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Abstract: Background

Data errors, including sample swapping and mis-labeling are inevitable in the process
of large-scale omics data generation. Data errors need to be identified and corrected
before integrative data analyses where different types of data are merged based on the
annotated labels. Data with sample errors dampen true biological signals . More
importantly, data analysis with sample errors could lead to wrong scientific conclusions.
We developed a robust probabilistic multi-omics data matching procedure,
proMODMatcher, to curate data, identify and correct data annotation and errors in
large databases.

Results

Application to simulated datasets suggests that proMODMatcher achieved robust
statistical power even when the number of cis-associations was small and/or the
number of samples was large. Application of our proMODMatcher to multi-omics data
in TCGA identified sample errors in multiple cancer datasets. Our procedure was not
only able to identify sample labeling errors but also to unambiguously identify the
source of the errors. Our results demonstrate that these errors should be identified and
corrected before integrative analysis.

Conclusions

Our results indicate that sample labeling errors were common in large multi-omics
datasets. These errors should be corrected before integrative analysis.
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Abstract  24 

Background: Data errors, including sample swapping and mis-labeling are inevitable in the 25 

process of large-scale omics data generation. Data errors need to be identified and corrected 26 

before integrative data analyses where different types of data are merged based on the 27 

annotated labels. Data with labeling errors dampen true biological signals. More importantly, 28 

data analysis with sample errors could lead to wrong scientific conclusions. We developed a 29 

robust probabilistic multi-omics data matching procedure, proMODMatcher, to curate data, 30 

identify and correct data annotation and errors in large databases.  31 

Results: Application to simulated datasets suggests that proMODMatcher achieved robust 32 

statistical power even when the number of cis-associations was small and/or the number of 33 

samples was large. Application of our proMODMatcher to multi-omics data in TCGA identified 34 

sample errors in multiple cancer datasets. Our procedure was not only able to identify sample 35 

labeling errors but also to unambiguously identify the source of the errors. Our results 36 

demonstrate that these errors should be identified and corrected before integrative analysis.  37 

Conclusions: Our results indicate that sample labeling errors were common in large multi-38 

omics datasets. These errors should be corrected before integrative analysis.  39 

 40 

 41 
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 3 

Background 47 

With advances in high throughput technologies in the past two decades, diverse types of omics 48 

data at multiple layers of regulation have been generated to survey complex human diseases 49 

[1-3],  which arise from dysregulations of  interplays among these multiple layers of regulations 50 

including genetics, epigenetics, transcriptomics, metabolomics, glycomics, and proteomics. 51 

Therefore, integration of multi-omics data at multiple layers of regulation is essential to derive a 52 

holistic view of molecular mechanisms underlying complex human disease. Previous studies 53 

have shown that simultaneously considering diverse types of biological data result in more 54 

complete understandings of biological systems [4-6].  55 

 Recently, many large projects, such as The Cancer Genome Atlas (TCGA), have 56 

generated diverse types of omics data for public use. However, data errors, including sample 57 

swapping, mis-labeling, and improper data entry are almost inevitable in the process of large-58 

scale data generation and management. Westra et al. [7] showed that there is about 20% of 59 

mis-matched samples between genotype and gene expression data. Yoo et al. [8] demonstrated 60 

that sample labeling errors occurred in almost every database examined. Also, there are studies 61 

to identify cross-individual contamination in next-generation sequencing data from TCGA 62 

samples [9, 10].  63 

 Identifying and ultimately correcting these sample errors are critical for statistical data 64 

analysis, especially for integrative analysis. Data errors need to be identified and corrected 65 

before extensive efforts being devoted to data analysis. Analyzing data with sample errors is a 66 

waste of limited public resources. More importantly, data analysis with sample errors could lead 67 

to wrong scientific conclusions. Furthermore, sample errors have more significant effect on 68 

integrative data analysis where different types of data are merged based on the annotated 69 

labels. Some types of sample errors can be detected during data quality control (QC) on each 70 
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 4 

individual type of data, whereas sample errors including sample swapping, or mis-labeling are 71 

elusive to be detected by data QC on individual type of data alone.   72 

 Previously, we developed sample mapping procedure called MODMatcher (Multi-Omics 73 

Data matcher) [8], which is not only able to identify mis-matched omics profile pairs, but also to 74 

properly map them to correct samples based on other omics data. We demonstrated that the 75 

statistical power to identify biological signals increases after database cleaning by applying the 76 

MODMatcher procedure to multiple large-scale public multi-omics datasets from LGRC and 77 

TCGA. The power of MODMatcher depends on the number of intrinsic biological cis-78 

associations that can be identified.   The power of MODMatcher decreases when the number of 79 

cis-associations between two omics profiles is small. However, in some cases (a few examples 80 

are detailed in the Results), the number of possible intrinsic biological cis-associations is small, 81 

new methods are needed for these types of applications. 82 

 In this study, we extended MODMatcher and developed a robust probabilistic multi-83 

omics data matching procedure, proMODMatcher, to curate data, identify and unambiguously 84 

correct data annotation and metadata attribute errors in large databases. First, we applied the 85 

proMODMatcher to simulated datasets to assess the statistical power of our procedure. Results 86 

suggest that proMODMatcher achieved robust statistical power even when the number of cis-87 

associations was small and/or the number of samples was large. Next, we applied the 88 

proMODMatcher procedure to multiple large-scale publicly available multi-omics datasets from 89 

TCGA, and in particular, focused on the omics profiles that have small numbers of intrinsic cis-90 

associations including miRNA expression and Reverse Phase Protein Array (RPPA).  Our 91 

results indicate that sample labeling errors were common in large multi-omics datasets.  These 92 

errors should be corrected before integrative analysis. 93 

 94 
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 5 

Data Description  95 

TCGA datasets 96 

For the TCGA breast invasive carcinoma (BRCA) dataset, level 3 data of gene expression, DNA 97 

methylation, miRNA expression and CNV was downloaded from Genomic Data Commons 98 

(GDC) data portal (https://portal.gdc.cancer.gov/). For gene expression profiles, 99 

IlluminaHiSeq_RNASeqV2 and AgilentG4502A platform were used. Illumina 100 

HumanMethylation27 (HM27) and HumanMethylation450 (HM450) Beadchip were used for 101 

DNA methylation bisulfide sequencing. IlluminaHiSeq_miRNASeq and IlluminaGA_miRNASeq 102 

platforms were used to profile miRNA expression. Affymetrix Genome-Wide Human SNP Array 103 

6.0 was used for copy number variation. The protein expression levels were measured in 104 

Reverse Phase Protein Array (RPPA), and downloaded. Each of level 3 profiles was 105 

reformatted for matrix of row with gene (or probes) and column with barcodes of samples. For 106 

methylation profiles and CNV, the probes or segments were mapped to hg19 refGene. Different 107 

profiles were initially matched according to their barcodes.  108 

 For other types of cancers in TCGA, we downloaded gene expression, miRNA 109 

expression, CNV, DNA methylation, and RPPA data from firehose database 110 

https://gdac.broadinstitute.org/. For RPPA data, we filtered genes with more than 25% of 111 

samples with not-assigned measurements. 112 

 113 

Simulation study   114 

Simulated data sets for testing alignment between a pair of omics profiles were generated. 115 

Given a set of N cis-associations and each of correlation coefficient rn, we can simulate omics 116 

profiles Υ  based omics profiles Χ for M samples as following: 𝑋𝑖 = 𝑁(0,1) is a standard normal 117 
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distribution, and 𝛾𝑖 =
𝑟𝑛

√1−𝑟𝑛
2

𝑋𝑖 + 𝜖 , where 𝜖 is standard normal distribution,  𝑁(0,1). For each N 118 

and M combination, we simulated N significant sets with rn  drawn from a truncated normal 119 

distribution with a cutoff value corresponding to correlation coefficients q-value < 0.05, as well 120 

as 2000 sets of random rn drawn from a normal distribution. We considered N significant cis-121 

associations from 75 through 1000, and M samples from 100 through 1000. The simulated data 122 

with label error were generated by permuting the labels of one type of data. We considered 0, 2, 123 

.. 10% label error rates. We measured sensitivity (i.e. recall) =
#𝑡𝑟𝑢𝑙𝑦 𝑎𝑙𝑖𝑔𝑛𝑒𝑑 𝑝𝑎𝑖𝑟𝑠

