycin-a, or oligomycin.

Supplemental Figure 2. IFN α 2a dose titration in HD CD4+ T cells and 2 h metformin co-treatment. (A) 3 concentrations of IFN α were tested in CD4+ T cells stimulated with anti-CD3 ϵ /anti-CD28 with or without metformin for 24 h and treated with recombinant IFN α 2a for the final 2 h (1 IU = 4 pg/mL). The graphs show means and standard deviation of three technical replicates. (B) Effect of 2 h metformin and IFN α 2a co-treatment on the expression of 6 ISG genes in HD CD4+ T cells (N = 3). Paired t-tests used for (A, B). * p<0.05, ** p<0.01.

qRT-PCR Gene	Sequence	Product (bp)
<i>MX1</i> F	AGGCAAGGTCAGTTACCAGG	89
<i>MX1</i> R	CGATGGCATTCTGGGCTTTATT	
<i>ISG20</i> F	CACAAGAGCATCCAGAACAGC	63
<i>ISG20</i> R	CATCGTTGCCCTCGCATCTT	
<i>GBP1</i> F	GGCTATGGACCAACTGTACTAT	215
<i>GBP1</i> R	TCAGCTTCAGGGAGTATGTCAG	
IRF7 F	GAGTCTTCTTCCAAGAGCTGGT	68
<i>IRF7</i> R	GATGGTATAGCGTGGGGAGC	
<i>ISG15</i> F	GAGAGGCAGCGAACTCATCT	157
<i>ISG15</i> R	CTTCAGCTCTGACACCGACA	
OASL F	GAAGGTAGTCAAGGTGGGCTC	163
OASL R	CTGGCTTTGCCACATGGTTT	
PPIA F	AGCTGTTTACCCCTGATCGTG	71
PPIA R	CCTTGTCTGCAAACAGAAGGC	
HMBS F	AGAATGAAGTGGACCTGGTTGT	81
HMBS R	AGATGGCTCCGATGGTGAAG	
ChIP Target	Sequence	Product (bp)
MX1 promoter 1 F	CCACACGCACAGAAGAGGAA	141
MX1 promoter 1 R	TGCATTTCCTGCAAGTCCGT	
MX1 promoter 2 F	CCAGGAGCTAGGTTTCGTTT	118
MX1 promoter 2 R	GCTCTCGCTTCGCCTCTT	
ISG15 promoter 1 F	TACTGCCCTAAACCGAGTGT	178
ISG15 promoter 1 R	TATCGCGCATTCCAGATCCTT	
ISG15 promoter 2 F	CGCCACTTTTGCTTTTCCCT	88
ISG15 promoter 3 R	TTCGGTTTCCCTTTCCCGAG	
Gene Desert 2 F	AGGAGACACCTTGACTCCCAT	126
Gene Desert 2 R	ACTGATCACGGGGTTACAGC	

Supplemental Table 1. Primer sequences for gene expression studies and ChiP assays.