 #𝑠𝑖𝑚𝑢𝑙𝑎𝑡𝑒𝑑 𝑝𝑎𝑖𝑟𝑠
, specificity (i.e. 124 

precision) = #𝑡𝑟𝑢𝑒𝑙𝑦 𝑎𝑙𝑖𝑔𝑛𝑒𝑑 𝑝𝑎𝑖𝑟𝑠

#𝑎𝑙𝑖𝑔𝑛 𝑝𝑎𝑖𝑟𝑠
, false positive rate (FPR)=1-specificity, and F measures (= 2 ×125 

𝑝𝑟𝑒𝑐𝑖𝑠𝑖𝑜𝑛 × 𝑟𝑒𝑐𝑎𝑙𝑙

𝑝𝑟𝑒𝑐𝑖𝑠𝑖𝑜𝑛 + 𝑟𝑒𝑐𝑎𝑙𝑙
)   for assessment. Additionally, because a pair of omics profiles mostly has 126 

unbalanced samples, we mimics this by adding 10% of M samples for type A and type B omics 127 

profiles.  128 

 129 

Analyses  130 

Overview of proMODMatcher  procedure 131 

proMODMatcher followed the general framework of multi-omics data matching of the previous 132 

study [8]. Two types of data (or profiles) (i.e. Type A and Type B in Figure 1) were matched 133 

based on their cis-associations. Samples were initially matched based on annotated sample ID 134 

and potential cis-associations (Figure 1A). The significant cis-associations from two different 135 

data types were identified by the Spearman correlations (Figure 1B). The data for each cis-136 

association was normal rank-transformed (Figure 1B). The profile similarity between the two 137 

types of data 𝑆(𝐴𝑖, 𝐵𝑗) is defined as the correlation between profile i of type A and profile j of 138 

type B (Figure 1C). The probability of a match between profile i of type A and profile j of type B 139 
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 7 

is estimated by evaluating a similarity score in a bivariate normal distribution (Figure 1D). 140 

Based on probability of a match, proMODMatcher determines self- or cross-alignments for each 141 

match. First, profile pairs matched by annotated sample IDs were checked whether their 142 

similarity scores were high (Figure 1D) to be annotated as “self-aligned”. If not, additional steps 143 

were applied to find any potential matches among other unmatched profiles (Figure 1E). The 144 

matched profile pairs were then used to update significant cis-associations. We iteratively 145 

refined profile alignment and rounds of alignments were repeated until there were no further 146 

updates (Figure 1F).  147 

 148 

Simulation studies 149 

Numbers of significant cis-associations and samples are two important deterministic factors of 150 

similarity scores as well as the accuracy of omics profile alignment results. To investigate the 151 

effect of numbers of samples and cis-associations, we simulated data sets with different 152 

numbers of samples and significant cis-associations and applied MODMatcher and 153 

proMODMatcher to the simulated data sets.  For MODMatcher, when the number of cis-154 

associations was >200, almost all profile pairs could be aligned at high accuracy (false positive 155 

rate vs. sensitivity) (Figure 2). The similarity scores of matched pairs based on a low number of 156 

cis-associations were more variable resulting in lower accuracies (Supplementary Figure S1). 157 

This result indicates that the MODMatcher can be applied to align the omics profile pairs with 158 

>200 cis-associations, such as methylation-mRNA profiles with over 7000 intrinsic cis-159 

associations and mRNA-CNV profiles with over 10,000 intrinsic cis-associations [8]. On the 160 

other hand, when the number of cis-associations was around 200 or below, the accuracy of 161 

sample alignments dropped as the number of samples increased (Figure 2). When aligning 162 

gene expression profiles with miRNA or RPPA profiles, the number of candidate intrinsic cis-163 
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associations was small (detailed below). Thus, MODMatcher was not powered to accurately 164 

align these types of profile pairs.  165 

 The proMODMatcher was applied to the same simulated datasets and was able to 166 

achieve high sensitivities and low FPRs across a wide range of numbers of cis-associations and 167 

samples (Figure 3A).  When compared with MODMatcher’s results, proMODMatcher resulted in 168 

better accuracies (F measure in Figure 3B), sensitivities, and specificities (Figure 3C). 169 

 We further investigated their performances when there were labeling errors. Datasets 170 

with sample labeling errors (i.e. 4% and 6%) were simulated by randomly assigning some 171 

samples’ labels, then proMODMatcher and MODMatcher were applied to identify aligned profile 172 

pairs.  As expected, when a larger number of cis-associations was available, proMODMatcher 173 

achieved a higher sensitivity and lower FPR (Figure 3A).  Across all tested combinations of 174 

numbers of cis-associations and samples, proMODMatcher resulted in >99% accuracy with 4-175 

6% input labeling error rates, consistently outperformed MODMatcher (Figure 3B).  When 176 

compared with MODMatcher in terms of sensitivity and specificity, proMODMatcher achieved 177 

better specificities in all cases and better sensitivities in most cases (Figure 3C).  MODMatcher 178 

achieved a better sensitivity but worse specificity than proMODMatcher when only a low number 179 

of cis-associations (i.e. 75) was available (Figure 3C). These simulation results suggest that 180 

proMODMatcher is applicable for identifying and correcting labeling errors even when the 181 

number of cis-associations is small such as paring mRNA-miRNA or mRNA-RPPA profiles.  182 

 183 

Application to TCGA breast cancer dataset: mRNA and miRNA profiles  184 

Multiple omics data, including profiles of mRNA, miRNA, protein, DNA methylation, and CNV, 185 

were available in TCGA.  The proMODMatcher was applied to align methylation and/or CNV 186 

profiles to mRNA profiles similar to what we did previously [8].  Here we focused on alignment of 187 
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 9 

miRNA expression profiles to mRNA expression data because the number of candidate intrinsic 188 

cis-associations between miRNA and mRNA profiles was small.  We used the TCGA breast 189 

cancer (BRCA) dataset as an example to illustrate the profile alignment results in detail.  There 190 

were mRNA expression profiles based on two different platforms, Agilent microarray and 191 

RNAseq technology. There were 519 tumor samples with both mRNA expression measured in 192 

Agilent microarray and miRNA expression measured by small-RNA sequencing method, and 193 

1041 tumor samples with both mRNA expression measured in RNAseq and miRNA measured 194 

by small-RNA sequencing method. A small portion of miRNAs are embedded in gene regions 195 

(i.e. host genes) and frequently co-transcribed with host genes [11, 12] (Figure 4A), embedded 196 

miRNA-host gene pairs were candidate intrinsic cis-associations. Total 1222 miRNAs were 197 

profiled, and 227 and 271 of them were mapped to host genes, for Agilent microarray and 198 

RNAseq data, respectively.  Among them, 138 out of 227 and 175 out of 271 miRNA-host genes 199 

pairs were significantly associated with each other at q-value<0.05, for Agilent microarray and 200 

RNAseq data, respectively. For example, miR-452 located in the gene body of GABRE, its 201 

expression was highly associated with mRNA expression of GABRE (Figure 4B). Based on 202 

these intrinsic cis-associations between expression levels of miRNAs and host genes, we 203 

aligned the two types of omics data.  204 

 205 

Aligning gene expression profiles by RNAseq and miRNAseq data  206 

The similarity scores of self-aligned gene expression-miRNA expression profiles were much 207 

higher than other possible pairings in general (Figure 4C): 898 out of  1041 (86.2%) the 208 

similarity scores for self-self RNAseq-miRNAseq profiles were ranked at top 2%. For example, 209 

the similarity score for the self-aligned profiles of TCGA−D8−A1JH-01 was top ranked among 210 

other possible pairings (Figure 4D). Total 143 miRNA profiles that were not matched to the 211 
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 10 

corresponding mRNA profiles of the same sample names based on MODMatcher (e.g. 212 

TCGA−B6−A0X7-01 shown in Figure 4E). Among profile pairs that were not self-aligned, 5 for 213 

RNAseq profiles were cross-aligned to other samples’ miRNA profiles (Supplementary Table 214 

S1). The rate of alignment was low compared to alignments of other types of profile pairs. For 215 

example,  >99% profile pairs of DNA methylation and mRNA expression profiles were aligned 216 

for the TCGA BRCA data set.  217 

Table 1. Application of proMODMatcher to mRNA and miRNA profiles of TCGA BRCA data.  218 
Data 
types 

Data types # 
samp
les1 

# cis 
pair 2 

# of self-
aligned  

# of 
cross  

Cross-aligned  
pairs 

Self-aligned in 
RNA-CNV3 

Cross-aligned 
pairs 

Type1  Type 2     Type 1  Type 2 

RNAseq miRNAseq 1041 175/2
15 

989 
(95.0%) 

1  TCGA-BH-
A0BZ-01 

Y TCGA-E2-
A15K-01 

Agilent miRNAseq 519 138/1
78 

466 
(89.7%) 

9  TCGA-A8-
A07U-01 

Y TCGA-A2-
A3XY-01 

      TCGA-BH-
A0H9-01 

Y TCGA-EW-
A423-01 

      TCGA-AO-
A128-01 

Y TCGA-BH-
A18V-06 

      TCGA-A1-
A0SD-01 

No: TCGA-
BH-A0EI-01 

TCGA-BH-
A0EI-01 

      TCGA-BH-
A18K-01 

No: TCGA-
BH-A18T-01 

TCGA-BH-
A18T-01 

      TCGA-BH-
A18T-01 

No: TCGA-
BH-A18K-01 

TCGA-BH-
A18K-01 

      TCGA-BH-
A0BZ-01 

Y TCGA-E2-
A15K-01 

      TCGA-BH-
A0BS-01 

No: TCGA-
BH-A0BT-01 

TCGA-BH-
A0BT-01 

      TCGA-AR-
A0U0-01 

Y TCGA-AR-
A256-01 

The bold indicates cross-alignments supported by other data and underlines indicates sample swaps.  219 
1The number of common sample with both type1 and type2 profiles. 220 
2The number of significant cis-pairs at q-value <0.05 at final iteration and the number of cis-pairs investigated. We 221 
investigated only cis-pairs that have more than 25% of samples with expressed RPPA or mRNA. 222 
3Indicate the RNA sample of cross-aligned pairs are self-aligned or not in alignment between RNA profile (Agilent 223 
array or RNAseq) and CNV profile. The aligned pairs are also shown if there is a cross-aligned sample.  224 

Applying proMODMatcher to TCGA BRCA RNAseq-miRNAseq datasets, the 225 

probabilities of similarity scores (before multiplying prior probability) for self-aligned RNAseq-226 

miRNA profiles were much higher than other possible pairs in general (Figure 4F). An example 227 

of similarity scores of a self-aligned RNAseq-miRNA profile pair and other possible pairs is 228 

shown in Figure 4G. There were multiple self-self pairs with low probabilities for self-alignment 229 

(Figure 4F and Figure 4H), suggesting potential labeling errors in RNAseq and/or miRNA 230 
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profiles. Overall, 989 out of 1041 candidate matching pairs (i.e. 95.0%) (Table 1) were self-231 

aligned compared to 86.2% for MODMatcher. Among profiles that were not self-aligned, 1 232 

profile pair (i.e. TCGA-BH-A0BZ-01 and TCGA-E2-A15K-01 ) was cross-aligned to each other 233 

(Table 1).  234 

Comparing MODMatcher and proMODMatcher, the proMODMatcher identified additional 235 

91 self-aligned profile pairs that were missed by MODMatcher. For example, the similarity score 236 

of self-alignment for TCGA-AO-A0JF-01 was among the highest one when the miRNA profile 237 

compared to RNAseq profiles of other samples (y-axis in Figure 5A). However, the RNAseq 238 

profile of TCGA-AO-A0JF-01 was highly similar with multiple miRNA profiles of other samples 239 

(x-axis in Figure 5A).  As a result, the rank-based MODMatcher rejected the self-alignment, but 240 

proMODMatcher identified self-alignment for TCGA-AO-A0JF-01 with p-value of 7.3x10-6.   241 

 One cross-aligned pair, RNAseq of TCGA-BH-A0BZ-01 and miRNA of TCGA-E2-A15K-242 

01, was identified by both proMODMatcher and MODMatcher. The similarity score of the cross-243 

aligned pair is shown in Figure 5B. The similarity scores of self-self alignments were low (red 244 

dots in Figure 5B); on the other hand, the similarity score of  the cross-aligned pair was 245 

significantly higher compared to other similarity scores (Figure 5B), indicating high confidence 246 

of cross-alignment. Furthermore, we compared significance levels of cis-associations based on 247 

profile pairs aligned by MODMatcher and proMODMatcher. They were comparable in general 248 

with a few highly significant cis-associations more significant based on proMODMatcher 249 

compared to MODMatcher (Figure 5C). 250 

  251 

Aligning gene expression profiles by Agilent microarray and miRNAseq data 252 

MODMatcher and proMODMatcher were also applied to align mRNA expression profiles based 253 

Agilent microarray and miRNA profiles. There were 138 cis-associations identified based on 254 
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Agilent microarray data and miRNAseq data.  Based on these cis-associations, 87% of 255 

candidate profile pairs were identified as self-aligned by MODMatcher (Supplementary Table 256 

S1) while 89.7% of candidate profile pairs were self-aligned by proMODMatcher (Table 1).  257 

Among profiles that were not self-aligned, 9 cross-aligned profile pairs were identified by 258 

proMODMatcher (Table 1, Supplementary Figure S2B).  These cross-aligned pairs included a 259 

possible swap between TCGA-BH-A18K-01 and TCGA-BH-A18T-01 (Figure 6A and Table 1).  260 

To determine the source of labeling errors (due to mRNA Agilent profiles or miRNA profiles) 261 

other omics profiles were compared with each other and results were summarized into a 262 

patient-centric view (Figure 6B).   For patient/sample TCGA-BH-A18K, the RNAseq and 263 

miRNAseq profiles were self-aligned and the RNAseq and CNV profiles were self-aligned as 264 

well (Figure 6B). Similarly, for patient/sample TCGA-BH-A18T, the RNAseq profile was self-265 

aligned to the miRNA, CNV, and DNA methylation profiles as well as the RPPA profile (detailed 266 

below) (Figure 6B).  The cross-alignments of TCGA-BH-A18K-01 and TCGA-BH-A18T-01 267 

mRNA Agilent profiles with their miRNA profiles (Figure 6B) indicate sample swapping occurred 268 

in mRNA Agilent array profiles. After swapping the corresponding mRNA Agilent array profiles, 269 

multiple-omics profiles of TCGA-BH-A18K and TCGA-BH-A18T were aligned to each other 270 

consistently (Figure 6C). Our previous study based on pairwise profile alignments of gene 271 

expression, DNA methylation and CNV also identified the sample swaps in mRNA Agilent array 272 

profiles of TCGA-BH-A18K-01 and TCGA-BH-A18T-01 [8] (Figure 6B-C). In addition, 273 

proMODMatch identified a cross-alignment of the mRNA Agilent array profile of TCGA-A1-274 

A0SD-01 and the miRNA profile of TCGA-BH-A0EI-01 (Table 1, Figure 6D), consistent with 275 

potential sample swaps of mRNA Agilent array profiles of TCGA-A1-A0SD-01 and TCGA-BH-276 

A0EI-01 when alignments of other omics profiles were included. Similarly, the cross-alignment 277 

between the Agilent array profile of TCGA-BH-A0BS-01 and the miRNA profile of TCGA-BH-278 
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A0BT-01 was likely a result of a swap between the Agilent array profiles of the two samples 279 

when adding all available omics data into the comparison (Figure 6E).  280 

The proMODMatcher identified a cross-aligned pair between the mRNA Agilent array 281 

profile of TCGA-BH-A0BZ-01 and the miRNA profile of TCGA-E2-A15K-01(See Table 1, Figure 282 

6F). The miRNA profile of TCGA-E2-A15K-01 was also cross-aligned to the mRNAseq profile of 283 

TCGA-BH-A0BZ-01 (Table 1, Figure 5B).  When including alignments of other omics profiles in 284 

a patient-centric view (Figure 6F), the result suggests that there was a labeling error of the 285 

miRNA profile of TCGA-E2-A15K-01.  286 

These results together suggest that proMODMatcher with 138 cis-associations can 287 

accurately identify sample labeling errors and unambiguously correct labeling errors.  288 

 289 

Application to TCGA breast cancer dataset: mRNA and RPPA  profiles  290 

There were 424 tumor samples with both mRNA expression measured in Agilent microarray and 291 

RPPA data, and 856 tumor samples with both mRNA expression measured in RNAseq and 292 

RPPA data. Total 145 proteins were mapped to unique mRNA transcripts, and 97 and 104 of 293 

protein-mRNA pairs whose protein abundance was significantly correlated (q<0.05) with the 294 

corresponding mRNA’s expression level were defined as significant cis-associations based on 295 

Agilent microarray and RNAseq data, respectively (Figure 7A and Table 2). And 84.9% and 296 

80.2% of candidate profile pairs were identified as self-aligned by proMODMatcher (Table 2). 297 

Examples of similarity scores of a self-aligned RNAseq-miRNA profile pair (Figure 7B) and a 298 

cross-alignment (Figure 7C, Supplmentary Figure S4)  comparing with other possible pairs 299 

are shown. The cross-aligned pair of the mRNA Agilent microarray profile TCGA-AR-A1AV-01 300 

and the RPPA profile of TCGA-AR-A1AW-01 data was identified (Figure 7D), consistent with 301 

labeling errors in the mRNA Agilent array data (Figure 7D). The potential cross-alignment 302 
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between the mRNA Agilent microarray profile TCGA-AR-A1AW-01 and the RPPA profile of TCGA-303 

AR-A1AW-01 data was not identified (Figure 7D), suggesting proMODMatcher’s sensitivity is 304 

limited when the number of cis-associations is around 100.  A large number of non-random 305 

missing data in RPPA data (Supplementary Figure S4) may also contribute to low sensitivity of 306 

the method.    307 

Table 2. Application of proMODMatcher to mRNA and RPPA profiles of TCGA BRCA data 308 
Data types Data 

types 
# 
samples1 

# cis pair 2 # of self-
aligned  

# of 
cross  

Cross-
aligned  
pairs 

Self-aligned in 
RNA-CNV3 

Cross-aligned 
pairs 

Type1  Type 2     Type 1  Type 2 

RNAseq RPPA 856 104/151 687 (80.2%) 1  TCGA-A7-
A56D-01 

Y TCGA-W8-
A86G-01 

Agilent RPPA 424 97/145 360 (84.9%) 11  TCGA-BH-
A0DS-01 

No :TCGA-BH-
A0BA-01 

TCGA-E2-
A1IL-01 

      TCGA-E2-
A10C-01 

Y TCGA-LL-
A5YN-01 

      TCGA-E2-
A1B0-01 

Y TCGA-D8-
A1JK-01 

      TCGA-AR-
A1AV-01 

No: TCGA-AR-
A1AW-01 

TCGA-AR-
A1AW-01 

      TCGA-E2-
A1B6-01 

No:TCGA-E2-
A1B5-01 

TCGA-AR-
A255-01 

      TCGA-A8-
A07J-01 

Y TCGA-D8-
A1JU-01 

      TCGA-A8-
A0AB-01 

Y TCGA-EW-
A1J3-01 

      TCGA-AN-
A04C-01 

Y TCGA-E9-
A1N9-01 

      TCGA-E2-
A105-01 

Y TCGA-C8-
A1HO-01 

      TCGA-AN-
A0XL-01 

Y TCGA-D8-
A1Y2-01 

      TCGA-AN-
A0XV-01 

Y TCGA-GM-
A2DM-01 

The bold indicates cross-alignments supported by other data.  309 
1The number of common sample with both type1 and type2 profiles. 310 
2The number of significant cis-pairs at q-value <0.05 at final iteration and the number of cis-pairs investigated. We 311 
investigated only cis-pairs that have more than 25% of samples with expressed RPPA or mRNA. 312 
3Indicate the RNA sample of cross-aligned pairs are self-aligned or not in alignment between RNA profile (Agilent 313 
array or RNAseq) and CNV profile. The aligned pairs are also shown if there is a cross-aligned sample.  314 
 315 

Application to TCGA pan-cancer datasets  316 

The proMODMatcher was also applied to pan-cancer datasets (total 22 different types of 317 

cancers) in TCGA to align miRNA (Table 3) and RPPA profiles (Table 4) with mRNA profiles.   318 

When aligning RNAseq and miRNAseq profiles, more than 95% of candidate profile pairs were 319 

identified as self-aligned for most cancer datasets (Figure 8A). The self-alignment rates for 320 
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SARC, DLBC, and CESC were 100%, suggesting high data quality for the datasets (Figure 8A, 321 

Table 3).  On the other hand, miRNA expression profiles were aligned to mRNA expression 322 

profiles (i.e. Agilent, HG-U133, or RNAseq) at low self-alignments rate for the GBM dataset 323 

(Figure 8A), suggesting low quality of the TCGA GBM miRNA profiles.  324 

 For alignments between mRNA and RPPA profiles, the self-alignment rates were lower 325 

than alignments between mRNA and miRNA (Figure 8B) for most datasets due to lower 326 

numbers of cis-associations between mRNA and RPPA profiles. The self-alignment rates for 327 

DLBC (96.97%) and SARC (97.7%) were higher compared to other datasets (Figure 8AB), 328 

again suggesting high data qualities of the datasets. This observation indicates some datasets 329 

in TCGA showed consistently high confidence for sample quality and low data labeling errors.  330 

 Even in datasets of high quality, sample labeling errors were detected.  For example, the 331 

self-alignment rate for mRNA-miRNA profiles of the TCGA UCEC dataset was 98%.  Four 332 

cross-alignments were identified (Table 3).  Two of them were likely due to a swap of miRNA 333 

profiles of TCGA-AX-A1C4-01 and TCGA-AX-A1CI-01 after considering other types of omics 334 

data (Figure 8C). Similarly, the self-alignment rate for mRNA-miRNA profiles of the TCGA OV 335 

dataset was 96.9%.  Five cross-alignments were identified (Table 3).  Two of them were likely 336 

due to a swap of miRNA profiles of TCGA-24-2261-01 and TCGA-31-1953-01 (Figure 8D). 337 

 338 

Discussion 339 

We developed a new sample alignment method, proMODMatcher, for detecting and correcting 340 

sample labeling errors by aligning omics profiles. The proMODMatcher extended our previous 341 

method MODMatcher by estimating probabilities of potential matches rather than using ranks of 342 

similarity scores.  Applied to simulated datasets,  proMODMatcher outperformed MODMatcher 343 

when aligning the omics data profiles with relatively small number of cis-associations.  We 344 
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showed that the number of candidate intrinsic cis-association between mRNA-miRNA profiles or 345 

mRNA-RPPA profiles was low. Application of our proMODMatcher to alignment between 346 

mRNA-miRNA profile pairings and mRNA-RPPA profile pairings from 22 different cancer 347 

datasets in TCGA demonstrated that sample labeling errors occurred even in datasets of high 348 

quality and our procedure was not only able to identify sample labeling errors but also to 349 

unambiguously identify the source of the errors.  350 

 Integrating multi-omics data into comprehensive network models is essential to elucidate 351 

complex molecular mechanisms of cancers. After correcting sample labeling errors, 352 

associations between different profiles were stronger.  For example, mis-labeled samples were 353 

outliers when comparing significant pairs between mRNA and miRNA expression levels in the 354 

TCGA BRCA dataset (Figure 9A, red dots were mis-labeled samples). Pearson correlation 355 

between expression levels of miRNAs and their host genes were improved for most pairs of 356 

miRNA-host genes after curating sample labeling errors (Figure 9B).  357 

We showed that some potential cross-aligned profiles pairs in the TCGA BRCA dataset 358 

were missed by proMODMatcher. The sensitivity and accuracy of multi-omics profile matching 359 

methods needs further improvement.  Integrating more than two types of profiles in probability 360 

estimation may yield more robust sensitivity and specificity when the number of cis-associations 361 

is small.   362 

 363 

Potential implications 364 

Our results demonstrated that sample labeling errors were common in large multi-omics 365 

datasets. Our method has improved statistical accuracy to identify and curate these errors over 366 

the previous method, and generally applicable to other data sets. Application of our general 367 
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framework for automated curation of public databases and properly merging omics data would 368 

be the fundamental basis for the development of effective integrative approaches. 369 

 370 

Methods  371 

A general framework of multi-omics data matching: Pairwise alignments based on cis-372 

associations  373 

We followed the general framework of multi-omics data matching of the previous study [8]. Two 374 

types of data (or profiles) (i.e. Type A and Type B in Figure 1) were matched based on their cis-375 

associations. Probes in different types of data were matched by intrinsic biological relationships. 376 

For example, probes in methylation, miRNA and Copy number variation (CNV) profiles were 377 

mapped to a close transcript based on hg19 reference genome. Samples were initially matched 378 

based on annotated sample ID and potential cis-associations (Figure 1A). The significant cis-379 

associations from two different data types were identified by the Spearman correlations at 380 

Benjamini-Hochberg (BH) adjusted q-value < 0.05 (Figure 1B). The data for each cis-381 

association was normal rank-transformed as 𝑅𝑇(𝐴𝑛,𝑖)  and 𝑇(𝐵𝑛,𝑖)  , where 𝐴𝑛,𝑖   and 𝐵𝑛,𝑖  382 

represents the measurements of sample i and nth cis-related probes for Type A and B profiles, 383 

respectively (Figure 1B). For simplicity, we omitted all normal rank transformation in the rest of 384 

notations. The profile similarity between the two types of data 𝑆(𝐴𝑖 , 𝐵𝑗) is defined as  (Figure 385 

1C): 386 

𝑆(𝐴𝑖 , 𝐵𝑗) = 𝑐𝑜𝑟𝑟(𝐴𝑖 , 𝐵𝑗) 387 

=
∑ 𝐴𝑛,𝑖

𝑁
𝑛=1 ∑ 𝐵𝑛,𝑗

𝑁
𝑛=1 − 𝑁 ∑ 𝐴𝑛,𝑖 × 𝐵𝑛,𝑗

𝑁
𝑛=1

√𝑁 ∑ 𝐴𝑛,𝑖
2 − (∑ 𝐴𝑛,𝑖

𝑁
𝑛=1 )2𝑁

𝑛=1 √𝑁 ∑ 𝐵𝑛,𝑖
2 − (∑ 𝐵𝑛,𝑖

𝑁
𝑛=1 )2𝑁

𝑛=1

 388 

  389 
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First, profile pairs matched by annotated sample IDs were checked whether their similarity 390 

scores were high (Figure 1D) to be annotated as “self-aligned”. If not, additional steps were 391 

applied to find any potential matches among other unmatched profiles (Figure 1E). The 392 

matched profile pairs were then used to update significant cis-associations. We iteratively 393 

refined profile alignment and rounds of alignments were repeated until there were no further 394 

updates.  395 

 396 

Multi-Omics Data matcher (MODMatcher) 397 

In the “Determine self-aligned vs. cross-aligned” step (Figure 1E), the similarity scores of self-398 

aligned profiles between type A and type B, 𝑆(𝐴𝑖 , 𝐵𝑖), were top 5% ranked among 𝑆(𝐴𝑛, 𝐵𝑖), 𝑛 =399 

1 … 𝑁𝐴  as well as 𝑆(𝐴𝑖, 𝐵𝑛), 𝑛 = 1 … 𝑁𝐵  , to be annotated as self-aligned, where 𝑁𝐴 and 𝑁𝐵 400 

represent the number of samples of type A and type B, respectively. If the sample sizes were 401 

bigger than 400, top 20 was used as the threshold for self-alignment. Next, for the profiles that 402 

were not self-aligned, reciprocal mapping was applied to find any potential matches among 403 

other unmatched profiles.  If sample j  of type A and sample k of type B,  𝑆(𝐴𝑖 , 𝐵𝑘) is 1st ranked 404 

among 𝑆(𝐴𝑗 , 𝐵𝑛), 𝑛 = 1 … 𝑁𝐵  as well as 𝑆(𝐴𝑛, 𝐵𝑘), 𝑛 = 1 … 𝑁𝐴 , then the pair is  annotated as 405 

cross-aligned.   406 

 407 

A probabilistic Multi-Omics Data matcher (proMODMatcher) 408 

The characteristics (noises, biases, dynamic ranges, and etc.) of two types of profiles may be 409 

different. The rank-based cutoff was not able to reflect similarity score differences in a specific 410 

similarity score distribution with a large or small variance (Supplementary Figure S5).  In the 411 

“Determine self- vs. cross-aligned” step, the proMODMatcher evaluated a similarity score in a 412 

bivariate normal distribution, Χ~𝑁2(𝛍, 𝚺), where  𝛍 is the mean vector and 𝚺 is the covariance 413 
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matrix (Figure 1D). The probability of a match between profile i of type A and profile j of type B, 414 

P(𝐴𝑖 , 𝐵𝑗) = 𝑃(𝑆(𝐴𝑖 , 𝐵𝑗), 𝑆(𝐴𝑖 , 𝐵𝑗)) , is estimated based on a score distribution 415 

of  (𝑆(𝐴𝑖 , 𝐵𝑚), 𝑆(𝐴𝑚, 𝐵𝑗)) , where Am and Bm represent type A and type B profile of the mth 416 

matched profile pairs, respectively. Given the bivariate normal distribution, we calculated the 417 

distance of a point  𝑥 = (𝑆(𝐴𝑖 , 𝐵𝑚), 𝑆(𝐴𝑚, 𝐵𝑗))  to the center of the distribution, known as 418 

Mahalanobis distance, as 𝑟 = √(𝑥 − 𝛍)𝑇Σ−1(𝑥 − 𝛍), and the cumulative function  𝐹(𝑅 ≤ 𝑟) = 1 −419 

𝑒−𝑟2 2⁄ .  To obtain a more robust estimation of covariance matrix  𝚺 of the distribution, we added 420 

1000 profile pairs of randomly permuted profiles in addition to true profile pairs. 421 

Additionally, we introduced a prior probability of self-alignment 𝑝0. Thus, given profiles Ai 422 

and Bj and their similarity score 𝑆(𝐴𝑖 , 𝐵𝑗) as well as estimated Mahalanobis distance ri,j , we 423 

calculated the p-value of the two profiles matched by chance  as 𝑝(𝐴𝑖, 𝐵𝑗)  =424 

 {
𝑝0 ∗ 𝑒−𝑟𝑖,𝑗

2 /2, 𝑖𝑓 𝑖 = 𝑗

𝑒−𝑟𝑖,𝑗
2 /2, 𝑖𝑓 𝑖 ≠ 𝑗

. In this study, the prior probability 𝑝0 was set as 𝑝0 = 1 𝑁𝑠⁄  , where 𝑁𝑠 425 

represents number of samples. We also set global similarity score cutoffs for self-alignment, 426 

𝑆𝑠𝑒𝑙𝑓
𝑐𝑢𝑡𝑜𝑓𝑓

, as well as cross-alignment, 𝑆𝑐𝑟𝑜𝑠𝑠
𝑐𝑢𝑡𝑜𝑓𝑓

. The  𝑆𝑠𝑒𝑙𝑓
𝑐𝑢𝑡𝑜𝑓𝑓

 value was set as the lower bound of 427 

99% of the self-self similarity scores estimated by mean and standard deviations of 𝑆(𝐴𝑖 , 𝐵𝑖), 428 

where i indicates the samples with both type A and Type B profiles. And the 𝑆𝑐𝑟𝑜𝑠𝑠
𝑐𝑢𝑡𝑜𝑓𝑓

  was set as 429 

the lower bound of 68% of the self-self similarity scores.  430 

 The similarity score 𝑆(𝐴𝑖 , 𝐵𝑗)   and its corresponding p-value  𝑝(𝐴𝑖 , 𝐵𝑗)  were used to 431 

identify matched pairs between type A and type B profiles (Figure 1E). Each round of our 432 

procedure consisted of three steps. First, the self-alignment similarity score 𝑆(𝐴𝑖 , 𝐵𝑖)  and 433 

corresponding p-value 𝑝(𝐴𝑖, 𝐵𝑖) were calculated. If 𝑆(𝐴𝑖 , 𝐵𝑖) >𝑆𝑠𝑒𝑙𝑓
𝑐𝑢𝑡𝑜𝑓𝑓

 and (𝐴𝑖 , 𝐵𝑖) < 𝑝𝑖≠𝑗(𝐴𝑖, 𝐵𝑗) , 434 

then the profiles 𝐴𝑖 and 𝐵𝑖  were self-aligned. Second, for a profile  𝐴𝑖 that was not self-aligned 435 
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 20 

to the profile 𝐵𝑖 in the first step, it was compared to all unmapped profile 𝐵𝑗.  If the similarity 436 

score 𝑆(𝐴𝑖 , 𝐵𝑗) < 𝑆𝑐𝑟𝑜𝑠𝑠
𝑐𝑢𝑡𝑜𝑓𝑓

   and the corresponding p-value 𝑝(𝐴𝑖, 𝐵𝑗) ≤ 𝑎𝑟𝑔 min
𝑛∈[1…,𝑁𝐵]

(𝑝(𝐴𝑖 , 𝐵𝑛)) 437 

and 𝑝(𝐴𝑖, 𝐵𝑗) ≤ 𝑎𝑟𝑔 min
𝑛∈[1…,𝑁𝐴]

(𝑝(𝐴𝑛, 𝐵𝑗)), then the profiles 𝐴𝑖  and 𝐵𝑗   were cross-aligned. Third, 438 

for profile pairs 𝐴𝑖 and 𝐵𝑖  that were not aligned in the first two steps,  if 𝑆(𝐴𝑖 , 𝐵𝑖) >𝑆𝑠𝑒𝑙𝑓
𝑐𝑢𝑡𝑜𝑓𝑓

  and 439 

the  p-value  𝑝(𝐴𝑖 , 𝐵𝑖) was smaller than the fifth smallest among 𝑝(𝐴𝑖, 𝐵𝑛), 𝑛 = 1 … 𝑁𝐵 as well as  440 

𝑝(𝐴𝑛, 𝐵𝑖), 𝑛 = 1 … 𝑁𝐴,  then the profiles 𝐴𝑖 and 𝐵𝑖 were rescured as self-aligned. The rounds of 441 

alignments were repeated until there was no further change. 442 

 443 

Correlation of cis-associated mRNA and miRNA before and after correcting labeling 444 

errors 445 

To assess improvement of signals after labeling error correction, we calculated Spearman 446 

correlation between miRNA expression and its host genes with initially matched pairs based on 447 

sample ID and with aligned sample pairs. To avoid bias due to different number of samples, we 448 

matched the number of samples of initially matched pairs to the number of aligned pairs. We 449 

randomly selected the samples with the same number of aligned pairs, and calculated the 450 

Spearman correlation. We performed random selection 100 times and calculated mean of 451 

correlation.            452 

 453 

Availability of source code and requirements 454 

Project name: ProMODMatcher  (passcode to decrypt the zipped file is “password123”) 455 

Project home page: http://research.mssm.edu/integrative-network-biology/Software.html 456 

Operating system: Platform independent   457 

Programming language: R  458 
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Other requirements: R 3.5.1 or later 459 

License: GNU General Public License 460 

 461 

Availability of supporting data and materials 462 

Data supporting the results of this article are deposited in Data supporting the results of this 463 

article are publicly available at firehose database and TCGA data portal (see Data Description).  464 
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TCGA: The Cancer Genome Atlas 468 

QC: quality control 469 

MODMatcher: Multi-Omics Data matcher 470 

proMODMatcher : A probabilistic Multi-Omics Data matcher  471 

BH: Benjamini-Hochberg 472 

FPR: false positive rate 473 

RPPA: Reverse Phase Protein Array  474 

CNV: Copy number variation 475 
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HNSC: Head and Neck squamous cell carcinoma 484 
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 556 

Figure legends 557 

Figure 1. Overview of proMODMatcher procedure. (A) Probes in two types of profiles (i.e. 558 

Type A and Type B) were matched by intrinsic biological relationships. (B) The significant cis-559 

associations from two different data types were identified by the Spearman correlation. The data 560 

for each cis relationship was normal rank-transformed. (C) The sample similarity score between 561 

the two types of data 𝑆(𝐴𝑖, 𝐵𝑗)  is defined as Spearman correlation between normal rank-562 

transformed profiles. (D) The proMODMatcher evaluated a similarity score of a match, 𝑆(𝐴𝑖 , 𝐵𝑗), 563 

by calculating probability of a match estimated based on a score distribution 564 

of (𝑆(𝐴𝑖, 𝐵𝑛), 𝑆(𝐴𝑛, 𝐵𝑗)), where An and Bn represent type A and type B profile of the nth matched 565 

profile pairs. (E) In the Determine self-aligned vs. cross-aligned step, profile pairs matched by 566 

sample IDs were checked whether their similarity scores were high to be annotated as “self-567 

aligned”. If not, additional steps were applied to find any potential matches among other 568 

unmatched profiles. The matched profile pairs were used to update significant cis-associations.  569 

 570 

Figure 2. Application of MODMatcher to simulated data sets. We simulated data sets with 571 

different numbers of samples and significant cis-associations. For variable number of samples 572 

and significant cis-associations, sensitivity and false positive rate (FPR, 1-specificity) were 573 

measured and plotted.  574 
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Figure 3. Application of  proMODMatcher to simulated data sets. (A) For variable number of 576 

samples and significant cis-associations specificity and FPR were measured based on 577 

simulated data sets with 0%, 4% and 6% sample labeling error rate. (B-C) F measure, 578 

sensitivity, and specificity were compared with MODMatcher’s results.  579 

 580 

Figure 4. Aligning gene expression profiles by RNAseq and miRNAseq data. (A) An 581 

example of miRNAs (e.g. miR-452) that are embedded in gene regions (e.g. GABRE).  (B) 582 

Expression level of miR-452 was highly associated with mRNA expression of GABRE. (C) The 583 

rank of the similarity scores of self-self RNAseq-miRNAseq profiles. (D) An example of the 584 

similarity score of the self-aligned profiles, TCGA−D8−A1JH-01. The similarity score between 585 

RNAseq profile of  TCGA−D8−A1JH-01 and miRNA profiles of other samples were shown. The 586 

red star indicates similarity score of self-self RNAseq-miRNAseq profiles. (E) An example of  587 

non self-aligned RNAseq-miRNA profiles, TCGA-B6-A0X7-01. (F)  The probabilities of similarity 588 

scores (before multiplying prior probability) for self-aligned RNAseq-miRNAseq profiles. (G) An 589 

example of similarity scores of self-aligned RNAseq-miRNA profile pairs. X-axis indicates the 590 

similarity scores between RNAseq profile of TCGA-OL-A6VO-01 and miRNAseq profiles of all 591 

other samples, and y-axis indicates similarity scores between miRNAseq profile of TCGA-OL-592 

A6VO-01 and RNAseq profiles of all other samples. The red dot indicates similarity score for 593 

self-self RNAseq-miRNAseq profile. (H)  An example of similarity scores of non self-aligned 594 

RNAseq-miRNA profile pairs.  595 

 596 

Figure 5. Comparison of MODMatcher and proMODMatcher for aligning expression 597 

profiles by RNAseq and miRNAseq data. (A) The similarity scores of a self-aligned RNAseq-598 

miRNA profile pair identified by proMODMatcher, but not by MODMatcher.  X-axis indicates the 599 
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similarity score between RNAseq profile of TCGA-AO-A0JF-01 and miRNAseq profiles of all 600 

other samples, and y-axis indicates similarity score between miRNAseq profile of TCGA-AO-601 

A0JF-01 and RNAseq profiles of all other samples. The red dot indicates similarity score for 602 

self-self RNAseq-miRNAseq profiles.  (B) One cross-aligned pair, RNAseq of TCGA-BH-A0BZ-603 

01 and miRNA of TCGA-E2-A15K-01, identified by proMODMatcher. The similarity score of the 604 

cross-aligned pair was shown in blue and the similarity scores of self-self alignments was shown 605 

in red. (C) Significance levels of cis-associations based on profile pairs aligned by MODMatcher 606 

and proMODMatcher.  607 

 608 

Figure 6. Aligning gene expression profiles by Agilent array and miRNAseq data (A) An 609 

example of possible sample swaps. In alignment of Agilent array and miRNAseq profiles, 610 

TCGA-BH-A18K-01 and TCGA-BH-A18T-01 were cross-aligned to each other. The similarity 611 

scores of each cross-alignment were shown. The similarity score of the cross-aligned pair was 612 

shown in blue and the similarity scores of self-self alignments were shown in red. (B) Other 613 

omics profiles of TCGA-BH-A18K and TCGA-BH-A18T were compared with each other and 614 

results were summarized into a patient-centric view. Red line indicates self-aligned, and blue 615 

line indicates cross-aligned. (C)  After swapping the corresponding mRNA Agilent array profiles, 616 

multiple-omics profiles of TCGA-BH-A18K and TCGA-BH-A18T were aligned to each other 617 

consistently.  (D-F) The similarity scores of other cross-aligned pairs were shown, and their 618 

available omics profiles and alignment results were summarized into a patient-centric view. 619 

 620 

Figure 7. Aligning mRNA and RPPA  profiles.  (A) The Spearman correlations of protein 621 

abundance and the corresponding mRNA’s expression level were shown based on RNAseq and 622 

Agilent array. The red line indicates correlation values corresponding to q-value 0.05.   (B) 623 
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Similarity scores of a self-aligned RNAseq-miRNA profile pair  (C) Similarity scores of a cross-624 

aligned RNAseq-miRNA profile pair. (D) Similarity scores of the cross-aligned pair between the 625 

mRNA Agilent microarray and RPPA profiles, TCGA-AR-A1AV-01 and TCGA-AR-A1AW-01,  626 

and alignment results for other omics profiles of this pair into a patient centric  view.  627 

 628 

 629 

Figure 8. Application to TCGA pan-cancer datasets.  (A-B) The self-alignment rate of RNA-630 

miRNA and RNA-RPPA alignment for each cancer type. (C-D) Two possible sample swap 631 

cases of miRNA profiles in the TCGA UCEC and OV datasets. The similarity scores of each 632 

cross-alignment and alignment results for other available omics profiles were shown.  633 

 634 

Figure 9. Correcting sample labeling errors. (A) Mis-labeled samples were outliers when 635 

comparing significant pairs between mRNA and miRNA expression levels in the TCGA BRCA 636 

dataset.  Red dots were mis-labeled samples. (B) Spearman correlation between expression 637 

levels of miRNAs and their host genes before and after curating sample labeling errors.  638 

 639 
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Table 3. Application of proMODMatcher to mRNA and miRNA profiles of TCGA cancer data excluding BRCA. 640 
Types 
of 
cancer  

Data 
types 

Data types # 
Com
mon 
samp
les 

# cis pair  # of self-
aligned  

# of cross-
aligned  

Cross-aligned  pairs Self-aligned 
in RNA-CNV 

Cross-aligned pairs 

 Type1  Type 2     Type 1  Type 2 

BLCA RNAseq miRNAseq 405 187/231 402 (99.2%) 0    

CESC RNAseq miRNAseq 100 132/223 100 (100%) 0    

COAD RNAseq miRNAseq 248 122/191 242 (97.5%) 8 (3.2%) TCGA-CM-4744-01 Y TCGA-AA-3558-01 

       TCGA-QL-A97D-01 Y TCGA-AA-A00W-01 

       TCGA-A6-A567-01 Y TCGA-AA-3693-01 

       TCGA-5M-AATA-01 Y TCGA-AA-3529-01 

       TCGA-RU-A8FL-01 Y TCGA-AZ-4681-01 

       TCGA-QG-A5YV-01 Y TCGA-AA-A02H-01 

       TCGA-A6-A565-01 Y TCGA-AA-A02E-01 

       TCGA-5M-AATE-01 Y TCGA-AA-A01F-01 

DLBC RNAseq miRNAseq 47 59/210 47 (100%) 0 (0%)    

GBM Agilent miRNA 
array 

525 73/107 307 (58.4%) 14(2.6%) TCGA-02-0064-01 Y TCGA-08-0390-01 

       TCGA-02-0325-01 Y TCGA-08-0345-01 

       TCGA-02-0321-01 Y TCGA-19-0957-01 

       TCGA-08-0510-01 Y TCGA-26-5135-01 

       TCGA-02-0070-01 Y TCGA-28-5218-01 

       TCGA-12-0773-01 Y TCGA-06-0744-01 

       TCGA-12-0780-01 Y TCGA-08-0354-01 

       TCGA-12-0822-01 Y TCGA-16-1045-01 

       TCGA-16-1062-01 Y TCGA-28-5209-01 

       TCGA-14-1829-01 Y TCGA-14-1450-01 

       TCGA-19-1385-01 Y TCGA-08-0352-01 

       TCGA-32-4719-01 Y TCGA-06-0140-01 

       TCGA-19-5952-01 Y TCGA-02-0324-01 

       TCGA-06-0201-01 No TCGA-06-0141-01 

 HG-
U133 

miRNA 
array 

520 56/100 315 (60.5%) 5 (0.9%) TCGA-02-0058-01 No: TCGA-
06-0190-01 

TCGA-12-0778-01 

       TCGA-02-0115-01 Y TCGA-12-0656-01 

       TCGA-19-1789-01 Y TCGA-06-0413-01 

       TCGA-06-2561-01 Y TCGA-12-0691-01 

       TCGA-02-0338-01 Y TCGA-76-6283-01 
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 RNAseq miRNA 
array 

151 70/129 115 (76.1%) 19 
(12.5%) 

TCGA-06-1804-01 Y TCGA-81-5911-01 

       TCGA-06-0178-01 No TCGA-16-1060-01 

       TCGA-14-1034-01 Y TCGA-02-0330-01 

       TCGA-15-0742-01 Y TCGA-02-0116-01 

       TCGA-06-5413-01 Y TCGA-14-0865-01 

       TCGA-19-2620-01 Y TCGA-76-6193-01 

       TCGA-06-0158-01 Y TCGA-06-0174-01 

       TCGA-06-0211-01 Y TCGA-12-3648-01 

       TCGA-06-2564-01 Y TCGA-12-0688-01 

       TCGA-06-0141-01 Y TCGA-08-0246-01 

       TCGA-06-0238-01 Y TCGA-06-0177-01 

       TCGA-06-0744-01 Y TCGA-76-6664-01 

       TCGA-06-0125-01 Y TCGA-08-0358-01 

       TCGA-41-2572-01 Y TCGA-02-0021-01 

       TCGA-06-0190-02 Y TCGA-19-5955-01 

       TCGA-28-2499-01 No: TCGA-
02-0099-01 

TCGA-12-1091-01 

       TCGA-06-0152-02 Y TCGA-26-1799-01 

       TCGA-19-1389-02 Y TCGA-14-0813-01 

       TCGA-14-1034-02 Y TCGA-15-1447-01 

HNSC RNAseq miRNAseq 517 183/229 494 (95.5%) 0 (0%)    

KIRC RNAseq miRNAseq 516 146/205 487 (94.3%) 0 (0%)    

KIRP RNAseq miRNAseq 290 131/205 285 (98.2%)  0 (0%)     

LAML RNAseq miRNAseq 173 93/166 168 (97.1%) 0    

LGG RNAseq miRNAseq 526 170/245 500 (95.0%) 0    

LIHC RNAseq miRNAseq 369 179/228 369 (99.4%) 0    

LUAD RNAseq miRNAseq 512 179/229 507 (99.0%) 0    

 Agilent miRNAseq 32 32/180 17 (53.1%) 3 (9.3%) TCGA-44-2655-01 Y TCGA-44-6148-01 

       TCGA-05-4249-01 No TCGA-86-A4D0-01 

       TCGA-35-4123-01 No TCGA-55-6969-01 

LUSC RNAseq miRNAseq 474 191/229 466 (98.3%) 0 (0%)    

OV  RNAseq miRNAseq 291 159/192 282 (96.9%) 5 (1.7%) TCGA-24-2261-01 Y TCGA-31-1953-01 

       TCGA-31-1953-01 Y TCGA-24-2261-01 

       TCGA-61-1728-01 Y TCGA-23-2072-01 

       TCGA-09-0369-01 Y TCGA-25-1877-01 

       TCGA-VG-A8LO-01 Y TCGA-04-1654-01 

PRAD RNAseq miRNAseq 494 129/198 432 (87.4%) 0     
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READ RNAseq miRNAseq 66 77/180 60 (90.9%) 3 (4.5%)  TCGA-AG-A01J-01 Y TCGA-DY-A1DG-01 

       TCGA-AG-A014-01 Y TCGA-DC-6158-01 

       TCGA-AG-A023-01 Y TCGA-AG-4022-01 

SARC  RNAseq miRNAseq 261 169/220 261 (100%) 0     

SKCM RNAseq miRNAseq 449 203/251 446 (99.3%) 0    

STAD RNAseq miRNAseq 377 193/256 371 (98.4%) 0    

THCA RNAseq miRNAseq 508 139/217 483 (95.0%) 0     

UCEC RNAseq miRNAseq 361 169/240 354 (98.0%) 4 (1.1%) TCGA-A5-A0GP-01 Y TCGA-AJ-A2QO-01 

       TCGA-AX-A1C4-01 Y TCGA-AX-A1CI-01 

       TCGA-AX-A1CI-01 Y TCGA-AX-A1C4-01 

       TCGA-BG-A220-01 No TCGA-AJ-A3NE-01 
Underlines indicates sample swaps 641 
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Table 4. Application of proMODMatcher to mRNA and RPPA profiles of TCGA cancer data excluding BRCA 654 
Types 
of 
cancer  

Data 
types 

Data 
types 

# 
Common 
samples 

# cis 
pair  

# of self-
aligned  

# of cross-
aligned  

Cross-aligned  pairs Self-aligned in 
RNA-CNV 

Cross-aligned pairs 

 Type1  Type 
2 

Type 1    Type 1  Type 2 

BLCA RNAseq RPPA 340 121/193 297 (87.3%) 3 (0.8%) TCGA-XF-AAN8-01 Y TCGA-FD-A6TB-01 

       TCGA-FD-A5BR-01 Y TCGA-XF-AAMF-01 

       TCGA-E7-A6ME-01 Y TCGA-E7-A541-01 

CESC RNAseq RPPA 172 101/184 152 (88.8%) 1 (0.5%) TCGA-EK-A3GJ-01 Y TCGA-C5-A8XI-01 

COAD RNAseq RPPA 240 110/202 195 (81.2%) 15 (6.2%) TCGA-G4-6321-01 Y TCGA-AA-A01P-01 

       TCGA-AD-A5EJ-01 Y TCGA-AA-3672-01 

       TCGA-CA-5256-01 Y TCGA-AA-3815-01 

       TCGA-AZ-4682-01 Y TCGA-G4-6321-01 

       TCGA-G4-6303-01 Y TCGA-A6-2677-01 

       TCGA-A6-6137-01 Y TCGA-AA-A01S-01 

       TCGA-G4-6627-01 Y TCGA-G4-6298-01 

       TCGA-A6-6140-01 Y TCGA-AA-3519-01 

       TCGA-NH-A5IV-01 Y TCGA-AA-A00E-01 

       TCGA-G4-6320-01 Y TCGA-A6-2672-01 

       TCGA-DM-A28H-01 Y TCGA-AA-3811-01 

       TCGA-CK-5913-01 Y TCGA-AA-3664-01 

       TCGA-NH-A50U-01 Y TCGA-AA-3558-01 

       TCGA-AD-6901-01 Y TCGA-NH-A6GC-06 

       TCGA-A6-A565-01 Y TCGA-AA-3520-01 

DLBC RNAseq RPPA 33 58/184 32 (96.9%) 0 (0%)    

GBM Agilent RPPA 191 97/194 157 (82.1%) 13 (6.8%) TCGA-06-0139-01 No TCGA-06-A5U1-01 

       TCGA-06-0158-01 Y TCGA-19-5950-01 

       TCGA-06-0176-01 Y TCGA-19-2625-01 

       TCGA-06-0206-01 Y TCGA-06-0190-02 

       TCGA-12-0620-01 Y TCGA-RR-A6KC-01 

       TCGA-06-0881-01 Y TCGA-02-0003-01 

       TCGA-14-1454-01 Y TCGA-19-A6J5-01 

       TCGA-12-1091-01 Y TCGA-14-1034-02 

       TCGA-14-1037-01 No TCGA-19-A60I-01 

       TCGA-14-1795-01 Y TCGA-12-5301-01 

       TCGA-32-2616-01 Y TCGA-06-5858-01 

       TCGA-81-5911-01 Y TCGA-19-1389-02 

       TCGA-14-1450-01 Y TCGA-06-5418-01 
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 HG-
U133 

RPPA 186 90/187 147 (79.0%) 13 (6.9%) TCGA-02-0068-01 Y TCGA-06-5413-01 

       TCGA-02-0033-01 No TCGA-32-4211-01 

       TCGA-14-0781-01 Y TCGA-74-6575-01 

       TCGA-12-1091-01 Y TCGA-14-1034-02 

       TCGA-28-2509-01 Y TCGA-19-A60I-01 

       TCGA-06-0141-01 Y TCGA-06-A5U1-01 

       TCGA-06-0160-01 Y TCGA-06-6700-01 

       TCGA-06-0394-01 Y TCGA-74-6578-01 

       TCGA-08-0518-01 Y TCGA-26-6173-01 

       TCGA-08-0512-01 Y TCGA-19-1389-02 

       TCGA-02-0330-01 Y TCGA-06-A6S1-01 

       TCGA-32-2491-01 Y TCGA-06-6698-01 

       TCGA-32-4719-01 Y TCGA-06-0876-01 

 RNAseq RPPA 83 106/201 75 (90.3%) 25    

HNSC RNAseq RPPA 212 82/156 175 (82.5%) 3 (1.4%) TCGA-CQ-6222-01 No TCGA-CV-5439-01 

       TCGA-D6-6824-01 Y TCGA-CV-5976-01 

       TCGA-MZ-A7D7-01 Y TCGA-CN-6011-01 

KIRC RNAseq RPPA 475 125/209 396 (83.3%) 4 (0.8%) TCGA-CJ-5681-01 Y TCGA-B0-5709-01 

       TCGA-B0-5709-01 Y TCGA-CJ-6030-01 

       TCGA-CJ-
4869-01 

Y TCGA-BP-4771-01 

       TCGA-CJ-4888-01 Y TCGA-CJ-4875-01 

KIRP RNAseq RPPA 215 93/184 178 (82.7%) 3 (1.3%) TCGA-KV-A74V-01 Y TCGA-MH-A55Z-01 

       TCGA-MH-A854-01 Y TCGA-UZ-A9PL-01 

       TCGA-MH-A561-01 Y TCGA-B1-A47N-01 

LGG RNAseq RPPA 435 95/173 320  (73.5%) 1 (0.2%) TCGA-HT-7681-01 Y TCGA-P5-A737-01 

LIHC RNAseq RPPA 181 105/214 158 (87.2%) 4 (2.2%) TCGA-ZS-A9CD-01 Y TCGA-G3-A5SK-01 

       TCGA-DD-AAC9-01 Y TCGA-DD-A4NG-01 

       TCGA-G3-AAV0-01 Y TCGA-GJ-A9DB-01 

       TCGA-G3-AAV5-01 Y TCGA-ED-A627-01 

LUAD RNAseq RPPA 360 125/193 312 (86.6%) 10 (2.7%) TCGA-50-5045-01 No TCGA-44-7672-01 

       TCGA-44-7667-01 Y TCGA-44-3917-01 

       TCGA-MP-A4TI-01 Y TCGA-MP-A4TA-01 

       TCGA-MP-A4TJ-01 Y TCGA-50-5939-01 

       TCGA-50-5055-01 No TCGA-97-A4M2-01 

       TCGA-55-A48X-01 Y TCGA-64-5778-01 

       TCGA-64-5775-01 No TCGA-05-5715-01 

       TCGA-55-6987-01 Y TCGA-44-2664-01 

 1 
 2 
 3 
 4 
 5 
 6 
 7 
 8 
 9 
10 
11 
12 
13 
14 
15 
16 
17 
18 
19 
20 
21 
22 
23 
24 
25 
26 
27 
28 
29 
30 
31 
32 
33 
34 
35 
36 
37 
38 
39 
40 
41 
42 
43 
44 
45 
46 
47 
48 
49 
50 
51 
52 
53 
54 
55 
56 
57 
58 
59 
60 
61 
62 
63 
64 
65 



 34 

       TCGA-38-7271-01 Y TCGA-50-5068-01 

       TCGA-55-8208-01 Y TCGA-50-5066-01 

 Agilent RPPA 23 34/187 14 (60.8%) 7 (30.4%) TCGA-44-2661-01 No TCGA-05-4249-01 

       TCGA-05-4249-01 No TCGA-55-6978-01 

       TCGA-44-3398-01 No TCGA-86-A4JF-01 

       TCGA-44-4112-01 No TCGA-44-3919-01 

       TCGA-44-2662-01 Y TCGA-78-7145-01 

       TCGA-67-3774-01 Y TCGA-73-7498-01 

       TCGA-35-3621-01 No TCGA-44-2661-01 

LUSC RNAseq RPPA 324 125/193 278 (85.8%) 3 (0.9%) TCGA-18-4086-01 Y TCGA-63-5131-01 

       TCGA-39-5039-01 Y TCGA-34-2604-01 

       TCGA-56-A4ZJ-01 Y TCGA-90-6837-01 

OV RNAseq RPPA 241 134/202 232 (96.2%) 9 (3.7%) TCGA-61-2095-01 Y TCGA-42-2587-01 

       TCGA-09-0364-01 Y TCGA-29-1774-01 

       TCGA-09-2048-01 Y TCGA-13-0802-01 

       TCGA-13-0890-01 Y TCGA-42-2590-01 

       TCGA-24-2035-01 Y TCGA-30-1892-01 

       TCGA-25-1870-01 Y TCGA-36-2534-01 

       TCGA-31-1956-01 Y TCGA-29-1768-01 

       TCGA-57-1583-01 Y TCGA-61-1916-01 

       TCGA-59-2350-01 Y TCGA-61-1913-01 

PRAD RNAseq RPPA 351 96/178 209 (59.5%) 9 (2.5%) TCGA-VN-A88I-01 Y TCGA-KC-A4BV-01 

       TCGA-KC-A7F3-01 Y TCGA-ZG-A8QX-01 

       TCGA-FC-A6HD-01 No TCGA-EJ-A8FN-01 

       TCGA-EJ-5499-01 Y TCGA-VN-A88L-01 

       TCGA-HC-7230-01 Y TCGA-HC-7748-01 

       TCGA-XJ-A83G-01 Y TCGA-G9-6338-01 

       TCGA-HC-A8CY-01 Y TCGA-V1-A9Z8-01 

       TCGA-HC-7821-01 Y TCGA-YL-A9WL-01 

       TCGA-VP-A87C-01 Y TCGA-EJ-8470-01 

READ RNAseq RPPA 55 54/202 43 (78.1%) 4 (7.2%) TCGA-AG-A00H-01 Y TCGA-F5-6810-01 

       TCGA-AG-3584-01 Y TCGA-AG-4022-01 

       TCGA-AG-3883-01 Y TCGA-AG-4005-01 

       TCGA-AG-3575-01 Y TCGA-F5-6863-01 

SARC RNAseq RPPA 224 110/184 219 (97.7%) 0    

SKCM RNAseq RPPA 352 128/193 314 (89.2%) 2 TCGA-EB-A44N-01 Y TCGA-EB-A5UM-01 

       TCGA-W3-A828-06 Y TCGA-EB-A551-01 

STAD RNAseq RPPA 306 103/177 233 (76.1%) 12 (3.9%) TCGA-D7-6818-01 Y TCGA-EQ-8122-01 
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       TCGA-HU-A4H3-01 Y TCGA-CG-4442-01 

       TCGA-SW-
A7EB-01 

Y TCGA-CG-4460-01 

       TCGA-VQ-A94P-01 Y TCGA-RD-A8NB-01 

       TCGA-ZA-
A8F6-01 

Y TCGA-CG-4476-01 

       TCGA-FP-8210-01 Y TCGA-D7-A4Z0-01 

       TCGA-HU-8244-01 Y TCGA-BR-4371-01 

       TCGA-HU-8604-01 Y TCGA-BR-A4QL-01 

       TCGA-HU-A4GJ-01 Y TCGA-CD-A4MI-01 

       TCGA-HU-A4H8-01 Y TCGA-CG-5720-01 

       TCGA-R5-A7ZI-01 Y TCGA-BR-6710-01 

       TCGA-VQ-A927-01 Y TCGA-F1-A72C-01 

THCA RNAseq RPPA 222 55/167 142 (63.9%) 3 (1.3%) TCGA-EM-A3FJ-01 No TCGA-EM-A2CS-06 

       TCGA-DJ-A4UW-01 No TCGA-EL-A3CU-01 

       TCGA-ET-A3BQ-01 No TCGA-EL-A3GR-01 

UCEC RNAseq RPPA 300 115/187 270 (90%) 15 (5%) TCGA-AX-A05Y-01 Y TCGA-AX-A060-01 

       TCGA-AX-A05Z-01 Y TCGA-EO-A3AV-01 

       TCGA-AX-A0IW-01 Y TCGA-KP-A3VZ-01 

       TCGA-D1-A163-01 Y TCGA-AJ-A3BH-01 

       TCGA-D1-A1NZ-01 Y TCGA-E6-A2P9-01 

       TCGA-EO-A22T-01 Y TCGA-B5-A1MW-01 

       TCGA-FI-A2F9-01 Y TCGA-A5-A1OH-01 

       TCGA-BG-A0MQ-01 Y TCGA-A5-A7WJ-01 

       TCGA-BG-A0MO-01 Y TCGA-BK-A13B-01 

       TCGA-D1-A17A-01 Y TCGA-A5-A0GB-01 

       TCGA-BS-A0TE-01 Y TCGA-AJ-A3EK-01 

       TCGA-BS-A0UL-01 Y TCGA-EO-A22T-01 

       TCGA-FI-A2CX-01 Y TCGA-E6-A2P8-01 

       TCGA-B5-A11M-01 No TCGA-EY-A1GW-01 

       TCGA-FI-A2D6-01 Y TCGA-DF-A2KY-01 
The bold indicates cross-alignments supported by other data.  655 
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